Problem sheet 2

1. Hyperplanes in pseudo-random numbers

Generate a three- and a two-dimensional plot of points $\left(s_{n}, s_{n+1}, s_{n+2}\right)$ and $\left(s_{n}, s_{n+1}\right)$ taken from the multiplicative linear congruential generator $a=137, c=187$ and $m=256$.

2. Out of luck in Monte Carlo

We are interested in the integral

$$
I=2 \int_{0}^{1} d x \int_{0}^{1} d y \int_{0}^{1} d z \sin ^{2}(2 \pi(9 x-6 y+z))
$$

This integral can be solved analytically by doing the z-integration first and yields 1 . Suppose we are ignorant about this possibility and perform a brute-force Monte Carlo integration using the multiplicative linear congruential generator $a=65539, c=0$ and $m=2^{31}$. Innocent as we are we use three consecutive random numbers from the generator to define a point in the cube: $(x, y, z)_{n}=\left(s_{3 n} / m, s_{3 n+1} / m, s_{3 n+2} / m\right)$. What do you get? In order to see what went wrong show that three consecutive numbers of this generator satisfy

$$
\left(9 s_{n}-6 s_{n+1}+s_{n+2}\right) \bmod m=0 .
$$

Instead of $m=2^{31}$ you might also take $m=2^{29}$. To check the implementation of your generator: The first few random numbers obtained from the seed $s_{0}=1$ are: 0.0001220759004 , $0.0007324386388,0.003295948729,0.01318374462,0.04943892919,0.1779798735,0.6229288783$, $0.1357544083,0.2081665453$ for $m=2^{29}$.
For $m=2^{31}$ the sequence starts with $0.00003051897511,0.0001831096597,0.0008239871822$, $0.003295936156,0.01235973230,0.04449496837,0.1557322196,0.5339386021,0.8020416363$
0.006802399177 .

3. The Ising model

The Hamiltonian of the Ising model is given by

$$
H_{\text {Ising }}=-J \sum_{\langle i, j\rangle} S_{i} S_{j},
$$

where $J>0$ is a constant, $\langle i, j\rangle$ denotes the sum over all next-neighbours and the spin S_{i} at site i takes the values ± 1. Observables are given by

$$
\langle O\rangle=\frac{\sum O(\phi) e^{-H(\phi) / k T}}{\sum e^{-H(\phi) / k T}},
$$

where the sum runs over all possible states. One observable is the magnetization M or the order parameter. For the Ising model the magnetization is given by

$$
M_{\text {Ising }}=\frac{1}{N} \sum S_{i}
$$

Write a Monte Carlo program which simulates the two-dimensional Ising model on a 16×16 lattice with periodic boundary conditions using the Metropolis algorithm. (Note that with a 16×16 lattice, the total number of states is 2^{256}. This is far too large to evaluate the partition sum by brute force.) You may initialize the model with all spins up (cold start) or with a random distribution of spins (hot start). Step through the 256 spins one at a time making an attempt to flip the current spin. Plot the absolute value of the magnetization for various values of $K=J / k T$ between 0 and 1 . Is anything happening around $K=0.44$?

