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1 Introduction

These lecture notes are based on a two-semester course on “General Relativity and Cosmology”
given at the University of Mainz. The first semester covers the basics of general relativity and
black holes, while the second semester is focussed on cosmology and starts with chapter 8.

Text books:
- R. Sexl und H. Urbantke, Gravitation und Kosmologie, Spektrum Akademischer Verlag
- W. Rindler, Relativity, Oxford University Press
- S. Carroll, Spacetime and Geometry, Addison-Wesley
- J. Peacock, Cosmological Physics, Cambridge University Press
- Ch. Misner, K. Thorne and J. Wheeler, Gravitation, Freeman and Company
- S. Weinberg, Gravitation and Cosmology, John Wiley

- G. Ellis and S. Hawking, The Large-Scale Structure of Space-time, Cambridge University
Press

- G. Borner, The Early Universe - Facts and Fiction, Springer
- L.D. Landau und E.M. Lifschitz, Band II, Klassische Feldtheorie, Akademie-Verlag
- E. Kolb and M. Turner, The Early Universe, CRC Press
- S. Dodelson, Modern Cosmology, Academic Press
- M. Maggiore, Gravitational Waves, Oxford University Press
Lecture notes:
- D. Hooper, Dark Matter, arXiv:0901.4090
- S. Profumo, Astrophysical Probes of Dark Matter, arXiv:1301.0952
- G. Gelmini, The Hunt for Dark Matter, arXiv:1502.01320
- D. Baumann, Lectures on Inflation, arXiv:0907.5424

- E. Flanagan and S. Hughes, The basics of gravitational wave theory, arXiv:gr-qc/050104 1



1.1 History

1638 G. Galilei Principle of relativity
1676 O. Rgmer speed of light is finite

Ch. Huygens 1000 earth’s diameter per minute
1687 I. Newton laws of mechanics

1864 J.C. Maxwell Maxwell’s equations

1900 M. Planck h: Planck’s constant

1905 A. Einstein special relativity

1915 A. Einstein general relativity

1919 A. Eddingtons experimental confirmation of general relativity

1.2 Newtonian mechanics

Newton’s laws:
1. A free particle moves with constant velocity along straight lines.

2. The force acting on a particle equals the product of its mass and its acceleration:

—

F = ma.

3. The forces of action and reaction have the same absolute value and opposite directions. If
particle A exerts a force F' on particle B, then particle B exerts a force —F on particle A.

Remark: Usually we state physical laws with respect to a reference system. A rigid reference
system is an (imaginary) extension of a rigid body. For example, the earth defines a rigid refer-
ence system in the complete space, consisting of all points which are fixed relatively to the earth
and among themselves. A concrete example is given by the positions of geostationary satellites.

Among all rigid reference systems the inertial systems play a special role. Inertial system are
by definition reference systems, where free particles move with constant velocity along straight
lines. The inertial systems are the reference systems where Newton’s laws are valid.

Remark: Newton postulated the existence of an absolute space, which he identified with the
centre-of-mass system of the solar system. In addition, Newton assumed the concept of an abso-
lute time.

Galilei transformations: Given two inertial systems K and K’, such that the origin of K moves
with velocity v along the x-axis of K’, the Galilei transformation reads

x/:x—f—vt, y/:y, z':z, t'=t.



2 Special relativity

2.1 Postulates

Inertial system: Reference system, in which a force-free body moves with constant velocity.
The relative velocity of one inertial system against another inertial system is constant.
Principle of relativity: The law of nature have the same form in all inertial systems.
Principle of a finite signal speed (i.e. there exists a maximal speed of action propagation).

The signal speed has the same value in every inertial system and equals the speed of light
c = 2.99792-10%m/s.

The limit case of classical mechanics: ¢ — o. Within classical mechanics we have Galilei’s
principle of relativity: Spatial relations depend on the reference system. Time is considered as
an absolute quantity.

Within special relativity time is no longer an absolute quantity. Example: Consider two iner-
tial systems K and K’, where K moves relative to K’ along the x’-axis. Assume further that the
direction of the x-axis in K coincides with the direction of the x’-axis in K’. Assume now that
from a point A on the x-axis one emits a signal in the positive and negative x-direction. Since
the signal speed in system K equals c¢ in any direction, the signal will reach two points B and C,
which are located at equal distance from A, but in opposite directions, at the same time. However,
these two events (arrival of the signal at point B, respectively C) do not occur at the same time
for an observer in system K’.

2.2 Distance, metric and four-vectors

An event is characterised by the spatial position, where it takes place and by the time, when it
takes place. Thus, an event is characterised by three spatial coordinates and one time coordinate,
which together form a four-dimensional space.

Consider again the reference systems K and K’: Consider two events: The first event is de-
fined by emitting at the position (x;,y;,z1) at the time #; a light signal. This light signal arrives at
time , at position (x7,y2,22), which defines the second event. Since the signal propagates with
the speed of light, it has travelled the distance

c(th—1).

On the other hand, the distance is of course also given by

\/(xl —x2)?+ (1 —y2)?+ (21 —22)%

7



Therefore we have:
Flta—t)—(x1 —x)* = (1 —y)?—(z1—22)* = 0.

Let us denote in the system K’ the coordinates of the first event by x/,y/,z},#] and the coordinates
of the second event by x5,y5,75,15. Since the speed of light has the same value c in all inertial
coordinate systems, we have with the same argumentation as above

2 2

A —11) = (¥ —x) = ) =)~ (& —H)?* = o

Definition: Denote by x,y1,z1,#1 and x2,y2,22,% the coordinates of two arbitrary events. We
call the quantity

s = \/cz(tz —11)? = (x1—x2)2 = (1 —2)* — (21— 22)?
the distance between these two events.

From the invariance of the speed of light it follows that if the distance between two events van-
ishes in one reference system, it will also vanish in all other reference systems.

More general we have: The distance between two events is the same in all reference systems.
Proof: We first consider two events, which are separated by an infinitesimal distance

ds* = Adt* —dx* —dy* —dZ.

The vanishing of the infinitesimal distance ds = 0 in one inertial system implies the vanishing of
the infinitesimal distance ds’ = 0 in any other system. ds and ds’ are infinitesimal quantities of
the same order. These two facts imply that they have to be proportional:

ds* = ads?.

The constant of proportionality a cannot depend on space- and time coordinates, as this would
contradict the homogeneity of space-time. Furthermore, a cannot depend on the direction of
the relative velocity between the two reference systems, as this would contradict the isotropy of
space. This implies that a can only depend on the absolute value of the relative velocity between
the two inertial systems. Consider now the reference systems K, K; and K;. Let V| be the
velocity of K relative to K, let v, be the velocity of K; relative to K and let V|, be the velocity
of K5 relative to K;. We have

ds® = a(v1)ds?, ds* =a(vy)ds3, dsi=a(vi2)ds3,

and therefore




Since vi; depends on the angle between V| and V,, so does the right-hand side. However, the
left-hand side does not depend on the angle. It follows, that a(v) must be a constant, and from
the same equation it follows that the constant must be equal to 1. Therefore

ds* = ds'z,

and the equality of the infinitesimal distances implies the equality of finite distances:

/
s = S.

53, >0 time-like distance;
there exists a reference systems, where the events 1 and 2 occur at the same spatial
position.

53, <0 space-like distance;
there exists a reference systems, where the events 1 and 2 occur at the same time.

s%z =0 light-like distance;

light cone

Two events can only be causally connected, if the distance between them satisfies s > 0. This
follows immediately from the fact, that no casual action can propagate with a speed greater than
the speed of light.

Four-vectors: We may view the coordinates (ct,x,y,z) of an event as the components of a vector
in a four-dimensional space.

o= (xo,xl,xz,x3),
= (%).
We use greek indices u,V, ..., which take the values 0, 1,2, 3, to denote the components of a four-

vector. Latin indices i, j, ..., which take the values 1,2, 3, are used to denote the components of a
spatial three-vector.

The distance of two evens x, and x;, is given by

2 = (=)= (- )= (2P - ()%
We define the metric tensor g,y by
1 0 0 O
_ 0 -1 0 O
Swv= o 0 -1 0
0 0 0 -1



This allows us to write the distance as

3 3
S = %, L & (X ) (0 — ).

u=0v=0

Einstein’s summation convention: Sums as above are often written without the summation
sign. In general, Einstein’s summation convention is the rule, that indices which occur in pairs
imply a summation over all values of this index. The summation sign is not written explicitly.
For each pair of indices, one index must occur as a subscript, the other as a superscript.
Therefore
2 v
Sop = 8uv (xa —xp)! (xa —xp)" .
We call a four-vector x* with an upper index a contravariant four-vector, a four-vector x,, with a

lower index is called a covariant four-vector. The relation between covariant and contravariant
four-vectors is given by

X = g, W= gVx, ¢V = (¢ = diag(1,-1,-1,-1).

Thus, we may write the distance equally well as

SZb = (% _xb)y (%a —xp)" = (xg —x5)" (xa _‘xb),u‘

Remark: The geometry defined by the quadratic form g,y = diag(1,—1,—1,—1) is not an Eu-
clidean geometry. One speaks of a pseudo-Euclidean geometry. The special case of a four-
dimensional space with the metric diag(1,—1,—1,—1) is known as Minkowski space.

2.3 Proper time

Consider the following situation: We observe from an inertial system K’ a moving clock. The
motion of the clock may be arbitrary. We may approximate the motion of the clock by sequence
of motions with constant velocity. Thus, we may associate for every time ¢ an inertial system K
to the clock, such that the clock is at rest in K at time . (If the clock is accelerating, we will
need different inertial systems at different times.) In the original system K’ the clock travels in
the infinitesimal time interval dt’ the spatial distance

\/dx’2+dy’2+dz’2.

We may ask, what time the clock displays in system K at the end of this infinitesimal trajectory.
Phrased differently, we ask what is the infinitesimal time interval dt in K. From the invariance of
the distance we have

- 2 2 2

Adi'” —dxX"—dy"—d?* = di?

10



and therefore

=dt'\/1 - =.

dt =
c2dt'”? c?

dt’\/l dx'? +dy? +d7? B V2

Integration gives for an arbitrary motion
1%
h—t = /dt’ 1——.

With #; = #{ = 0 this simplifies to

2
_ / v

1 is called the proper time of the moving object.

Remark 1: The proper time of a moving object is always smaller than the corresponding time
interval in a non-moving reference system.

Remark 2: This is no contradiction to the principle of relativity, since for a comparison of the
clocks we need one clock in the moving system but several clocks in the non-moving system.

Remark 3: Also a clock, whose spatial motion is given by a closed curve, does not contra-
dict the principle of relativity. Such a clock cannot be at rest in a single inertial systems at all
times.

2.4 Lorentz transformations

Let K and K’ be two inertial systems. We would like to have a formula which allows to compute
the coordinates x’,y’,7’,# of an event in the inertial system K’, given that we know the coordi-
nates x,y,z,t of the same event in system K.

Recall: The Galilei transformation:

/

x':x—i-vt, y':y, z’:z, r=t.

System K moves with velocity v relative to system K’ along the x-axis.
The relativistic generalisation has to keep the distance invariant. This implies that we only have

to consider translations and rotations. Translations correspond to a redefinition of the origin of
the coordinate system and are not new. We therefore focus on rotations. Each rotation in the

11



four-dimensional space can be decomposed into the six basic rotations in the planes xy, yz, zx,
tx, ty and tz. Basic rotations in the first three planes (xy, yz and zx) correspond to ordinary spatial
rotations. Let us therefore consider as an example a rotation in the tx-plane. This leaves the y-
and z-coordinates unchanged. The rotation has to keep the difference

ct? —x*

invariant. Due to the pseudo-Euclidean metric with a minus sign we either obtain an imaginary
rotation angle or (converting sin and cos with imaginary arguments to sinh and cosh) hyperbolic
functions:

/

ct’ = xsinh¢+ ctcosho,
x = xcosh¢+ctsinho,
or in four-vector notation
= ALY,

with

cosh¢ sinh¢p O O

AL sinh¢ cosh¢ O O
Vo 0 0 10

0 0 0 1

Determination of ¢: We consider the origin of the system K in K':

ct' =ctcoshd, x' = ctsinho,

therefore
X v
tanhp = — =—.
anh¢ ct’ ¢
Thus
Y 1
sinhp = —-—, cosh¢p = —.
1 1
p) p)

In the limit v < ¢ we recover the Galilei transformation.

Common abbreviations:

Length contraction: A rod of length /, which is at rest in system K and oriented parallel to the
x-axis, has in system K’ the length

(In order to prove this formula determine the x’-coordinates x| and x} of the two end points of
the rod at a common time ¢’ in system K’.)

12



2.5 Transformation of the velocity

Assume that system K moves relative to system K’ with the velocity V in the direction of the
positive x-axis. Let the velocity of a particle in system K be

dx dy dz

vxzaa vy_av VZ_Ea
and denote the corresponding velocity in system K’ by

/ dx’ / dy/ o dz

T YT T ar
The infinitesimal quantities are related by the Lorentz transformation

%
dxX' =y(dx+Vdt), dy =dy, d7 =dz, df' =y (dt + C—zdx) .

Division of the first three equations by the fourth equation gives:

;v tV p Vy v,
s =T 0 W T o vy R T o vy
1425 Y1+ %5) Y(1+=7)
Special case: vy =v, vy =v, =0:
/ v+V
vV = @

If we calculate v/ with the help of this formula, the result will always be smaller or equal than c.

2.6 The four-velocity
The four-velocity of a particle is the four-vector

dx*

oo
u [R—
ds’

where ds is the infinitesimal proper time interval in units of length. Explicitly, ds is given by

V2

ds = cdt\/[1——
s c SE

where v is the usual (spatial) speed of the particle. Therefore

. d_xl_ dx! B Vx
T ds / 2 2
Cdt 1—6—2 C 1—6—2

13
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Repeating this for all components we find

ut =

1 vV
2’ 2 |
JI-5 /1%
The components of #* are not independent, but satisfy the relation
u _
wu, = 1.
We may interpret the four-velocity geometrically as a unit four-vector, tangent to the world line

of the particle.

2.7 The Lorentz group

Group axioms: Let G be a non-empty set with a composition. G is a group, if the following
conditions are satisfied:

e Associative law: a- (b-c) = (a-b)-c.
e Existence of a neutral element e: e-a = a.
e Existence of an inverse element ¢! for each element a: a~ ! -a =e.
Example: Matrix groups.
- GL(n,R), GL(n,C): Group of invertible n X n matrices: det M # 1
-SL(n,R), SL(n,C): detM = 1,
-0(n): MMT =1
-SO(n): MMT =1 and det M = 1.
-U(n): MM™ = 1.
-SU(n): MMT =1 and det M = 1.

Definition of the Lorentz group:
Matrix group, which leaves the metric tensor g,v = diag(1,—1,—1,—1) invariant:

Algh = g,
or equivalently in greater detail with indices:

A'ucgyv/\vr = 8ot

14



This group is denoted by O(1,3). It is easy to see that
(detA)* = 1,
and hence
detA = =£1.

If in addition det A = 1 holds, we call this group the proper Lorentz group and denote it by
SO(1,3).

A further distinction can be made depending on whether the time direction is conserved or not.
If

the time direction is conserved and we call the corresponding group the orthochronous Lorentz
group. If on the other hand we have

then the time direction is reversed.
Remark:

A%l =1

follows from A'sg,nAY; = gor for 6 =1=0:

02 % i\
WX () =
j=1
In summary we find that the Lorentz group consists of four connected components. The con-
nected components are characterised by the values
det A and A%,
Among the four connected components the proper orthochronous Lorentz group defined by
A#Gg,uvAVT = go1, detA=1, AO() > 1,

is of particular interest. (The other three connected components are not groups, as they do not
contain the neutral element.) We may obtain the other three connected components from the
composition of an element of the proper orthochronous Lorentz group and the two discrete trans-
formations of time reversal

-1 0 00
0 100
uo_
Av = 0 010
0 0 01



and space inversion

1 0 0 O
0O -1 0 O

oo
Ay = 0O 0 -1 0
0O 0 0 -1

The Poincaré group: The Poincaré group consists of all elements of the Lorentz group and the
translations. The coordinates transform according to

o= A XY+

2.8 Tensors in Minkowski space

Let V be a vector space and G a group. We say G acts on V, if there is a map
GxV =V

such that

g1(g2v) = (g182)v

In this case we call V a representation of G.

Example 1: Let V be a n-dimensional vector space and G = GL(n,R). The map G xV —V
is defined as the multiplication of a matrix with a column vector:

n
/ — ) .
Vi = Z M;jv;
=1

example 2: Take V to be Minkowski space and G the Lorentz group.
K = A'x", (Einstein’s summation convention)

Example 3: Let V be a n’-dimensional vector space and G = GL(n,R). We write elements of V
as v;j with 1 <i, j <n. G acts on V as follows:

n n

/

Vip = X ) MaMjv
k=11=1

We call v;; a rank 2 tensor.

Example 4: Let V be a 16-dimensional vector space and G the Lorentz group.

T//JV — A,UpAVGTPG

16



TH is a rank 2 tensor.

Example 5: Let V be a 64-dimensional vector space and G the Lorentz group.
% A
T/IJ P — A'MGAVKApKTGK
TH¥P is a rank 4 tensor.

Let us now give the general definition: Consider a vector space endowed with a group action. A
tensor is an element of this vector space. The rank of the tensor is the number of copies of the
group element required to define the group action.

Let us now specialise to Minkowski space and the Lorentz group. We also define pseudoten-
sors. Pseudotensors transform as tensors under all transformations of the proper orthochronous
Lorentz group. However, the transformation law of a pseudotensor differs by a minus sign from
the transformation law of a tensor for the two discrete transformations of time reversal and spa-
tial inversion.

We call a rank 0 pseudotensor a pseudoscalar and we call a rank 1 pseudotensor an axial vector.

Within special relativity we distinguish in addition between upper and lower indices (contravari-
ant and covariant components). The relation between upper and lower indices is again provided
by the metric tensor:

TA\I/ = 8vp Tﬂp, T/JV = gypgvoTpG

Tensors with particular symmetry properties: A tensor is called symmetric in two indices ¢ and
v, if

StV = g Vebe,

A tensor is called anti-symmetric in two indices y and v, if
AtV = AVl

In particular we have for an anti-symmetric rank 2 tensor A% = Al = A22 = 433 — .

Examples of tensors appearing within special relativity:
Rank 1: Position vector x*, momentum vector p*.

Rank 2: Metric tensor g"".

17



VPG

Rank 4: Total anti-symmetric tensor (Levi-Civita tensor) €¢“¥P°. The total anti-symmetric tensor

is defined by
€123 = 1,
€wvps = 1 if (u,v,p,0is an even permutation of (0,1,2,3),
€wvps = —1 if (u,v,p,ois an odd permutation of (0,1,2,3),
€&vps = 0 otherwise.

The total anti-symmetric tensor is a pseudotensor, the components remain unchanged under time
reversal and spatial inversion.

Dual tensors: Let F*V be an anti-symmetric rank 2 tensor. The pseudotensor
. 1
Fv = 5,3/1\’90chs

is called the dual tensor of F*V.

A similar concept applies to vectors A*: The rank 3 tensor

AP ghvPo4

is called the dual tensor of A*.

2.9 Relativistic mechanic

The essential elements of classical mechanics: Within the Lagrange formalism one considers
generalised coordinates ¢;(¢) and the corresponding generalised velocities ¢;(t) = %q,—(t).
Lagrange function:

L(qi,4i)

Action:
Iy
Slae)) = [ drL(gid)
ta
Principle of least action: A particle moves in such a way that the action is extremal.
Action for a free matter particle:
- has to be invariant under Lorentz transformations,

- must only contain first order differentials.

This implies that the action for a free particle is of the form

b
S = —Oc/ds.

18



The path of integration is along the worldline of the particle between two events a and b. In
order to have a minimum for the action S, we must require o > 0. In order to see this, we first
consider a particle at rest, for which ds = cdt. Let us then consider a trajectory where the particle

is moving. We write
Iy
[va
la

where L is called the Lagrange function. With

2

%
ds = cdty/1— —

c

we obtain

2

v

c

We would like to have that the trajectory where the particle is at rest, is a minimum of the action.
Since /1 — Z_Z < 1 it follows that we must require o > 0. Let us now consider the classical limit:

limL = const+ —m>.
c—oo
We expand L in v/c:
2 o>
L = —oc l—g%—(xc—i—%

Therefore o0 = mc and

SN P R

The three-momentum of a particle is the vector

. oL mv L. oL
p = =—=————= withv=X, |[recall: pj==——|.
g

The energy of a particle is the quantity
E = pv—1L, (recall : E = p;g; — L) ,

v+mc \/1 +c2_v2):7’
1 ‘/ 1
2
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For small velocities we obtain

1
E ~ mc? + —mv?.

2

mc? is called the rest energy.

Derivation of the equation of motion for a free particle in four-vector notation: We start from

b

S = —mc / ds.
Variation of the coordinates:

X = ot
Principle of variation:

o

()] = 0
ARI0)

Auxiliary calculation:

0 ) 1 B )
—ds = —\/dxydx' = ——2dxy—dx" = uy—dx"’

oM Ot 2V ds? oM Ot
Therefore
dds = uyodx’
Further
b b b J6Y
dS = —mc/Sds: —mc/uVdeV = —mc/uv dx ds
s
a a a
’ d
= —meuydx|? -l-mc/ (—uv) dxVds
ds
a
We therefore have
d
il = 0,
ds t
i.e. the free motion of a particle is a motion with constant four-velocity.
Definition of the contravariant momentum four-vector:
P = (E/ce,p) = = mecu”

mc my
b
2 2
V )%
Vi-a s
Remark: p? is Lorentz invariant.
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3 Electrodynamics

3.1 Maxwell’s equations

Maxwell’s equations:

V-B(t,%) = 0,
%xﬁ(tz>+33§(zz) =0
o ’
V-Et,®) = 4np(t,%),
VxBen- 1280 = Pien
c ot
Potentials:
L - 194,
E(t,X) = —VCID(t,x)——gA( ,X),

Gauge transformation:

(e = DY y09),
cot

1,3 = A%+ Vy,D),

>4
—~

Lorentz force:
Ft,3) = ¢ (E(z,x’) +ox E(z,x’)) .
c

Equivalently we may present electrodynamics in a manifest covariant form. We recall the for-
mula for the four-velocity

oot (T )
ds \/ —ﬁ,c\/ 2 ¢ )’

ds = -—dt,
We introduce the four-acceleration:
du*
w = —
ds

The relativistic generalisation of Newton’s law F' = ma:

d
2 Moo M
c = K".
mdsu
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Contraction with u, gives:

and therefore

For the spatial components we have

We apply this to the Lorentz force:

me"—u = mc"— (Y- | =qy|E+-XB
ds ds \'c c
For the time component we have
"o 0o_Yop _
I/tluK = 'YK — EVK = 0,
0 1
K = -VK,
c
and therefore
d 1
mc2$u0 = mczd Y= EqYE\_z’.
In summary we have:
d oV
2
- = YgE - -,
me=— (V) = YgE - -
,d [V - Vo
me“-—\(Yy-| = Yg|E+-XB).
ds \'c c
The left-hand side may be written covariantly as
d
25 u
met
Let us now set
0 —E* —EY —E*
Y E*¥ 0 -—-B* B
EY Bt 0 -B
E* —-BY B* 0
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With this definition we have

0 —EX —E' —E°
EX 0 -B B
A% —
Fluv = 1 g g o _p
E° -B B 0
YEL
| yEF Y (wBE—viBY)
| v+l v

Thus we arrive at

24

u
u
ds

nic

VES + 1 (VB — ' BY)

qF'uvuv

The left-hand side transforms as a contravariant four-vector under Lorentz transformations, uy
transforms as a covariant four-vector. This implies that F*V must transform as a contravariant

rank 2 tensor:

F//JV

We call F*V the field strength tensor.
through

A/Jp /\Vcj FpG

We obtain the electric and the magnetic field from F*¥

E = Fi0— _po0i
. 13 .
B = _E Z EiijJ .
jk=1
Remark: F*V is anti-symmetric:
F* —F"*,
Summary of the covariant formulation:
Definition of the field strength tensor:
0 —EY —FE”
v E*¥ 0 —B¢
EY B¢ 0
E* —B’ B
Maxwell’s equations:
P LMV L VM —
A FH =
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with j* = (cp, J).
Remark: With the help of the total anti-symmetric tensor €,ypc and due to the anti-symmetry of
F" we may rewrite the first equation as

SluvpcavaG = 0
Lorentz force:
d
mczgu“ = gF*"u
Four-potential:
A = <CI>,A) ,

F* = oMAY —9YAM.

Inhomogeneous Maxell’s equation:

DAY — V9,4 — 47" 7.
Lorenz gauge:
A" = 0
Inhomogeneous Maxell’s equation in Lorenz gauge:
4n

oAy = — V.
c

3.2 Lagrange density for the interaction of a particle with the electromag-
netic field

Recall: Action for a free particle:

b
Sparticle = _mC/dS
a

For the interaction between a particle and the electromagnetic field we set

b
q
Sinteraction = —E/dxu A,u(x>-
a
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For a particle we have to consider

Sparticle + Sinteraction = _mc/ds_ g/dxu A,u(x)

Variation of the coordinates:
M= MM

Principle of variation:

0 (Sparticle + Sinteraction) = 0.

Recall
dds = uyddx'.
Furthermore
8(Audx") = Auddx*+ (8A,)dx*
and
A, = Au(x+0x)—A,(x) = (BVA#) dx¥
Hence
8 (Sparticle + Sinteraction) = —mc / dds — = / S(dx" Ay

- —mc/uvdS ——/Ade’“’ /5A dr

a

b b
d q q
— e / (%“V) Vs — / At~ / (9uA,) d'dx”

We also have

b b
/(avAﬂ) dx"'dx’ = /(BVA,,) udxVds
b b b
d d BA ox¥
/ A = / Ay -Sds = — / (aAH) Sxfds = — ﬁgésx“ds

= —/avAtuSx“ds: —/B#Avu“ﬁxvds
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and therefore

b
3 (Sparticle +Sinteraction) = / (mc—uv + = 8 Avu — —avA,ul/l’u) OxVds
/ d
q
= / (mcguv + ;F,,m“) oxVds.

d q
—uy+—-Fyut = 0
mc Suv - luvu 5

It follows that we must have

and therefore

2 Y
mc %u# = gFyu.

3.3 Lagrange density of electrodynamics

We make the ansatz that the action of electrodynamics consists of a term describing free fields
and a term describing the interaction of the fields with matter.

S = Sﬁelds + Sinteraction

In order to construct Siperaction W€ generalise the expression of the interaction term for a point
source towards a general charge density:

q
Sinteraction,point source — ; dx'u A,Ll (X )

The charge density and the current density of a point source with trajectory X' () read:

p(1.7) = a8 (F-7(1)),
fied) = @S E-2 ().

Therefore
) = <cp,f) zqc/ds u' 8* (x—x'(s))
and
b
Sinteraction - —Z@/dx"A X
d “ 1 dxt
— ——/d3xcp /ds " = —C—Z/d4xcp(x)d—); Au(x)
———
JH(x)

1 4.
= _C_Z/d xjH(x) Ay(x
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Let us now turn to the free field part. For the construction of Sgeqs We require:
e Lorentz invariance.

e Superposition principle, i.e. the field equations should be linear differential equations.
This implies that the integrand of Sgejgs has to be no higher than quadratic in the field
components.

e Physically unique, i.e. gauge invariant. This translates to the requirement that the integrand
should be expressed in terms of F;,, and not A,,.

The simplest ansatz is given by

4
Shelds 1 e / d xF,uv FH*V.
Let us therefore consider
Stields + Sinteraction 1 61c / d xF, ,uV F ,uv / d4X]
With Fy = d,Ay — dyA, we obtain
S Sinteraction = | d* L 3,A) (0#4Y) + —— (3,4,) (0"A4%) — L 1(x)A
fields T Ointeraction = X _%( u V)( >+%( v V)( >_g] (X) ,U(x> :
The Lagrange density reads
¢ = L (0,4 )(a“AV)+i (9.4 )(BVA“)—lj"(x)A (x).
8w Y 8w Y c H
The Euler-Lagrange equations read
0L 0¥
-0 = 0.
dAy  "9(3,4v)
Therefore
v+ Lo, - Lo, @) = o
c 4 4 ’
1
—8 v o= -
g pAC
47 |
I F = ?]V(x).
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4 Conservation laws

4.1 Noetherian conserved quantities

Consider the functional

1l = [ a2 (vw).90).
X

Let us first consider a transformation of the fields, which leaves & strictly invariant. Assume that
this transformation is given by

y(x) — y(x)=h%y(x)),

with

For o close to zero we have

d
By = ¥ -y=a— h%(y(x)

o=0
For the variation of the Lagrange density we obtain

< <
0Ff = =Y+ 50,0
0

0Z < 0L
= —3y+0, | =—=y| -0y =8
v “(a@w) “’) ”(a@w)) Y
0¥ 0Z 0¥
oy+d,| ———9
[ ! “(a@w) “’)

=

oy "9 (duv)
If y is a solution of the Euler-Lagrange equations then the first term vanishes. Under the assump-
tion that the Lagrange density is invariant under the transformation 4%, i.e. 8% = 0, it follows
that then also the second term vanishes, e.g.

duJJ'(x) = 0,
where the conserved current is given by
0¥
9 (9uy)

We may generalise Noether’s theorem to transformations, which leave the Lagrange density
invariant up to gauge terms, i.e. situations where we have

JH(x) =

1
L (A,0,A)) = Sf(Ay,ayAv)—i—Ej“(x)a,,A(x)
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instead of
L (A,04Ay) = ZL(Au0Av).
For d,,j* = 0 we may replace j*(x)d,A(x) by
I (J* () A(x)) -
The additional term is a divergence and gives a surface term in the action integral. Since the

variation of the fields vanishes there, the surface term yields zero and nothing changes.

4.2 Translational invariance and the energy-momentum tensor

Let us consider again the Lagrange density

£ (y(x),0.¥(x))

which does not depend explicitly on x. Under translations

oot act ,
we have
yx) — V) =yl +oac) = yix) +dy(x),
d
Sy = V-y=o—__yhtac) = acdV(x).
o=0
Furthermore

b2 = 2 (y().0 (X)) ~ % (W().0,9()) = L (w(x), ().

Therefore we have

£ £ "
0L = 09, (W&V> =d, (Wac@ \|f(x)> .

This implies
o<

"% -9 0" =0
ocy W ( 3 (3n) oy’ y(x) ,
alcy [gw‘aﬂg — 9y (8 (%gllf) avlp(x)> = 0,

u
acydy [gw‘if - ( 3 (%gllf) avlp(x)> = 0,

u




We call the tensor field

™ ( g avlp(x)> e

9 (W)
the canonical energy-momentum tensor. 7V satisfies the four conservation laws
v
9. = 0.

Remark: If several fields y() appear in the Lagrange density, we sum over all fields:

THV ﬁ" aiavw(i)(x) — gV
=ACICATS)

Remark: If we add to T* a term
ap B,UPV’
where B*PY is anti-symmetric in u and p,
BPHY  —  _ B/JPV,

we equally have
0y (T +0,B*Y) = 0.

This implies that the canonical energy-momentum tensor is not yet a unique conserved quantity.
In order to arrive at a unique conserved quantity, one may consider in addition the angular mo-
mentum.

Preliminary remark: The relativistic generalisation of the angular momentum

M = Xxp
is given by
1

MY = 3 (xpY —x¥pH).

We may impose on T the additional requirement that with the definition of the angular mo-
mentum density

MHVP —  THVAP _ THP,Y
we have
ouMP = 0.
This implies
0uMH? = 0, (T"xP —T"x") = (9,TH) xP + TPV — (9, TH°) x" — TP
TV — TP =0.
Therefore
TH — TVIJ,

i.e. the energy-momentum tensor must be symmetric.
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4.3 The energy-momentum tensor of the electromagnetic field
We consider the Lagrange density of the electromagnetic field without external sources:

1

% (A, 9uAv) 161 w FHY
We obtain
97 gva) —eve = L 0T (040 1 L (0°A4Y) (3"A0) + —— gV Fyo PO
0(0uh:) 4m Y an RO T
1 1 1
- E I;"uT (X)FTV (.x) + Zg'qup(jFpG - EF'UTaTAV.

We are considering the case without external sources. This implies
o F* = 0,

and therefore
~Lpmgar = Lo (pmay)
ar-  F 4 " '

This term is a surface term. Therefore we find that the symmetric energy-momentum tensor of
the electromagnetic field is given by

1 1
™ = g [F“T(X)sz(x)-l-zg’“’vacF"“ .

Explicitly, we find for the individual components

1y
T — §<E2—|—Bz):u(t,)_€)),
. 1 /0 i 1.
0 = - (ExB) =53,
47 c (t,%)
N I Mo e 1o fn
T = ——{ B BB~ 8 <E2+BZ>]
41 2

u(t,X) denotes the energy density of the electromagnetic field. The vector S is called the Poynt-
ing vector and describes the momentum density (or the energy flux density). The purely spatial
components 7"/ are known as Maxwell’s stress tensor.
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Summary on Noether’s theorem

0L 0L 0L
0% = |=——0dy=——|OY+9,| =0y
[a‘l’ ﬂa(aﬂw)] N<a(a#‘|’) )
Case 1:

- v satisfies the Euler-Lagrange equations.
- & is strictly invariant under symmetry transformations.
Then: The Noether current

is conserved:
8,,]" (x) =0.

Case 2:

- y satisfies the Euler-Lagrange equations.

- &£ is invariant under symmetry transformations up to gauge terms.
Then: The Noether current is also conserved.

Case 3:

- y satisfies the Euler-Lagrange equations.

- & does not depend explicitly on x;,.

Then: The canonical energy-momentum tensor

A ag \% v
™ = (a(aﬂw)a W(x)) — gL

is conserved:
9T = 0.
T is unique up to
T s TH + ap BIJPV, BPHY — _ B/JPV,
Additional requirement: T is symmetric:
™ =T,
Energy-momentum tensor of the electromagnetic field:

1 1
T = P F“T(x)FTV(x)—l—Zg“VFpGFpG .
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S5 Riemannian and semi-Riemannian geometry

5.1 Manifolds

A topological space is a set M together with a family I of subsets of M satisfying the following
properties:

1.0eg ., McT
2. U, U, eT =UNU,eT

3. Forany index set A wehave Uy € T;0€c A= | Uy €T
acA

The sets U € I are called open.

A topological space is called Hausdorff if for any two distinct points p, py € M there exists
open sets Uy,U, € I with

p1€U, ppel,, UnNU,=0.

A map between topological spaces is called continuous if the pre-image of any open set is again
open.

A bijective map which is continuous in both directions is called a homeomorphism.

An open chart on M is a pair (U, @), where U is an open subset of M and ¢ is a homeomorphism
of U onto an open subset of R”.

A differentiable manifold of dimension » is a Hausdorff space with a collection of open charts
(U; Qo) aca such that

Mi1:

M = |JU.

acA

M2: For each pair o,3 € A the mapping @g o @, is an infinitely differentiable mapping of
©o (UaNUg) onto @ (Ug N Up).

A differentiable manifold is also often denoted as a C* manifold. As we will only be concerned
with differentiable manifolds, we will often omit the word “differentiable” and just speak about
manifolds.

The collection of open charts (Uy, @¢)aca is called an atlas.
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If pe Uy and

Pa(p) = @x1(p),-xa(p)),

the set Uy, is called the coordinate neighbourhood of p and the numbers x;(p) are called the
local coordinates of p.

Note that in each coordinate neighbourhood M looks like an open subset of R". But note that we
do not require that M be R” globally.

Consider two manifolds M and N with dimensions m and n. Let x; be coordinates on M and
y; be coordinates on N. A mapping f : M — N between two manifolds is called analytic, if for
each point p € M there exits a neighbourhood U of p and n power series P;, j = 1,...,n such that

vi(f(q)) = Pj(x1(q) —x1(p),-; xm(q) — xm(p))

forallg e U.

An analytic manifold is a manifold where the mapping @g o @, I'is analytic.

Examples

a) R™: The space R" is a manifold. R” can be covered with a single chart.
b) S!: The circle
S'={XeR?F*=1}
is a manifold. For an atlas we need at least two charts.
c) §": The n-sphere, defined by
"= {FeR"|x? =1}
d) P*(R): The projective space defined as all lines through the origin in R"*!:
(X0, X150 Xn) = A(Xy,X], 0oy X)), AFEO.
e) The set of rotation matrices in two dimensions:
( cosQ —sin@ )
sin@ cos¢Q /)’
The set of all these matrices forms a manifold homeomorphic to the circle S'.

f) More generally, all Lie groups are by definition analytic manifolds.
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Counterexamples

In order to understand better the definition of a manifold, let us give a few examples, which are
not manifolds:

a) The union of a one-dimensional line with a two-dimensional surface. An example is given
by

X3 (x%-i—x%) = 0.

This set is in a neighbourhood of some points homeomorph to R, in the neighbourhood of other
points homeomorph to R?. But the definition of a manifold requires that the set is at all points
homeomorph to R” for a fixed n.

b) The cone
X} x5 — x% = 0.
The neighbourhood of the point (0,0,0) cannot be mapped homeomorphically to R>.
¢) An individual cone segment
x%-l—x%—x% = 0, x3>0.

Although we may map a neighbourhood of the point (0,0,0) continuously to R?, this cannot be
done in a differentiable way.

d) The line segment
[0,1].

The endpoints have no open neighbourhoods.

Morphisms

Let us summarise the various morphisms we encountered up to now:
Homeomorphism: A map f: M — N between two manifolds M and N is called a homeo-
morphism if it is bijective and both the mapping f : M — N and the inverse f~! : N — M are

continuous.

Diffeomorphism: A map f : M — N is called a diffeomorphism if it is a homeomorphism and
both f and f~! are infinitely differentiable.

Analytic diffeomorphism: The map f : M — N is a diffeomorphism and analytic.
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5.2 Differential forms and integration on manifolds

Preliminary remark: We would like to define integrals on manifolds. The definition should on
the one hand generalise volume integrals like

4x X
AZd % (x)

on an Euclidean space or on Minkowski space, and on the other hand also include line integrals
as the one occurring for example in
b
—mc / ds.
a

Let us first consider one-dimensional integrals, which we may define as the limit
/ dx f(x) = lim) f(xj)Ax;
R J

In the same way we have for two-dimensional integrals:

/ dxdyg(x,y) = lim}) Y g(xj.yi)Ax;Ay,
R? 7k

Remark: The sign in the last example depends on the chosen orientation.

Instead of the functions f(x) and g(x,y) we will now introduce new objects

f(x)dx,  g(x,y)dxAdy,

which may be integrated over a domain of the appropriate dimension. The reason for introducing
these new objects are the clearer transformation properties.

Tangent vectors

Let/ C R be an interval and y: I — M C R" a differentiable map. We call

d
—y(t R"
dﬂ( ) . €

a tangent vector on M at the point (7). The set of all tangent vectors on M at the point p is
called the tangent space 7,M at p. The dimension of the tangent space equals the dimension of
the manifold.

We denote by T,;M the dual vector space of T,M, i.e. the set of all linear maps

¢:T,M— R.
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Elements ¢ € T;M are called cotangent vectors and T;M is called the cotangent space. Linear
maps from a vector space to R are also called linear forms.

A vector field is a map
X:M—JT,M
p
and associates to each point p € M a tangent vector X (p) € T,M.

Differential one-forms

A differential one-form is a map
:M—|JTM
p

with ©(p) € T,yM. The differential one-form o assigns to each point p € M a cotangent vector
o(p) € TyM. We denote the value of ®(p) applied to the tangent vector v € T,M by

{o(p),v).

Definition: Let U C R" and let f : U — R be a differentiable function. The total differential d f
of f is the differential one-form, which satisfies

) = L5

for all tangent vectors v = vje;.

With the help of the coordinate functions
Xi :R" = R, (y1,..ey¥n) — yi
we may define the differentials
dxi,...,dxy.
We have
(dxj,ej) = §j.
The cotangent vectors dx (p), ..., dx,(p) form a basis of T,y M.

Coordinate representation: Every differential one-form may be written as
n
0 = Z fi(x)dx;.
i=1

Line integrals: Let y: [a,b] — U be a curve. We define the integral of ® along the curve Y by



Differential k-forms

We have seen that differential one-forms may be integrated along curves. We now seek a general-
isation, which allows integration over domains of higher dimensions. We start with the definition
of the wedge product for linear maps: Let @y, ..., g € V* be linear forms, i.e.

®;:V—=R.
We define the map
col/\.../\cok:Vk—HR
by
<0)1,V1> ((Ol,vk>
(0)1/\.../\cok)(v1,...,vk) = det
<(Dk,vl> <(Dk,vk>

Properties of the wedge product:
e The wedge product is linear in each argument:
o1 A A (a®; + b ) A Ao =
a(O A AN AO) +b (0] AL AT A LA )
e The wedge product is alternating:

Wg(1) N... /\O)G(k) = sign(c) O WANWAN (V)2

We denote the set of all alternating multilinear k-forms on V with
Ny,
Definition: A differential k-form is a map

o:M— | JNT M
p

with ®(p) € Ak T;M. This definition coincides for k = 1 with the previous definition of a differ-
ential one-form. A differential O-form is a real-valued function.

Coordinate representation of differential k-forms:

1
0 = E Z_ﬁl---ikdxil/\"'/\dxik

S0 yenslg

= Y fiidxi A Adx

11<...<ig
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Differentiation of differential forms: Let

® = Y fiidx A Adx,.

11<...<ig

be a k-form. We denote by dw the differential (k + 1)-form

do = Y dfy i Ndxi A Adxi,.

i1<...<ig

Rules: Let o and @' be two differential k-forms and let f be a function. Then f® and ®+ o,
defined by

(fo)(p) = f(p)o(p),
(0+0) (p) = o(p)+o(p)

are again differential k-forms. Furthermore, let ¢ be a differential /-form. We define a differential
(k+1)-form ® A G by

(wno)(p) = o(p)Ac(p).
Remark:
orc = (—1)cro.
We further have:

d(aw+be') = ado+bdw,
d(wAc) = (do)Ac+(—1)eA (do),
d(do) = 0.

Pull-back of differential forms: Let U C R and let

1

0 = Hzﬁl'“ikdxil /\“'/\d'xik'

be a k-form on U. Let V C R be an open subset and consider a continuous differentiable map

¢ = ((P17~~~7(pn) V-=U.
We may define a differential k-form ¢*® on V' by

. 1
oo = HZ(fil.--iko(P)d(PilA"-Ad(p"k'

Remark: Differential k-forms may be integrated over k-dimensional (sub)-manifolds. Let M be
a manifold of dimension n, let K be a submanifold of dimension &, and let A be a compact subset
of K, also of dimension k. Further assume that ® is a differential k-form on M and

¢o:U—R"
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a local chart of M such that A € U. Then we have

(pf1 R*" = U
and we define
Jo = [
A 0(A)

We pull-back the differential form @ by ¢! to an open subset of R”. This reduces integration
on manifolds to integration on R".
Example: Consider the differential 2-form
® = 3xzdxp Adxz+ (x% —l—x%)dxg Adxy +x1x3dx1 Ndxp
on R3. Consider further the two-dimensional sub-manifold
M = {(x1,x,x3) €R}:x3 =x112}

and let A be the following compact subset of M:

A = {(x,x0,x3)eM:0<x;<1,0<x <1}.
We would like to compute
[o
A

We choose a local chart of M:
(p_1 . R> > M,
O1,32) = (1,2, 512)-
The individual coordinate maps are
(0™ ), =y, (07, =x, (¢71);=yy2,
and therefore
d ((P_l)l =dy, d (‘P_l)z =dys, d ((P_1)3 = y2dy1 +y1dys.
Thus

Jo | @re-
A 9(A)

= / 3y1y2dya A (yadyt +y1dy2) + (1 +¥3) (v2dy1 +y1dy2) Adyr +y1 (yiy2) dyi Adys

0(A)
1 1 3
= / (yTy2 —4y1y3 —y1) dy1 Adys = / dy / dy> (Y12 —4y1y3 —y}) = -7
0(A) 0 0
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We conclude the section on differential forms with examples occurring in physics: The gauge
potential of electrodynamics defines a differential one-form

e
A = 1§A#(x)dx".

We further have

e

aa = d(i
"he

. € 1 a a x/,l v

1%5( ,uAV_ VA/J)d ANdx".

This motivates to define a differential 2-form, related to the field strength by

Avdx') = i~ Avd N’

el
F = dA:l%EFHvdX#/\dxv.

Remark on the prefactors: We consider the following differential operator:

e

hc

i
0

Within quantum mechanics the term i2d,, corresponds to the momentum operator p,. We see that
the term in the bracket is the four-dimensional generalisation of

(ﬁ—iA’).
C

Finally, let us consider D4 A D4 applied to an arbitrary differential form o:

Dy = d+A=d+iiade = (ind—La,a).
C

(DaoDpg)® = (d+i%A#dx") o (d+i%Avdx") ®
. € 4 e \2
— d (%Aﬂdxﬂ o)+ i~ Avd’ N do <§) AyAvd Adx' Ao
= (dA)N o
Therefore

Dy = d+A,
Di = dA+ANA=dA=F.

Dy i1s called covariant derivative, F is called curvature form.

5.3 Tensors

We already defined tensors within special relativity. Let K and K’ be two coordinate systems,
related by a Lorentz transformation:



We called a quantity 7#1-*r which transforms as
MLl AH u "V
T = A AN TV

a rank r tensor. The contravariant four-vector x* is a rank 1 tensor.
We now generalise this definition to coordinate systems, which are related by an arbitrary
coordinate transformation, i.e. not necessarily a Lorentz transformation. We consider the trans-

formation from a coordinate system with coordinates K, x!, x2, ¥ to another coordinate system

. . 0 1 2 3
with coordinates x"°, x'*, x'*, x'°:

1M 0.1 .2 .3
x0T o= A% x0).
Under a change of coordinates, the differentials of the coordinates transform as

B /1
dxX" = axv dx".
X

As contravariant four-vector we denote any set of four quantities A* (u € {0,1,2,3}), which
transform as these differentials under a change of coordinates:

I
o't
ox¥

Our main focus here are four-dimensional manifolds. Of course, there is a straightforward gen-
eralisation to D-dimensional manifolds, simply take u € {0, 1,...,D —1}.

A =

This definition is compatible with the previous definition within special relativity, if the coor-
dinate transformation is a Lorentz transformation: Let

x/,u — f,u(xo,xl,XZ,x:i) :A,vav.
Then
e R
oxV oxV v
and therefore
ax/,u
o= A= va
Let ¢ be a scalar function. The derivatives d¢/dx* transform under a change of coordinates as
a0  dp dx¥
o oV ot

We call any set of four quantities A, (u € {0,1,2,3}), which transform under a change of coor-
dinates as the derivatives of a scalar function a covariant four-vector:
ox¥

r_
Au = oo

Ay
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We may write a tangent vector at any point as a linear combination of basis vectors e,;:
— M
V. = VFhe,.
Sometimes, an alternative notation for the basis vectors of the tangent space is used:
d = ey

(It should be clear from the context if d,, denotes a partial derivative or a basis vector of the tan-
gent space.)

A vector field assigns to every point of a manifold a vector. The dual of a vector field is a
one-form. A one-form assigns at every point of the manifold to a vector a (real or complex)
number, or phrased differently, a one-form assigns to every point of the manifold a cotangent
vector. A basis for the space of cotangent vectors is given by the differentials dx*:

0 = 0,dx"
Duality between vector fields and one-forms implies
dx'(dy) = 8.

Due to this duality we may re-interpret a vector field as follows: Originally, we defined a vector
field as a map, which assigns to every point of the manifold a tangent vector. With the help of
the duality we may equally well view a vector field as a map, which assigns to every point of the
manifold a linear form, which in turn maps a cotangent vector to R.

A tensor field with r contravariant and s covariant indices maps at the point x € M r r cotan-
gent vectors and s tangent vectors to a real number.

(7)), + (T'M)" < (T.M)* — R,
o, 0V V= (T, (0 @ VL V)

Coordinate representation:
R = (T), (de . da 0y, 0y,).

Basis representation of a tensor field on a D-dimensional manifold (where the coordinates are
indexed from O to D — 1):

T = ) Y, AN () (0 ®...®0y,) @ (dxV ... @ dx").
Example: A (0,2)-tensor field is given by

D—1
g = Y gux)dx®dx’
1u,v=0
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Remark: For a general (0, s)-tensor field the tensor product ® appears, not the wedge product A.
Differential forms have the additional property of being anti-symmetric and we have

1
dx' Ndx¥ = 3 (d' @dx" —dx’ @dx),
and more generally

1
A" NdXA2 N NdM = o Z sign(o) dx'e() @ dx'e @ - - - ® dxt'o®).

* oES,

5.4 Riemannian manifolds

Definition of a Riemannian manifold: Let M be a differentiable manifold. A Riemannian metric
gon M is a (0,2)-tensor field on M, such that for every point x € M we have:

gx(U,V) = gx(V,U)
gx(U,U) > 0, and g(U,U) =0only forU =0,

where U,V € T,M and g, = g|x.
In short this means that g, is a symmetric positive-definite bilinear form. A manifold with a
Riemannian metric is called a Riemannian manifold.

A (0,2)-tensor field g on M is called semi-Riemannian metric if

gX<U7V) = gx(V,U),
ifg,(U,V) = 0 forallU € T,M, thenV =0.

A manifold with a semi-Riemannian metric is called a semi-Riemannian manifold.
Let (U, @) be a chart of M and let {x} be local coordinates. The metric is written as

gx = gluv (.X)dx’u ® d.xv,
where we used Einstein’s summation convention.
Remark: Since the metric is symmetric, the eigenvalues of g,y are real. For a Riemannian
metric all eigenvalues are positive. For a semi-Riemannian metric the eigenvalues are positive or
negative (and non-zero). A Manifold, where g,y has exactly one positive eigenvalue (and hence

(D — 1) negative eigenvalues) is called a Lorentz manifold.

Let us elaborate on the notation: Instead of g,y (x)dx* ® dx" the notation

guv (x)dxt'dx"
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is frequently used, where the symbol ® for the tensor product has been dropped. Also in
this shortened notation the differentials dx* denote a basis of the cotangent space and g =
guv(x)dx"dx" is a (0,2)-tensor field.

A further notation is

g = det(g/JV)v

and

gl = \det (gw) ‘ :

It should be clear from the context, if g denotes the (0,2)-tensor field g,y (x)dx*dx" or the deter-
minant det(g,y).

The inverse of g,y is denoted by g":

8up8” = &"Pgpu =38},
The metric induces an isomorphism between 7,.M and 7, M. This isomorphism is explicitly given
by

M — T'M,
Ukdy — (UMgu)dx’

and

"M — TM,
o —  (0,8")0y.

Let us further discuss tensor densities. We recall the definition of the total anti-symmetric tensor
(i.e. the Levi-Civita tensor):

€upyyy = 1 ifpi, o, ...,y is an even permutation of 0, 1,...,(n — 1),
€.y, = —1 ifpi,uo,... 1, is an odd permutation of 0,1, ..., (n — 1),

€.y, = 0 otherwise.

In flat Minkowski space the Levi-Civita symbol €,y transforms as a pseudotensor. Let us study,
how the Levi-Civita symbol transforms on arbitrary manifolds. Let M" Y be an arbitrary n X n-

matrix and denote |M| = detM" - We have

M| = ¢ MY, MM, Mt
| | HIM2---Hn l“/l :ujz 74

Elath...,
If we now take
U oxH
M, = —
H OxH
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we obtain

ot

ot

ax:ul axluz ax,un
€ .

Elath..,

This is almost the transformation law of a rank n tensor. The transformation law is spoiled by
the appearance of the determinant |ox /x|,
Let us further consider the transformation law of g = detg,y. One finds

=2
ox"
noo—
W) = (55| 8.
In general, we call a quantity, which transforms as
ot |
P« Tensor
OxH

a tensor density of weight m. We see that €,,,,. ,, 18 a tensor density of weight 1 and g is a
tensor density of weight (—2). The combination

VI8l €upn..pin

transforms as a tensor.
Let us conclude this section by giving a useful formula for the contraction of two Levi-Civita
symbols. We have

|g| 8#1#2~-~/~lr01~-~Gn7r€vlv2mvrcl“'Gnir = (—1)S(n—r)!5/\jm§:::z:,

where s denotes the number of negative eigenvalues of the metric and

8! o

#1 cee
8V1V2~-~Vr i
MMMy

= G
&y . O

5.5 Hodge theory

5.5.1 The Hodge x-operator

Let M be a m-dimensional manifold. If M is equipped with a metric, there is a natural isomor-
phism between the space of all differential  forms and the space of all differential (m — r) forms,
given by the Hodge *-operator (pronounce “Hodge star operator”):

£ 0 QN(M) = Q"T(M)

#(dx AL Ndx) = 7V|g|e’“'“’“’f dx" AL A dxm

(m—l")' Vit1---Vm
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Remark:
o = (—1) g,

where s denotes the number of negative eigenvalues of the metric. This formula is easily verified
by considering

**(d.x’ul /\/\dxﬂr> - Lgﬁll“.'uror+l...0m80r+1.“0mv1_._\)r(deI /\/\dXVr>

rl(m—r)!
- ‘g‘ -Hr «-Om r
- <_1)r(m r) mgﬂl g GMFI ° Svl"-vr6r+l~-~0m(d'x\)1 /\ /\d'xv )
(_ 1)r(m—r)+s
= T&'ij:j’é;(dxvl/\.../\dx"f)
= (=D IES (@ AL Ada).
The Hodge *-operator allows to define a scalar product between two r forms. Let

1
0 = ﬁoom,_,,,,dx’“ A ... Ndx,

1
n — ﬁn,ul...,urdxﬂl/\“‘/\dxﬂk'
One sets

(om) = /wAm
M
1

= F/O;)m“#rn“l“'“’\/|g|dx1/\.../\dxm.

M
This product is symmetric:
(03771) = (1]70))
Example:
el v l.e . 0 o e 1o v
xF = x 1%§F,Ndx“/\dx :ZZ§F Euvpodx” Ndx® = <l§>§ wdx! Ndx”.

We further have

and therefore



5.5.2 Self dual and anti-self dual forms

Let us consider the special case, where the manifold M is of even dimension m = 2r. In this case,
the Hodge x-operator maps a r form to a  form.
Of particular interest is the case m =4 and r = 2. Let
1
0 = Eco,,vdx" Ndx¥
be a two-form. On a four-dimensional Lorentz manifold we have
k@ = —O.

Let us now consider complex-valued differential forms. We call a two-form on a four-dimensional
Lorentz manifold self dual if

i*xW = O,
and anti-self dual if
i*x0 = —O.
The factor i is required to satisfy in both cases ** ® = —®. In the case of a four-dimensional

Euclidean manifold the factor i does not appear.
In terms of components we have

1 - 1
*@W = E(ﬂluvdx’u/\d.xv, 0‘)/JV - E \/ |g|0~)p68pcluv
The conditions for being self dual or anti-self dual translate to
self dual : @, = %\/ |g|wp08pcw,

) i
anti-self dual : @, = —3 Vgl pse™ -

An arbitrary two-form can always be decomposed into a self dual part and an anti-self dual part:

1fdual tiselfdual
o = clfdua + ntiselfdua ’
with
1 .
mselfdual _ 5 (0)+ i * 0)) ’
. 1 .
mantlselfdual 5 ( ®— % 0)) )
With
mselfdual — %wzt\tllfdual A A dxv, (Dantiselfdual — % mzr\l)tiselfdual A A dxv
we obtain
1 1 i
selfdual .~ _ po
Oy 5 ((DNV +103yv) =3 (m/JV + 5V |g|wpoE w |
antiselfdual __ 1 .~ _ 1 i po
Wy = 5 (0)/JV —lmuv) =5 Oyy — 5V |g|°3pcr8 w | -

48



5.6 The covariant derivative

In a flat space the derivatives of a vector

d

v

form a tensor. However, this is no longer true in a curved space, as one compares a vector at two
different points.

Definition of an affine connection: An affine connection is a map V

V : Vect(M) x Vect(M) — Vect(M)
(X7Y> - VXY7

which satisfies

V(X—i—Y)Z = VxZ+VyZ,
V(fX)Y = fVyxY,
Vx(Y +Z> = VxY+VxZ,
Vx(fY) = X(f)Y +[fVxY,

where f € F(M) and X,Y,Z € Vect(M).
Let (U, ) be a chart with coordinates x = @(p). We define D? functions C* v, called connection
coefficients by

Veev = ekCXNV,

where {e,} = {d/d,} denotes the coordinate basis of 7,M. For functions f € F (M) we define

Vif = X(f)zX*’(af).

oxH
Then Vx(fY) takes the form of the Leibniz rule
Vx(fY) = (Vxf)Y + f(VxY).
We further set for tensors
Vx(1®T) = (VxT)@Dh+T1®(VxT).

In the following we will use the notation
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Note that

0) 4
VxY = X“VN (Yve\,) =X* <a—)€'“ev +YVV,ueV)

VxY is independent of the derivative of X. This motivates to consider
Vi = Ve,
V, is called the covariant derivative. We may re-write the above equation as follows:

Val'ey) = (917 +C,1 ey

Within the physics literature the basis vector ey is often dropped and one encounters for the
components the notation:

A
VYYo= 0V +C%Y

We should always interpret this equation as if the missing basis vector is present. In strict math-
ematical terms we have

Viey = Cﬁveb
V,,YV = ayYV,

V,(YVey) = (a,,YV i Cjﬂ’“) ev.

Let us also consider the action of the covariant derivative on covariant indices. Let ® = ®,dx"
and Y = YVe,. We have

Vel Y) = Vi(orY) = (9my) Y +ay (9,7").
On the other hand we must have
Vi@, Y) = (V,0,Y)+{0,V,Y)

= {((Quoy)dx’ + oy V,dx Y )+ <w, (@Y + CLkYk)ev>

= (3,0,)Y" + <ooVV,,de, Y’“ex> + oy (91 +CY 7).
Therefore

oy (Vudx' e ) Y*+ o C ¥ = 0

and hence

Vidx' = —Cldx".
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Therefore we have
Vy(oydx') = (8,10;)\, — Cﬁ,vcoo dx".
Also in this case one finds in the physics literature the notation
Vioy = 9,0y — C}wa
As in the case above we have to interpret this equation as if the missing basis vector dx" is present.
Parallel transport: If
VyX = 0

we say that the vector X is parallel transported along the curve defined by V.

5.7 The Levi-Civita connection

If a manifold is equipped with a metric, we may impose additional requirements on the affine
connection: The first condition that we will impose is that the metric g, is covariantly constant,
i.e. we require that if two vectors X and Y are parallel transported along a curve the scalar product
between the two vectors does not change. We may express this by the formula

Vv (e(X,Y)) = 0,

for all X and Y with VyX = VyY = 0. Since this holds for all curves and all parallel transported
vectors, it follows that

Vi (gwdx“ ® dxv) = 0,

or equivalently
(3t — Crury — Chgia ) d @’ = 0.
This has to hold for all components and therefore it follows that
Icgiv — Chury — Crnga. = 0.
This is also written as
VKg/JV = 0.

In this case we may write the connection coefficients C¥, as

C“,le = FK/N +K‘j,v.
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The quantities I'*,,, are called Christoffel symbols, They are symmetric in 1 <> v. The quantities
K K#V are called contorsion coefficients. The explicit expressions for these quantities are

1

FK,uv = EgKX (a,ugvk + avg,uk - akg,uv) )
1

K = 2 (T + TS +15%),

T],Zv = CKW — CKV,u'

T,y is anti-symmetric in u <> v. It can be shown that the quantities 7%, define a tensor, which is
called the torsion tensor.

An affine connection is called symmetric, if the torsion tensor vanishes. In this case we have

13 K
Cw = 'y,
A A
My = TN,

This is the second condition which we will impose: We require that the affine connection is sym-
metric, i.e. that the torsion tensor vanishes.

Theorem: On a Riemannian manifold or semi-Riemannian manifold (M, g) there is a unique
symmetric connection, which is compatible with the metric (i.e. the metric is covariantly con-
stant). This connection is called the Levi-Civita connection.

Assuming that the metric is covariantly constant and assuming that the connection coefficients
are symmetric, we may easily derive the formula for the Christoffel symbols, thus proving the
existence and uniqueness. We start by writing down the equation which expresses that the metric
is covariantly constants for three different permutations of indices:

Voo = apgpv - F?:)pgkv - Fy‘;vgyl =0,
Vg = aygvp - F?ngkp - Fy;lpgvl =0,
vap,u = avgpy - F}ngyw - Fyt/,ugpl =0.
If we subtract the last two equations from the first one we obtain
dp&uv — Iugvp — OvEpu + F’ngxp + Fﬁygpx + kagm - Fﬁvg,m + Flpgvx - Fxpﬂng = 0.
We now use the symmetry of the metric and of the Christoffel symbols. We obtain
apgyv - aygvp - avgpu + zry;ivgkp = 0.

Solving for the Christoffel symbol we obtain the formula
1
My = Eg‘d (9ugva. +0v&n — Nguv) -
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5.8 Stokes’ theorem

Stokes’ theorem may be written elegantly with the help of differential forms on a differentiable
manifold with a boundary as

/ do = / .

M

oM

Here, M denotes a n-dimensional manifold, which may have a boundary. The boundary is de-
noted by dM and o denotes a differential (n — 1)-form.
If the manifold is endowed with a metric g, we may re-write Stokes’ theorem as follows:

JasIavar = [y
M oM

Here we denote by V, the covariant derivative with respect to the Levi-Civita connection, we
denote by 7y the metric on dM induced by g and we denote by 7, a unit normal vector on oM.

The second version of Stokes’ theorem is derived from the first version of Stokes’ theorem
for semi-Riemannian manifolds as follows: Since M is equipped with a metric, we may write
any differential (n — 1)-form as the Hodge dual of a differential one-form V = V,,dx*:

0 = *V

With

= #m dxX"U A LN dotn!

(l’l—l)' H1---Hp—1
we have
Ouyoppyy = 181V ey = VI8IVF €ty -

Furthermore

1

d()) - m(aﬂlwﬂzn#n) dx“l/\dxﬂz/\/\dx“”
1

= mam (\/ |g\V”€Wz...yn> dxX" ANdxt2 AL A\ dxt

1
- (VIgIV¥ €. ) A5 A A Al
In the second line we must have u = u1 due to the presence of €, ,, and dx*! Adx*> A\ ... Adxt.
We may therefore exchange the two covariant indices p and u;. After swapping the two covariant

indices we sum without the restriction u = u; over all pairs of indices (u,u;). This overcounts
each term n times, which is compensated by an additional factor 1/n.
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Furthermore we have 8#8,,1 ..., = 0 and we obtain therefore

do = 3 (V/IgV*)dx' A A",

For the Levi-Civita connection we have

VVH = QT VY =, (Viglv*).

Vgl

Here we used

1
My = —dv/lgl
g Vgl d

We obtain
do = (V") /|gld"x

and hence the left-hand side of Stokes’ theorem is equivalent to
/dco _ /d”x\/|g\V,,V“.
M M

Let us now consider the right-hand side of Stokes’ theorem, which includes the integration over
the boundary of M. The boundary oM is a (n — 1)-dimensional hypersurface. It is convenient to
use Gaussian normal coordinates (z,y1, ..., yn—1), Where the coordinates (yy, ..., y,—1) parametrise
the (n— 1)-dimensional hypersurface oM and z is a coordinate parametrising the normal direction
given by the normal vector 7,,. The induced metric on dM is given by

oxt ox¥
Yop = ay_aﬁg““

We may express the full metric g on M in terms of the Gaussian normal coordinates:
g = Fdz@dz+yupdy* @dyP,
i.e. there are no mixed terms dy* ® dz. In these coordinates we have

Visl = V-

The volume element on the boundary is

VIYldyt A ndy™L

With the help of the unit normal vector n* we may write the volume element on the boundary
oM in a coordinate-independent way:

1
W V |g‘n'ul€/.ll,l12...lund-xy2 N... /\d_x’u"
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For the right-hand side of Stokes’ theorem we obtain therefore

1
/ 0 = / 18IV ey o A
)

n—1)!
oM M( )

1
- / (n—1)! \/@Vﬂnﬂnﬂlsﬂlﬂz---ﬂndxﬂz A ...dxt
oM

= [a v,

oM

It remains to discuss the sign of the unit normal vector n,. From the original formulation of
Stokes’ theorem it follows that the covariant unit normal vector 7, is outward-pointing.

Please note that on a Lorentzian manifold the contravariant unit normal vector n* points
outwards, if n* is time-like, but points inwards, if n* is space-like. On a Riemannian manifold,
the contravariant unit normal vector n* is always outward-pointing.

5.9 The curvature tensor

Preliminary remark: Let

d
— H, _— YH
X = Xbey=X'so

be a vector field. A vector field acts on a functions as a directional derivative:

0
fry ,Ll_
X(f) X Rl
Let
0
_ vV
Y =Y 5

be a further vector field. We define the Lie bracket [X,Y] as
X Y1) = X(¥(f) =Y X))
We have

X(Y(f) = X9, (Y¥ouf) =X"(9.Y") (Ovf) + X YV 0,0y f,
Y(X(f) = Y#9,(XYovf) =Y"(9.X") (ovf)+ Y X9,y f,

and hence

X, Y(f) = (XM9,YY —Y*9,XV)ovf.
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The Lie bracket is again a vector field. The components of this vector field are given by
X,Y] = (XM9.YY —Y"9,X")ey.

Remark: Neither XY nor Y X are vector fields, since both contain second derivatives. The second
derivatives cancel in the combination [X,Y]. Since only first derivatives remain, the combination
[X,Y]is again a vector field.

Remark: An important special case is given by
[e,l, ev} = 0.
(This is most easily seen by letting ¢, = ¥ X®es with X® =0 for y # 6 and X° =1 for u=.)

Since the connection coefficients C7‘#V do not transform as a tensor, they cannot have any in-
trinsic meaning as a measure of the curvature of a manifold. As intrinsic objects we have the
torsion tensor

T : Vect(M)® Vect(M) — Vect(M)
T(X,Y)=VxY —VyX — [X,Y]

and Riemann’s curvature tensor

R : Vect(M)® Vect(M) ® Vect(M) — Vect(M)
R(X,Y,Z) = VxVyZ —VyVxZ —Viy nZ.

Obviously, R and T are anti-symmetric in X and Y:

T(X,Y) = —T(Y,X)
R(X,Y,Z) = —R(Y,X,Z)

Using the coordinate representation we have

T(e,lbeV) = T,Zlhvekv

R(ey ey,e)) = R‘iy\,e,{.

Remark: Note the position of the index A!

With the help of

A
Vuey = Cyvex, [eﬂ, ev} =0,
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K

; A .
we determine 7', and R v

T(ey,ey) = Vyuey—Vye,— [e,,,ev]
= C?l:vel - C?\\'/,Llek

= <C?LLIV — CQ,“) 67\‘,
R(e,w ev,en) = V.Vver —ViyVey — V[e,“ev}el
= Vluclsxe]( — V\/C]:lke](

= (V,uc]f/}\,) ex+ CSxVﬂeK — (VVCEK> Cx — CE}\‘V\/eK
= (aluclf,x) ex+ CS;\‘CTLKen - (avc];;b) €x — CZXCT\]’KeH
= (35— AT+ CClg = CCy ) e

In summary we have

A A A
Thw = Chy—Ch,,
RS,y = 0l —vCiy +CChn —ClCy.

Let us now specialise to the Levi-Civita connection. In this case the torsion tensor vanishes and
the connection coefficients C', equal the Christoffel symbols I'',,;:

1
Ciw = Iy = Eg“ (0ugva + v — 98uv) -
In this case we may express Riemann’s curvature tensor through the Christoffel symbols:
— Ul Ul
RS,y = 0ul\— oI+, — FMF‘%.

Remark: For Ry),v = ngRF;WV we find

1 angV azg}w 8287»/1 ang/J a n & Ul
R = 2 (axkaxﬂ  Ox<oxH + ox<ox¥  oxMoxV +8en (FKVFM ~ il M) '

The tensor Ry, has the following symmetries:

R v — —R KAvus
RKX,uV = _RKK,uv )
RKMV = R,uVK?u .

The Ricci tensor is defined as the following contraction of the curvature tensor:
. _ A
Ric,y = R L
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The Ricci tensor is symmetric:
Ricy,y = Ricyy.
The scalar curvature is defined by
R = g"Ricyy
As Einstein tensor we denote the following combination:
Gw = Ricy— % guwR
Bianchi identities:

RKX,uV + RK,uVX + RKV?u,u = 0,
VpRKk,uv + VKRkp,uv + VkRpK,uv = 0.

Proof of the first Bianchi identity: Let us first note two equivalent formulations of Bianchi’s first
identity:

R];.,uv-i_R]:N?\.-i_Rliily = 0,
R(X,Y,Z)+R(Y,Z,X)+R(Z,X.Y) = O.

In order to prove the first Bianchi identity we start from the vanishing of the torsion tensor:
T(X,Y) = VxY—-VyX—[X,Y]=0.
Taking the covariant derivative, we obtain

Vz(VxY —VyX —[X,Y]) = O,
VVxY =V, VyX =V, [X,Y] = O.

We focus on the term Vz[X, Y] and use again the condition that the torsion tensor vanishes:
VzIX,Y|-VxyZ-1Z,[X,Y]] = 0.
Thus we obtain
VzVxY —=VzVyX —VixyZ—1[Z,[X,Y]] = 0.
If we now sum over the three cyclic permutations of (X,Y,Z) and by using the Jacobi identity
Z,[X,Y]|+ [X,]Y,Z]] +[V,[Z,X]] = O.
we obtain

VZVXY - VZVYX - V[X7y]z
+VxVyZ —-VxVzY — V[YZ]X
+VyVzX —VyVxZ— V[Z,X]Y = 0,
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or written in a slightly different way
R(X,Y,Z)+R(Y,Z,X)+R(Z,X,Y) = 0.
Proof of the second Bianchi identity: Equivalent formulations of Bianchi’s second identity are
VoRyir + ViR + VaRvpe = 0,

VoR, o + ViR, ot ViRoe = 0,

(VxR)(Y,Z,V)+ (VyR)(Z,X,V)+ (VzR) (X,Y,V) =

In the second line please note that the metric is covariantly constant for the Levi-Civita connec-
tion (Vg™ = 0). Hence we may exchange the covariant derivative with the raising of indices.
In order to prove Bianchi’s second identity we introduce the following notation: Let S be the op-
eration, which sums over the three cyclic permutations of (X,Y,Z). With this notation we have
to show

S(VzR)(X,Y,V) = 0.
We start again with the vanishing of the torsion tensor 7 (X,Y) = 0 and obtain
R(T(X,Y),Z,V) = R(VxY,Z,V)—R(VyX,Z,V)—R([X,Y],Z,V)=0.
Summation over the three cyclic permutation of (X,Y,Z) gives
S(R(VzX,Y,V)—R(VzY,X,V)—R([X,Y],Z,V)) = 0,
and since Riemann’s curvature tensor is anti-symmetric in the first two arguments:
S(R(VzX,Y,V)+R(X,VzY,V)—R([X,Y],Z,V)) = 0,
We now consider
Vz(R(X,Y,V)) = (VzR)(X,Y,V)+R(VzX,Y,V)+R(X,VzY,V)+R(X,Y,V;V).
Using the above relation we obtain after symmetrisation
S(Vz(R(X,Y,V))—(VzR)(X,Y,V)—R(X,Y,VzV)—R([X,Y],Z,V)) = 0.
We are going to prove
SIVz(R(X,Y,V))—R(X,Y,VzV)—R([X,Y],Z,V)] = 0,
this will then imply Bianchi’s second identity

S(VZR)(X,Y,V) = O.
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We have

Vz(R(X,Y,V))—R(X,Y,VzV)—R([X,Y],Z,V) =
= (VzVxVy = VzVyVx —VzVixy)) V
— (VxVyVz—=VyVxVz—Vix yVz) V

—(Vxn\Vz=VzVixy) = Vixy )V
= [Vz,[Vx,Vy|]V+V|x y1 2]V

If we now sum over the three cyclic permutations of (X,Y,Z) we have due to the Jacobi identity
S([Vz,[Vx, V¥l]V+VixyjzV) = 0.

This completes the proof of Bianchi’s second identity.

An important corollary of Bianchi’s second identity is obtained through the following steps:
Contracting the indices K and u in Bianchi’s second identity we obtain:

gNKVPRKMV + VﬂRkppv + gﬂKVkRpKyv = 0.

For the Levi-Civita connection the metric is covariantly constant Vg™ = 0 and we may ex-
change contraction and covariant derivative:

VoRicyy, + V’“‘R;WV —VjRicoy = 0.
If we further contract A and v, we obtain

VpR - V'URZ'Cplu - VvRiCpV — 0
VoR —2VFRicy, = 0,

1
Expressed differently, we obtain

V'uGlu\) - O.

5.10 Symmetries and Killing vectors

Symmetries play an important role in physics. We will now discuss the concept of symmetries
in the context of semi-Riemannian manifolds. For example, the Poincaré group, consisting of
Lorentz transformations and translations, is the symmetry group of flat Minkowski space. Under
a Poincaré transformation the coordinates transform as

o= A XY+ DR
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The metric
guvdx'dx’

is invariant under these transformations. Symmetries which leave the metric invariant are called
isometries.

Let us now define isometries (i.e. symmetries, which leave the metric invariant) for an arbitrary
semi-Riemannian manifold M: Let

fiM—->M
be a diffeomorphism. We call f an isometry, if
s = &
This means that for X,Y € T,M we have
grip) (KX, fY) = gp(X,Y).

The identity map, the composition of isometries and the inverse of an isometry are again isome-
tries. The isometries form a group. Isometries conserve the length of a vector.

Example: For Minkowski space the group of isometries is given by the Poincaré group.

Killing vector fields: Let (M,g) be a semi-Riemannian manifold and X € Vect(M) a vector
field on M. The vector field X is called a Killing vector field if the transformation

= peXxH,

where € is an infinitesimal quantity, is an isometry. In this case we have

o(x* +eX™) 8()3L + 8X7“)
ax/‘ axv gK)\. ('x + SX) = g/JV (.X) .
With
ga(r+eX) = ga(x)+eXsga(x) +0(e?)
we obtain

Xca(jgluv +gwa#XK+gﬂkava = 0

This is Killing’s equation. For the Levi-Civita connection we may re-write this equation as
follows:

V/JXV + Vleu — O.
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A set of Killing vector fields is called linearly dependent, if a vector field from this set can be
written as a linear combination of the other vector fields with constant coefficients.

Remark: The number linearly independent Killing vector fields can be larger than the dimen-
sion of the manifold.

Example: We consider Minkowski space. The connection coefficients of the Levi-Civita con-
nection vanish and Killing’s equation reduces to

duXv+ovX, = 0.
Obviously, the four constant vector fields
0<i<3,
satisfy this equation. But so do in addition the vector fields
X! = aVxy,

where ¢*V is anti-symmetric and constant. We therefore have 4 + 6 = 10 linearly independent
Killing vector fields, which of course correspond to the translations and the Lorentz transforma-
tions.

In an D-dimensional Euclidean space (or in an D-dimensional Minkowski space) we have

D(D+1)
2

linearly independent Killing vector fields, which correspond to D translations and D(D —1)/2
rotations (or Lorentz transformations).

In general we call a semi-Riemannian manifold (M, g) of dimension D a maximally symmetric
space, if the number of linearly independent Killing vector fields is

D(D+1)
——.

In maximally symmetric space the curvature is the same at every point and in every direction,
since the Killing vector fields provide D symmetries with respect to translations and D(D — 1) /2
symmetries with respect to rotations. We may therefore try to construct the curvature tensor from
tensors, which are invariant under these transformations. We have the metric and the total anti-
symmetric tensor at our disposal. If we take into account the symmetry properties of Riemann’s
curvature tensor, we are left with a single possibility for the tensor structure:

RK?WV = ¢ (gK,ugkv _gKng,u) .
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The constant of proportionality is determined by contracting with g and gV:
R = c¢(D*-D),

and hence

R
RK?L/.N = m (gK,ugM _gKVgMJ) .

The curvature of a maximally symmetric space is fully specified by the scalar curvature R. As
the curvature is the same at any point in a maximally symmetric space, the scalar curvature R is
a constant in a maximally symmetric space. We distinguish the cases R =0, R > 0 and R < 0.

The maximally symmetric spaces with a metric with Euclidean signature are:
R>0  sphere§",
R=0  Euclidean space R",
R <0  hyperbolic space H".
The maximally symmetric spaces with a metric with Lorentzian signature are:
R>0  anti-de Sitter space AdS",
R=0  Minkowski space M",
R <0  deSitter space dS".

We recall that we use the convention that a Lorentzian metric has one positive and (n — 1) neg-
ative eigenvalues. One finds in the literature also the opposite convention, where a Lorentzian
metric has one negative and (n — 1) positive eigenvalues. We may obtain one case from the other
case through the substitution

8w —7 —8uv-

Under this transformation we have

K K
I w I v
K K
R Auv — R v
Ricyy —  Ricyy,
R — —R.

5.11 The Weyl tensor

The Ricci tensor and the scalar curvature project out the information related to traces of the
Riemann curvature tensor. The trace-free part is lost. The trace-free part is captured by the Weyl
tensor. The Weyl tensor is defined in D dimensions by

2 . . . .
Cow = R — D> (gxuRicy), — gxvRicy, — &ruRicvk + avRicux)
+ 2 (gK 8va — 8xv8 k) R.
(D—-1)(D—2) ™ #
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The Weyl tensor is only defined for manifolds of dimension D > 3. For D = 3 the Weyl tensor
vanishes identically. The Weyl tensor has the same symmetries as the Riemann curvature tensor:

CKMV = _CKlvln
CKk,uv = _CXK,uVa
CK?»,uV = C,uv KA

kayv + CK,LJV?\. + CK'V?\.,u = 0,

The Weyl tensor is also known as conformal tensor. The reason is as follows: Consider two
metrics g,y and

g = O (x)guw,
where ®(x) is an arbitrary non-vanishing function on the manifold. One finds

K _ K
v T C Auv-
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6 Einstein’s equations

6.1 Relevant scales

Let us first look at the order of magnitude of the gravitational force in comparison to the electro-
magnetic force: The gravitational force between a proton and an anti-proton is given by

Gm?“
F = —— 1,
r

where G denotes Newton’s constant. The numerical value is
G = (6.67259+0.00085) 10" m’kg~'s2.

Let’s compare this to the electric force. The Coulomb force is given by

1 e?
Fr = ———1.
¢ 4meg r? d
For the ratio of the two forces we have
F AmeyGm?
Lol - 00 811073,
Fc e?

The gravitational force is the weakest among the known fundamental forces (gravitational force,
electromagnetic force, weak force, strong force).

Remark: The gravitational force is always attractive, contrary to the electric force, which can
be attractive or repulsive.

Dimensionless quantities:

1 &2
o = ——=0.0072973 =
4meg he 137.036°
Gm?
a; = —2=59.10"%,
hc
Planck mass:
he 19 -8
Mp; = G =1.221-10" GeV =2.177-10° kg.

The Planck mass is significantly larger than the masses of the elementary particles known today.

Planck length:

2nhe

M Pl 6'2

(27)1.62-1073° m.

The Planck length is significantly smaller than the typical range of sub-atomic forces (=~ 10~!8 m).
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6.2 The equivalence principle

The equivalence principle: Let us first consider a particle in a gravitational field within non-
relativistic mechanics. The Lagrange function is given by

1
L = EmTvz—qu),

where mr denotes the inertial mass of the particle and mg denotes the gravitational mass of the
particle. The equation of motion reads:

mT%\_f = —mS§¢.
All experimental data is compatible with m7 = mg. This is the weak formulation of the equiva-
lence principle: The gravitational mass equals the inertial mass. Therefore:
d
7
Let us now consider a number of test particles in a homogeneous and time-independent gravita-
tional field. In an inertial system K the equations of motion read

= —Vo.

d* . .
migp® = mg+ Y.
J#i

Let us now change from the inertial system K to a non-inertial system K’, which is obtained from
K by a constant acceleration g, i.e.

= X¥— =gt
y X 28’
In the system K’ the equations of motion read
* ﬁ
mizay = Y
J#i

Strong version of the equivalence principle: For each point x of the space-time M there exists
a local inertial system such that in a sufficiently small neighbourhood U C M of x the equations
of motion take the form as in special relativity. This implies that the existence of a gravitational
field cannot be detected by local experiments alone.

Remark: The weak version of the equivalence principle refers only to the equation of motions
for freely falling bodies, the strong version refers to all physical phenomena.

In the following we will denote by

1 0 0 0
o -1 0 o0
w = o 0 -1 0
00 0 -1

66



the known metric of flat Minkowski space-time. Within general relativity the metric will be
promoted to a coordinate-dependent object. A mathematical precise formulation of the strong
equivalence principle reads: For each point xy of space-time there exists a coordinate system
such that

g,uV(XO) = Muv,
Iguv (¥) — 0

104
ox o

Such coordinates are called Gauf coordinates or normal coordinates.

6.3 Motion of particles in a gravitational field

Let us first consider the motion of a free particle (i.e. no forces are exerted on the particle) on a
given manifold.

We recall that within Newtonian mechanics a free particle moves with constant velocity along
straight lines.

Within special relativity we have the law that the motion of a free particle is a motion with
constant four-velocity:
d

S0 = 0.
dsu

This equation of motion can be deduced with the help of the principle of least action from the
action of a free particle
b
S = —mc / ds.

The action is proportional to the length of the path between the space-time points a and b. A
minimum is obtained for the shortest path between a and b. Paths, which give the shortest path
between two points are called geodesics.

This gives us the proper generalisation to curved manifolds: The motion of a free particle on
an arbitrary semi-Riemannian manifold is given by a geodesic. For semi-Riemannian manifolds
with the Levi-Civita connection there is an alternative definition for a geodesic: A geodesic is a
curve along which the tangent vector is parallel transported.

Let x()A) be a curve and let 7", | be a tensor. The tangent vector of the curve at the
point x*(0) is given by



By definition, the tensor is parallel transported along the curve if

\V, T,ul...,uk _ d_xﬂcv T,Uln-,“k =0
Vv Vi.v; dn T Vi.vp —

For a vector field (i.e. a (1,0)-tensor field) this equation simplifies to

dx® dx°
TV = T (VM4 TV ®) =0,

If we plug in for V# the expression for the tangent vector V¥ = dx" /d A, we find
dx* dxt dx® d%x* dx* dx°
Qe T ) = T T —
dk(rdk-l_ “’dx) DT

The equation

Py A
d)\2 O dn dh

is called the geodesic equation. If all connection coefficients vanish (as for example in the case

of an Euclidean space or Minkowski space), the geodesic equation reduces to

d?x+

oz =0

which corresponds to the motion of a particle with constant velocity along straight lines.

In order to derive the geodesic equation we started from the definition of a geodesic which
refers to the parallel transport of the tangent vector along the geodesic curve. Let us return to
the first definition, which defines geodesics as paths of shortest length between two points. We

consider the functional

dxt dx¥
SN dh

We set

;o= dxt dx”
S AN

For the variation of the functional one obtains

8 — /&/}d%z%/%&fd%.

Let us choose for the curve parameter A the proper time (more precisely s = ¢t). We then find

dx* dx¥

Fo= ey

= guir'u’ = 1.
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It is therefore sufficient to consider the extrema of the simpler functional

dx“dx
/fds_z/g’”

o= M+,
v — g/N‘f‘(acg,uv)SXG

Let us now consider

Plugging this in, we obtain

dxt dx" (Sx“) dx" dx* d (xV)
o) —8 Ctgw———— — ds.
2/{ B s ds ds 8w ds ds g

For the last two terms we use partial integration, as for example

1 dx* d (&x") 1 d>x* dgy dxt
= (P ds = —= Rl P
2/ as ds O 2 {g“v asz " as as |

1 d?xH dx® dx*
2 [gﬂv ds 3 +acgﬂvﬁa:| SXVdS.

After partial integration we obtain

d* 1 dx* dx¥

8[ = —/ {gﬂcﬁ + 5 (alugvc—i_avg(jlu a(jgluv) d d :| chds.

The vanishing of the variation implies

a2+ 1 dx* dx

gy6ﬁ+§(aygvc+avgcp acgyv) ds ds = 0.

Finally, we multiply by the inverse metric. We obtain

d*P 1 dx* dx

— +2g © (9ugve + Ovgou — &) —— v

This is exactly the geodesic equation with the Christoffel symbols as connection coefficients.
This shows that the two definitions of a geodesic are equivalent for the Levi-Civita connection.

Finally, let us give a third derivation of the geodesic equation. We generalise the known re-
lation in flat Minkowski space in a covariant way. We start from the equation of motion for a free
particle in Minkowski space:

dsu
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We may re-write this as
du = 0.
The generalisation to curved space reads
v = 0.
With the definition of the covariant derivative one obtains
di' + Thou'dx? = 0.
If we now divide again by ds, we obtain

d?xH L dx dxP
ds? VP ds ds

This is the sought-after equation of motion. The motion of the particle is determined by the quan-

tities F’(,p. Since % gives the four-acceleration of the particle, we may interpret the quantity
—m Vp uvup

as the four-force acting on particles due to the gravitational field.

6.4 Einstein’s equations

In this section we will heuristically motivate Einstein’s equations. In the last section we saw that
the geodesic equation can be obtained from the equation of motion in flat space du*/ds = 0 by
replacing partial derivatives with covariant derivatives. In this section we will use these “rules”
to obtain the field equations for gravitation. In a subsequent section we will adopt a stricter
approach and derive the field equations from an action. The rules for “minimal substitution” are:

e Replace partial derivatives by covariant derivatives.
e Replace the flat metric M,y by guy.
Let us consider an example. In flat Minkowski space we have
9T = 0.
The generalisation to curved manifolds reads
v, T" = 0.

Once we obtained Einstein’s equations, we would also show that in the Newtonian limit they
reduce to the well-known equations of classical mechanics:

a’x - 4nGp
— S =-V®, AD= .
dr? ’ c?

The Newtonian limit is defined by
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e All particle velocities are small compared to the speed of light.

e The gravitational field is weak, such that it can be treated as a perturbation of flat space-
time.

e The gravitational field is static (i.e. time-independent).

Let us now consider a weak static gravitational field. In general, the equation of motion for a
free particle reads

d?x+ u dx¥ dxP
—s + vp —
ds? ds ds

The four-velocity is given by

For a slow motion (i.e. [V| < ¢) we have

a0
ds

dx <
ds

In this limit the equation of motion simplifies to
d’x* . dx® dx°
ds? 0 ds ds

For a static gravitational field the Christoffel symbols reduce to

= 0.

1 1
Ky = 58" % (dogon, + 0gon. — IMgoo) = —Eg” *91.200-

Let us now set

8w = Muv +h,uV7
with |h,y| < 1. We obtain for the inverse metric g*V to first order

g o= V-,
with

o= n*nYher.
For I, one finds

1
Mo = —Qﬂ“ 00,
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We substitute this result into the equation of motion

2 1 dx"\’
— = 09 — | .
With ds = cdt we obtain for the spatial components of the equation of motion
d2xi 1, dr\*
— = =c"(dh — ] .
72 7€ (9'ho0) (dt)

We divide both sides by (dt/dt)? and obtain

With V = (3;,0,,03) = —(9",92,9%) we have

Let us compare this equation with

We deduce that the gravitational potential is given by

Thus

800

5 Lo,
Z—Zé = —%czﬁhoo.
Z—j’; = V.
d = %czhoo.

2
= Moo +hoo = 1+g‘1>-

We see that a metric of the form ggo = 1 + C%d) corresponds in the Newtonian limit to Newton’s

law d2%/dt* = —V.

Let us now seek a generalisation of Poisson’s law: A® = 4nGp/c?. (We use the convention
that the mass density p is given in units of energy per volume, therefore an extra factor of 1/c?
appears.) As starting point we will assume that the mass is the source of the gravitational field.

In natural units (¢ = 1) we have

mass =

mass density =

rest energy

0-component of a four-vector.

energy density

00-component of a rank 2 four-tensor.
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We therefore expect that the energy-momentum tensor 7V describes the source of the gravita-
tional field. In Minkowski space energy-momentum conservation implies:

wo_
9. = 0.
In general coordinates this equation reads
(L
v, % = 0.
We therefore seek an equation involving rank 2 tensors and containing TV,

We further know that Newton’s gravitational potential satisfies the Poisson equation

AD — 47t(2;p ’
C

and that the mass density p is the 00-component of the energy-momentum tensor:

p = 700
We further have
1
P 5czhoo,
goo = 1-+hoo.
Therefore we find
8nG
Agoo = —5Too.
c
Thus we seek an equation of the form
~ 8nG
G,uv = C—4T,uV7

where the tensor G~NV contains the metric and its first and second derivatives.

Let us summarise: We look for a quantity G,N with the following properties:

1. Gy is a tensor;

2. Gy contains derivatives of the metric up to second order, second derivatives of the metric
occur linearly, first derivatives of the metric are allowed to occur quadratically;

3. G is symmetric, since 7T,y is symmetric;

4. V“G,, =0, since Ty is conserved (V*T,, = 0);
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5. For weak static gravitational fields we have

Goo — Agoo-

The first two points imply, that G#V must be a linear combination of Ric,y and g,vR, other tensors
are not available. Hence

GIUV = ClRiC,uV‘l'CZg,uvR-
This ansatz also satisfies condition 3. We already know that the Einstein tensor satisfies
Ko
V.G" = 0.
Since Gy = Ricyy — %g,NR we conclude

1
) = —ECI.

Condition 5 implies that the constant of proportionality is given by

ci = 1L
Hence
G,LN — G,LIV
and Einstein’s field equations read
&nG
G,uV = C—4 T,uV )
) 1 8nG
RlClu\) — Eg'uVR C—4Tlu\;.

Uniqueness of Einstein’s equations: Assumptions 1-4 are indispensable, but it could be possible
that small deviations from Newton’s law remained undetected up to today. It can be shown that
Einstein’s equations are unique up to an additional term

Aguy.

A is called the cosmological constant. The cosmological constant was introduced by Einstein
in 1917 and later discarded (“groBte Eselei ...”). Today there is strong evidence that A # 0.
Einstein’s equations with a cosmological constant read:

8nG

. 1
RlC,uv_ig,uvR_Ag,uv = 77}1\)7

Remark concerning the sign of the term Ag,y: If one uses the signature (—,+,+,+) instead
of the signature (4, —,—, —) adopted in these lectures, the terms Ric,y and g,vR won’t change
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sign, however the metric g,y will change the sign. In order to have with both conventions the
same numerical value for the cosmological constant one finds in the literature which uses the
convention (—,+, 4, +) the expression Ric,y — 1/2g,wR + Aguy.
In the presence of a cosmological constant we obtain in the Newtonian limit
4nGp 1 ,
AD = + —c°A.
c? 2
We see that a non-vanishing cosmological constant A implies a homogeneous static energy den-
sity in the universe given by

C4

ac —A
Py 8nG

Remarks:

- Einstein’s equations are non-linear differential equations. They contain second derivatives of
guv- but also products of first derivatives and g,y. The non-linearity implies that the superposition
principle does not apply to gravity.

- We may contract Einstein’s equations with g"V. This yields

8nG

R—2R—4A = T,
C

where we set T = g"VT,,,. This equation can be solved for R:

8nG
c
We may now substitute this expression for the scalar curvature into Einstein’s field equations and
obtain

) 8nG 1
RlC’uV = c—4 (T/JV — EgluvngTcp) — Ag'uv.

- In empty space we have T, = 0. If in addition the cosmological constant is vanishing as
well, one has Ric,y = 0. However, this does in general not imply that R,pc = 0, i.e. that the cur-
vature tensor is vanishing. Remark: In dimensions D = 2 or D = 3 one can show that Ric,y =0
implies R;yps = 0.

6.5 The action of general relativity

Let us first consider the gravitational field alone, i.e. without additional matter fields. The
Einstein-Hilbert action with a cosmological constant reads:
3

4
- —o(R+2A
SEH 16TcG/dxv g(R+2A)
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Here we used the notation

g = detgy.

We now derive the equations of motion through the variation of the metric. It is technically
simpler to work out the variation with respect to the inverse metric g"¥ instead of the variation
with respect to the metric 8g,y. Since

g'upgpv = 56
we have

(Sg#p>gpv+gyp (Sgpv) = 0,
O = —&up8vsOg"e.

With R = g"VRic,y we obtain three terms for the variation of the action:

SSEH = —

3
c .
16nG8/d4x V=8 (8" Ricyy +2A)

3

— / d*x /—gg" SRicyy + / d*x \/—gRic,,dg" + / d*x (g Ricy +2A) 8y/—g | .

168G

-~

(85)1 (85)2 (85)s

The second term is already in the desired form of an expression multiplied by dg*”.

Let us start with the first term. We recall that the Ricci tensor is given as a contraction of
Riemann’s curvature tensor. The curvature tensor is expressed in turn in terms of the Christoffel
symbols:
K _ K K N 1K M 1K
Ryy = aﬂrvx—avrﬂx+rvkrm _prrvn'
Therefore we consider first the variation of Riemann’s curvature tensor with respect to the
Christoffel symbol.

Iy = I, +3I%,.

At this point it is important to recall that the Christoffel symbol is not a (1,2)-tensor! In order
to find the transformation law for the Christoffel symbol under a coordinate transformation we
consider

ox* ox"'

v.VY.

v o o
ViV = ox oxv ¥
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The left-hand side may be expressed as

! o / / 7h/
Vlu/VV — alu/VV + FV /)\/V
oxH oxV v o A
= o <a—vV ) g
ot dx"' e ox 925
= — = 9V 4TV, —V! yY .
o o O TR g T 5w G
For the right-hand side we obtain
ox oxY ox* oxV ox* oxY
—=V VvV = ————0d VY 4+ -1 V7b
ox oxv ¥ oxt oxv 8 Wy A
Therefore
FVIW o™ VA ax/“‘/ v 0°x" _ oxt ox¥' o 1y ka
HA™ 9xh oxH  JxHIxM o ox¥ M

Here we replaced in the second term on the left-hand side the summation index v by A. Since
this has to hold for arbitrary V* one obtains after multiplication with dx* /ox*

LR Y

ox# 9x¥ ox Hh 9x oxM QHoxh”

/
F\;J/ bV ==

Let C\,im and é\;m be two connections. The difference transforms as
’ ~y/ ax/‘ 8 ax
v v _ Y
C N C W T S o o (C - cY )

since all terms with second derivatives cancel out. Therefore, the difference sz — me is a
(1,2)-tensor. In particular this implies that the variation of the Christoffel symbol

or¥y = I, -T%,
transforms as a tensor. Hence
P Y P
Vi (8N) = 9u(30) + T80, — T8, — 17, 81,
The variation of Riemann’s curvature tensor with respect to the Christoffel symbol yields
— T] Ul Ul Ul
=V, (81“%) v, (61“ m») .

We then express the variation 81, in terms of the variation 8g:
K 1 AK AK ks, 0B
ol = —3 [gMVVSg + g Viudg™ — guagvp V" 08
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Combining all ingredients, we obtain for the first term

35), = [ dtv=gVe gmV° (3¢) - V2 (36%)].

This integral is a covariant divergence of a vector and can be re-written as a boundary integral at
infinity. This term does not contribute to the variation.

Let us now consider (0S)3: We have to calculate the variation of the determinant of g. In this re-
spect, the following formula is useful: For any quadratic matrix with non-vanishing determinant
we have

In(detM) = Tr (InM).
The logarithm of a matrix is defined by
exp(InM) = M,

and the exponential function is defined by the series expansion. If M = diag(A4, ..., A,) is diago-
nal, the above formula is immediately clear:

ln(kl Ao kn) = InA+InAy+...+1nA,.

For an arbitrary invertible matrix the above formula is then proved by first diagonalising the ma-
trix.

Variation of this formula yields

1 _

Let us now specialise and take the metric g,y for the matrix M. This yields

8¢ = g(8"ogw) =—5(gw0g").
Hence
1
R

Putting everything together, we obtain the variation of the Einstein-Hilbert action

8v/—¢ = ——\/_ g™

3
C 4 . 1
O0Sgn = _16TCG/d xX\/—g [chﬂv— EgﬂvR—Ag,N dg"

Requiring that the variation of the action vanishes for arbitrary variations dg*” implies
) 1
RZC,UV_Eg/JVR_AgNV = 0.
These are Einstein’s equations in the case that no additional matter fields are present.
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6.6 The energy-momentum tensor of general relativity
In the presence of additional fields and matter, the total action is given by
S = Sen+ Sparticle + Stields + ---

with

b
Sparticle = —mc/ds,
a
1
——— [ d*x \/=gFnF*,.
167tc/ B
Einstein’s equations contain the energy-momentum tensor. In our review of classical field the-

ory we have already seen a general method to compute the energy-momentum tensor from a
Lagrange density & (¢,0,0):

S fields

v oz \% Y Y

In this formula B*PY is anti-symmetric in g and p and determined such that TV is symmetric.
Example: Consider a scalar field with Lagrange density

el m?c? 2
2 = L @u00) @vot) - " o0

One finds (dpB“?Y is vanishing in this case):

o<
T = 0(x) | — g%
2.2

h2c m-c

= @0 @00) — ¢ @000 (P00 + e o0

Let us now consider an alternative method to compute the energy-momentum tensor. This
method has the advantage, that it gives directly the correct and symmetric result. We consider
the action

1
S = —/d4x V—g<.
c
Variation with respect to g"¥ yields

1[4 _8\/—g3’ v Ov/—8<L . g"

1/d4x 3/~ ia«/——gglsgw‘

gV axh g%
8 X aaxx
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We set

l\/—_gT,Jv _ J0y/—g<% 9 9/—g¥
5 :

ootV A gtV
g oxt 9 -

This yields

1
oS = 2_C /d4x vV —gTIuVSg'LN.
It can be shown that

T 2 |dy/—¢g¥ 0d dy/—g<¢
AV A
2%
agrees with the first definition of the energy-momentum tensor. Let us verify this for the example

of a scalar field discussed above:

2 = 2o @) o) - o5 0]
2 g ! n '

We find
T 2 8\/—g££_283’+ 2 ga\/—g
Y T P AN
0L
= 2,ag7—g£glu\)
h2c m2c?

= 5 [z (0,0(2)) (30(x) — 8 (210()) (9"0()) + g (0(x))?

Let us return to the general case. We obtain for the variation of

3
_ ¢ 4 — l 4 —
= 16TCG/dx\/ g(R—f—ZA)—i—C/dx\/ gL
the expression
C3 4 . 1 ny 1 4. 7/ MV
SS e _16nG/d X\ —& Rlcluv_igluvR_Agluv Sg +%/d X _nguvsg .
Hence
3 ) 1 1
—% Rlcluv_igluvR_Agluv +2_CT/JV — O?
or
) 1 8nG
Rlcluv — EgluvR — Ag/JV = 77}1\).
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Let us now discuss conservation laws associated to the energy-momentum tensor. The
energy-momentum tensor satisfies

VT = 0.

In our heuristic motivation for Einstein’s equations we used this as an input. However, if we
accept the Einstein-Hilbert action as a starting point, this equation follows from Einstein’s equa-
tions and V,G*V = 0, the latter is due to the Bianchi identity. Let us first consider a vector j*,
which satisfies

V. = 0

and vanishes at spatial infinity. Stoke’s theorem reads
/d4x\/@V,JV“ = /d3)7\/m n, V¥,
M oM

and setting V¥ = j* yields

0 = / &Py /Y] .
oM

Taking M as the region bounded by the time coordinates #; and ¢ and extending to spatial infinity
one finds the conservation law

/ Py - / Py = o.

1=ty 1=t;

Note that Stoke’s theorem requires a vector V¥, we cannot plug in a tensor T*V or some fixed
components of a tensor like THO However, the contraction of the rank 2 tensor 7" with a vector
Ev transforms as a vector. Let us now investigate under which conditions we have V,(T*'E, ) = 0:

Vu(T"E) = 3Va(T™5)+ 3V (T",)

1 1 1 1
) (VuTH) &y + ET’”V,@V + 3 (W) &+ ETWVvé#
1
- §TW (Vv + V&)
Thus V,(T*Ey) = 0 if V&, + Vy&, = 0 or in other words if &y is a Killing vector field. If we

now assume that &, is a Killing vector field and T#YE, vanishes at spatial infinity we obtain with
the same reasoning as above the conservation law

/d3y\/mT0V§v—/d3y\/mT0V§v .

l‘=l‘f 1=t;

81



If&y = (1,6) is a Killing vector field, we have energy conservation in the usual form

[ EWHTO - [ dyy/mT? = 0.

t=ty t=t;

saying that the integral over the energy density over spatial space is conserved. Note that V, T+
alone is not enough to obtain this result, we need in addition that &, = (1,0) is a Killing vector
field. This is of course in accordance with Noether’s theorem: A Killing vector field generates a
symmetry (in this case time translation) and only if the system is invariant under time translations
energy conservation follows.

6.7 The Palatini formalism
Preliminary remark: Let us consider within classical mechanics the action

I 1

§ = | Lig.9)d, L(q,q')ziéz—V(Q)-

Variation with respect to the generalised coordinate ¢(¢) and keeping the end-points fixed 8¢(t,) =
d¢q(tp) = 0 yields the Euler-Lagrange equation

oL d3dL _ ._ v
&g didg 0 1T 7%

This is the formulation of classical mechanics according to Lagrange. Equally well we may
consider the Hamiltonian formulation of classical mechanics:

s = ["pi-Hapdr,  Hap) =37 +V ()

We now consider ¢(z) and p(t) as independent (i.e. we do not set from the beginning p(t) = ¢(¢))
and vary with respect to ¢(¢) and p(t). Variation with respect to p(t) yields the relation

0H (q,p)
dp

Variation with respect to ¢(z) yields the equation of motion

. _OH(q,p) &V
p= 8  8q

Let us now transfer this to general relativity. For the derivation of Einstein’s equations from the
Einstein-Hilbert action

3
C 4 .
Sen = —16nG/d x /=g (g™ Ricuy +2A)
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we considered the variation with respect to the inverse metric g"¥. The Ricci tensor

Ricyy = 0k, — oI, + TV, — kIS

depends on the Christoffel symbols, which in turn depend on the metric

1
My = Eg‘d (9ugva. +0vgn — Nguv) -

Within the Palatini formalism we consider the (inverse) metric gV and the (symmetric) connec-
tion coefficients as independent quantities. Variation with respect to the inverse metric yields
Einstein’s equations

. 1
Rlcluv_ Eg#VR_Ag.“V - 0.

(Here only the terms (8S), and (8S)3 contribute, which give the variation of g#¥ and \/—g with
respect to the inverse metric g*V.) Within the Palatini formalism the Ricci tensor Ric,y depends
only on the connection coefficients. The variation of

RiC#V - aKC]f,lu - avC]](qJ + n CK

M K
V= kn CK.UCVﬂ

with respect to the connection coefficients C‘fN yields
SRiCluv - VKSCSIU - VVSCT(,LI'

Therefore we obtain for the variation of the action with respect to the connection coefficients:

OSgy = 16nG/d4x V—88" dRic,y = — on G/ xv/—gg" (V KSCS#—VVSC';N)

- 167tG/d4 Vm/ 2 — 8V —g g’m> 5C%,,

This has to hold for arbitrary variations, hence the expression in the bracket has to vanish. This
implies that the symmetric combination has to vanish as well:

1
Viv/—gg" — SVVm/ gg" —QS”KVW—ggVX =

This is a system of 40 equations for the 40 covariant derivatives V/—gg"¥. The unique solution
is

Viv/—gg" =

One then shows



this implies immediately
Vg’ = 0.
With the help of
0 = V=88, = Vie/ =88y = V=88 Vg
it follows that
Viguw = 0.

We recognise this equation as the condition that the metric is covariantly constant with respect to
the connection. Together with the assumption that the connection is torsion free (symmetric), this
uniquely defines the Levi-Civita connection. In this case the connection coefficients are given by
the Christoffel symbols.

Remark: In the case where one considers only the metric as an independent field, the Einstein-
Hilbert action contains second derivatives of the metric. The advantage of the Palatini formalism
is given by the fact, that the action contains in this formalism only first derivatives of the connec-
tion coefficients.

6.8 The vielbein formalism

The vielbein formalism is required to describe the interaction of fermions with gravitation.

We start with a manifold of dimension n. Up to now we used as basis vectors for the tangent
space at the point p the derivatives in the direction of the coordinate axes:

ey = Oy

As standard basis for the cotangent space at the point p we used up to now the corresponding
dual vectors:

o4 = dx.

Let us look at an example: The (two-dimensional) surface of a sphere with coordinates given by
a polar angle % and an azimuthal angle ¢. The metric in these coordinates reads

g = dd®dO+sin’8doRde.

At the point (9,¢9) = (n/3,0) we find



whereas at the point (3, ¢) = (1/2,0) we obtain

g<e(Pve(P) = L

More generally there can be the case, that two basis vectors are orthogonal at point A, but not at
point B. This happens for example if we consider a metric containing a term c(x)e; ® e, where
the coefficient ¢(x) is vanishing at point A, but not at point B. We see that the derivatives in
the direction of the coordinate axes generally do not form an orthonormal basis. For the tangent
space we may define a new basis e,, which by definition satisfies

gleq,ep) = Map-

(This is the appropriate definition for a Lorentzian manifold, for a manifold with Euclidean
signature one replaces 1,5 by d,5.) In general, this basis is no longer given by the derivatives in
the direction of the coordinate axes, but we may express the new basis as a linear combination of
the old basis e:

ea = el'ey
where e/ is an invertible n x n-matrix. In order to preserve the orientation we require in addition
dete,' > 0. The new basis ¢, is called the non-coordinate basis. A widely adopted convention
uses greek indices for the coordinate basis e, and latin indices for the non-coordinate basis e,.
Furthermore, one sometimes refers to e, as a holonomic basis, and to e, as an anholonomic
basis. The n x n-matrix e/ is called generally the vielbein, on a manifold of dimension four the
vierbein (and on a manifold of dimension three the dreibein etc.). We denote by e“y the inverse

matrix of e/":

a M b __ b
eq ey =0, efe’, =9,
With the help of ¢, we obtain
. a
e = €eq
and
a b
8w = €€ yNab-

In addition we may define a new basis 0 for the cotangent space as the dual basis to the non-
coordinate basis e,:

<ea,€b> = SZ
One finds

0 =" 8", 0=l
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Previously we introduced the Lie bracket for vector fields, which yields again a vector field:
X,Y] = (XM9,Y¥ —Y"9,X")ey

For the coordinate basis we have

[e,l, ev} = 0.
However, for the non-coordinate basis we obtain
leaen) = [elen e ev] = (el'Oue, —e0ue,’) ey = cyfee,
with
Cop = (eaf‘a,,ebv — eb’“layeav) ey,

i.e. the non-coordinate basis has a non-vanishing Lie bracket:

lea,ep] = ¢y ec.

With the help of ¢, and ed' we may convert tensors from the coordinate basis to the non-
coordinate basis and vice versa. For example, a (1,2)-tensor in the non-coordinate basis is
converted to the coordinate basis by

T/ﬁ, = eCKe“yebv b
The connection coefficients do not form a tensor and we write
Vee, = 0.
We have
Vie, = Vea”eﬂ (e, ey) = el'Vy (e, ey) =et [(ayebv) ey —|—C'fwebved
= ¢/'[(duey’) €+ Clye, e | ec = e f'e [a,uebv +Clpebp} Ce;
and therefore
o, = ele, [a#ebv—i—C\;lpebp] .
We define the connection one-form ®?, by
oY = 0l,0°=¢ (aﬂebv -I—Cvﬂpebp> dx".

The one-form ®“, is also known as the spin connection one-form.

Let us now consider the torsion tensor and the curvature tensor in the non-coordinate basis:

T<ea7 eb) = T;beca

R(eq,ep,ec) = R‘iabed.
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We determine Tgb from the definition of the torsion tensor:

T(em eb) = Vuep —Vipe, — [eaa eb] = (mcab - mcba - Cabc) €c,

hence

In the same way we obtain from

R(ea,ep,ec) = VaVpec—=VpVa—Vi, g€

e d

d d e d e d
= (aambc - abmac TR0, — W, 0, —Cyy 0)ec) €d

the coefficients

d _ d d e d e 7l e, d
Rcab - aawbc_abwac-l_mbcmae_macmbe_Cabmec'

This allows us to define a torsion two-form 7% and a curvature two-form R‘Z:

1 .
T4 = ET;;CebAe‘,
1

With the help of these definitions we may now state the structure equations of Cartan:

T = dé"+o A8,
R}, = do")+0". N,

Let us also consider the Bianchi identities in the non-coordinate basis:

dT+ ' AT = R%Ae,
dlecé7 + (Dac /\Rcb —Rac /\ (ch — 0

Remark: Previously we proved the Bianchi identities in the coordinate basis for the case that the
torsion tensor is vanishing. The form of the Bianchi identities stated above holds in general (and

in particular also for 7% # 0).

The vielbein formalism allows for an elegant formulation of general relativity. In addition, the
vielbein formalism has the advantage that spinor fields can be included. Instead of the metric g,y
one uses within the vielbein formalism the vielbein e, and the spin connection ¢, as funda-
mental fields. Similar to the Palatini formalism (which uses the inverse metric and the symmetric
connection coefficients as fundamental fields) one may show that within the vielbein formalism
the spin connection one-form may be expressed in terms of the vielbein fields. Within the viel-
bein formalism and within the Palatini formalism we obtain instead of second order differential
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equations a system of coupled first order differential equations.

The starting point for the formulation of general relativity within the vielbein formalism are
two one-forms. We consider the vielbein field

a a
0 = e dx"
and the spin connection one-form
a o a
of = ofdx".

We require that the transformation from the coordinate basis to the non-coordinate basis is in-
vertible and orientation-preserving. This translates to the requirement

det (e“,) > 0.

The spin connection defines the covariant derivative:

b

Viea = @,

ep.
Torsion and curvature are given by
T = d6"+o A8,
R} = do'+0" AN,

Explicitly, we find for the curvature

» 1

a _ a a C a C
Ry = 0u0%, —ovo’, + o, 0, — 0% .0,
The metric is given by

o a b
8w = €€ yNab-
The vielbein defines a unique torsion-free and metric-compatible spin connection. This is most

easily seen as follows: The relation between the connection coefficients ®* b in the non-coordinate
basis and the connection coefficients C¥,, in the coordinate basis is given by

The connection in the coordinate basis should be torsion-free and metric-compatible, hence it
must be the Levi-Civita connection. The Levi-Civita connection is given in terms of derivatives
of the metric as

1
CK,uv = FK,uv = Egm (a,ugvk +avg,m - a?»gyv)
1
= Eea'cewL [ebx <8,,e +dye” ) +epy (a,v,el@b — akebﬂ) +epy (8\,6177L — axebvﬂ :
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We therefore obtain
1
ol = Eebve“k lecu (veSy, — ne’y) + ey (uey — a;bec#) — e, (0ue’y — avecy)} )

For the action we find

C3 4
- _ —9o(R+2A
SEH 16nG/dxv g(R+2A)

= — ¢’ /eb.d leaAGb/\RCd-l-Aea/\eb/\ec/\ed
16nGJ ““\2 12 '

For the derivation of the last line let us first consider the term with the cosmological constant.
Here we used

%Sabcdea AOPABCABT = %Eabcde“ﬂebvecpedcdx“ Adx’ AdxP A dx®
= — %eabcds’”p Ge"yeb\, ey e dx® Ndx' A dx* Adx®
= 2A det(e,) dx’ Adx' Adx* Adx,
with
d' Ndx¥ NdxP Ndx® = —e"POdx0 Ndx! AdxP A dxP.
The minus sign is due to our convention €p123 = 1 which implies €0123 — _1 On the other hand

we also have

V=g = /—detgy = \/— det (e@,e"\Nap) = \/— dete?, dete® detn,, = det (¢?,)

which shows the equality of the two terms proportional to the cosmological constant.
In order to derive the term involving the curvature form we need the Schouten identity:

u p uo_
€abcd€f +Ehcdfey +E€cdfa€y +Edfabe +Efavce; = 0.

Let us now take the action

3
c 1 d . N :
S - = b —g¢ eb Rcd g eb Q¢ ed
EH 167tG/£bd<2 NEART RO ATATA

together with the constraints
a ab __ b a
det () >0, @’ =-0’,

as starting point. The anti-symmetry of the spin connection w“#b = —mb#“ implies Vyg,v = 0.
This is easily shown as follows:

0 = Vu(gpod® @dx%) = Vy (M8 6" ) = — (s + Opa) 67 26"
= - (ma,ub + mblua> nacnbdec & T]d-
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Variation of the action with respect to the spin connection yields

1 .
OSepny = 16 G /dx"/\dxV AdxP A dx Scdgfﬂfgﬂbh { (ave°p) edGSZSZ
1 1
2 o (9uels ) 83— Se ey B+ 3¢ peow Vgsg} S,
Using the anti-symmetry of the spin connection (o"ﬂb = —cob#“ this implies that the following
expression, anti-symmetric in a and b, has to vanish:
1 i i -
0 = —;&"% { (zsgsf - 6;55) [(avecp> s+, (8\,6‘16)

pels [0y, 8) + 0,8 — 0] — 085 | }
1 ) ) ) -
- —EE“Vpcecdef {825{: [(E)Ve‘p) edo +e5 <8Vedc)} — e‘ped(s OJKWSi: — coevbﬁg] }

= —%8’1 PO cder {525£ <avecp - apecv> - (85 & — 835! ) o ) }edc

We have
foo_ 1 ij
Sgﬁf—ﬁﬁﬁb = —Eeab,-jefgf
and
/68 8¢/ = : gijf
8cdef< aCp — 9a b) - Egabijg Scdef
= —Egabij (Sﬁﬁbﬁé + 8’0825@’ —1—8{.85}52 —8/0,,68 — 8’65‘28{, — 8§8§8f€>

= e (8£018] + 8.8)3% + 813581 ).

Therefore we obtain

1 S o
0 = 3¢ {euea (Bvep —pety ) +epean 85308] +BL8)3% + 81358, ) 'y f

= — %e""pc {Eabcd (avecp —Jp eﬂ,) + gabcdmcvgegp + € pabec® vy } ¢
= —%E“Vpcﬁabcd {avecp —dpe’y + 0y ey — mcpgegv} o
This is nothing else than the condition that the torsion vanishes:
Ovep — Dpe’y + 0y ey —fp ety = 0.

Variation of the action with respect to the vielbein field yields

1
RCd + —Ae” Ve pe et de?,.

1,
= p
N 16 G/dx“/\dx AdxP NdxPepeq {2 v 3
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This implies

1 1
0 = _gypctgabc'd [ie PRCdT+ 3/\6 p Ged:|
Multiplication with €% ¢g* yields
UpoT 1 cd 1 d
0 = —e"epea 56 pR —|—3Ae 0 e | e Kg

After a slightly lengthy calculation and by repeated use of the Schouten identity one finds
0 — —2det (e“p) (ch“V S8"R- Ag“v)

These are Einstein’s field equations.

6.9 The Plebanski formalism

It is sometimes advantageous to work over the complex numbers instead of working over the
real numbers. This is the main motivation for the Plebanski formalism. Within the Plebanski
formalism we consider as within the vielbein formalism the vielbein and the spin connection as
fundamental fields. In addition, we complexify the tangent space and the cotangent space. We
then decompose all two-forms into a self dual and an anti-self dual part. We further postulate
that gravity is only determined by the self dual part, i.e. we postulate that the anti-self dual part
is vanishing.

Within the framework of the vielbein formalism we introduced at each point of space-time
an anholonomic basis e, of the tangent space. We are in particular interested in four-dimensional
space-times. In this case the tangent space at a given point is a four-dimensional vector space.
Within the Plebanski formalism we extend the vector space spanned by the vectors e, from a real
vector space to a complex vector space. In the same way we extend the cotangent space spanned
by the cotangent basis vectors 6 from a real vector space to a complex vector space.

The action of general relativity within the vielbein formalism is given by

3

c 1 LA .

Ser = ——— [ €uped [ =0°AOP AR + =09 NO" NONOY ).
EH 16TCG/£bd<2 A AN +12 A\ A" A

We may re-write this action in terms of two two-forms

1
B = @9in0° = eaﬂeb\,d)c“/\dxV = 5 (e“#eb —é i )dx'“/\dx
1
R = 5R“C,Nn‘”dx“Adxv.
We obtain
3
c A
— _ Bab Rcd _Bab Bcd .
St 32nG/8“de( NGB
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We decompose the two-forms B’ and R%® into a self dual part and an anti-self dual part:

ab ab ab ab
B B selfdual +B antiselfdual » R Rselfdual + Rantiselfdual?
with
Bab 1 Bab + i Sab Bcd Bab . 1 Bab i ab Bcd
selfdual Py Py cd ’ antiselfdual — 7~
2 2 2 2
R _ l Rab + isab Rcd R l Rab _ isab Rcd
selfdual 2 2 cd ’ antiselfdual 2 2 cd .

For arbitrary tensors A% and C° and the corresponding decomposition into self dual / anti-self
dual parts we have

ab _ ab cd _
eabc'dAselfdualc ntiselfdual — SadeAantiselfdualcselfdual = 0,

which is easily verified by a short calculation. Therefore we may write the action as

3
c b d A b d
Sen = —35 = / €abed [(Bgelfdual/\Rgelfdual“‘ 5 Bielfaual / Bielfaual

ab A
+ (B antiselfdual N Rantlselfdual + 6 B antiselfdual AB antlselfdual) }

Within the Plebanski formalism we now postulate that gravitation is determined by the self dual
forms alone or equivalently that the anti-self dual forms are vanishing

Bantlselfdual = 07 Rantlselfdual = 0.

With this assumption the action simplifies to

A
SE H = 327'CG / €abcd <B selfdual A Rselfdual + 6 B selfdual AB selfdual)

Remark: Within the Plebanski formalism we complexified the tangent space and the cotangent
space. The conditions Bantlselfdual Rggtiselfdual = 0 basically define how we continue the differ-

ential forms from the real subspace to the complex space.

Remark: Up to now we considered within the Plebanski formalism the vielbein and the spin
connection as the fundamental fields. B Selfdual is constructed out of the vielbein, Rantlselfdual is
constructed out of the spin connection. It is possible to change the field variables from the
vielbein e/ to Bgel;lfdual' However, we have to take care of the correct degrees of freedom. A real
vielbein has 16 degrees of freedom, a complex vielbein has 32 degrees of freedom and a complex
vielbein with 16 constraints originating from B,(mtlselfdual 0 has again 16 degrees of freedom.
On the other hand, if we consider a complex two-form

B = B%, dx"Ndx’
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with B“bw anti-symmetric in a,b and u,v, we have 2-6-6 = 72 degrees of freedom, the self-
duality condition reduces this number to 36 degrees of freedom. Thus we have to eliminate
36 — 16 = 20 degrees of freedoms. The constraints eliminating these degrees of freedom are
called simplicity constraints and can be implemented by adding a term

3
c ab cd
- 391G / WYabcaB selfdual /\ B selfdual

with a Lagrange multiplier field Y ;.4 satisfying

Vabcd = —VWpacd = —VWabde = Vedab

and

bed
g™ Vabea = 0.

The auxiliary Lagrange multiplier field Yy, has the same symmetries as the Riemann curvature
tensor and therefore 20 independent components in four space-time dimensions. Variation with
respect to Wypeq gives the twenty simplicity constraints.
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7 Special solutions of Einstein’s equations

7.1 The Schwarzschild solution

We consider a static spherically symmetric mass distribution, as for example given to a good
approximation by the earth or the sun. We are interested in a solution of Einstein’s equations
outside the mass distribution. Thus we seek solutions of

RiClu\) =0

Remark: Einstein’s equations (without a cosmological constant) can be written as

: 8nG 1
Rlcluv = C—4 (T/JV — igluvngTpG> .

In vacuum we have T,y = 0, hence Einstein’s equations reduce to Ric,y = 0.

Remark: The exact definition of “static” and “spherically symmetric” requires some care, as
we have to keep coordinate independence. We postpone a detailed discussion. For the moment,
let us note that “static” implies that all metric components are time independent and that no
mixed terms

cdt @ dx' + dx' @ cdt

appear in the metric. The last condition can be understood, if we assume that “static” also implies
invariance under time reversal t — —¢. Under this transformation the terms c?dt> or dx'dx/ don’t
change their sign, however the mixed terms cdtdx' do change sign.

Spherical symmetry implies that the infinitesimal solid angle element dQ? does not change its
form: The coefficient of the term d¢? should always be sin?® times the coefficient of the term
d®?. Furthermore it implies that there are except for the terms d@? and d9? no further terms (i.e.
mixed terms) containing d¢ or d¥.

We make the following ansatz:

dSZ _ eZa(r) Czdtz . €2b(r)dl’2 N eZc(r) I’deZ

We may slightly simplify the ansatz as follows: If we change to a new radial variable defined by

we obtain




Thus we see that by a redefinition of the function b(r) it is sufficient to consider the ansatz
ds*> = 02 — 2P0 a? — Pao?.

a(r) and b(r) are two functions, which we have to determine. We first compute the Christoffel
symbols (and set within the calculation for simplicity ¢ = 1):

I =0,a, I, =@ b9,a  I" =0,b,
o _ 1 _ —2b o _ 1
e =7 ‘oo = —re” 7, Lo =17
r o ,—2b ;.2 0 _ _ o ¢ __ cosB
Ipe = —re”?sin"0, Iy, =—sinBcosH, Fe<p =9

All other components are either related to the ones above by symmetry or are zero. In the next
step we compute the components of Riemann’s curvature tensor:

t I " N2 r —2b ./ ¢ _ —2b ;2 !
R, =db —d" —(d)”, Ryg=—re?d, Ryo=—re7sin“6d,
ro _ .,—2by/ r _ o —2b 02 / 0 _ —2b\ 32
Rly,q=re =D, R, =re”sin"0 b, R<P6<P_ (l—e )sm 0,

where we used the notation @’ = d,a and b’ = d,b. We therefore obtain for the components of the
Ricci tensor

Ricy = 24"+ (d)—db + %a’ :
Ric,, = —d'—(d)?+db + %b’,

Ricgg = e 2 [r (b' —a’) — 1} +1,
Ricoy = sin” @ Rog.

The scalar curvature is given by

2 1
R = _0o2 a”—l—(a/)z—alb/—f——(a/—b/)—i——z (1_62b>}.
r r

Outside the mass distribution we have
Ricyy = 0.
Since Ric;; and Ric,, have to vanish independently we also have
0 = ez(b*“)Rn +R, = % (a/—l—b')
and therefore @’ + ' = 0. Integration of this equation leads to
b(r) = —a(r)+ec.
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We may eliminate the integration constant ¢ by a rescaling of the time coordinate
t — e ‘t
Hence, we may assume without loss of generality that
b(r) = —a(r).
We now consider Rgg = 0. Substituting the expression for b(r) one obtains
e (2rd +1) = L

We may re-write this equation as

This equation is solved by

as one easily verifies by differentiation. ry is a yet to be determined integration constant. If we
re-insert all factors of the speed of light ¢, we obtain for the metric the result

2
s’ = (1—5)(;%2— r
r 1=

—1* (d®* +sin*6d¢?) .

This solution was found by K. Schwarzschild in 1916. In order to determine the integration
constant ry we study at the t7-component of the metric. For a point mass m we obtain in the

Newtonian limit
2 2G
g = c2<l—|——2<1>>:c2<1— ;”)
c rc

and therefore ry is given by

2Gm
ry = )
A C2

The quantity rg is known as the Schwarzschild radius of the mass m.

Examples for the Schwarzschild radius:

Sun: m~2-10°kg — r,=2.95km,
Earth: m~6-10**kg — ry=0.9cm.

A theorem by Birkhoff states that the Schwarzschild solution is the unique spherically symmetric
solution of Einstein’s equations in the vacuum. This theorem implies in particular that there
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are no time-dependent solutions. We sketch a proof of Birkhoff’s theorem: We start with the
exact definition of “spherical symmetry”: In a flat three-dimensional space spherical symmetry
corresponds to invariance under the rotation group SO(3). On an arbitrary semi-Riemannian
manifold symmetries are characterised by Killing vector fields. The Killing vector fields of the
surface of the sphere S? are given by

R — a(P,
S = cos@dg—cotBsing dg,
T = —sin@dg—cotBcos® dg.

These vector fields satisfy the commutation relations
[R,S]=T, [S,T]|=R, [T,R]=S.

This is nothing else than the Lie algebra of the group SO(3). We are now in a position to define
the concept of “spherical symmetry” for an arbitrary four-dimensional space-time: We require
the existence of three Killing vector fields, which satisfy the commutation relations stated above.
By a suitable choice of coordinates this implies that the metric can be brought into the form

dsz — eza(l‘7}’)6_2dt2 _ eZb(t,r)er _ erQZ‘

Remark: The functions a(z,r) and b(z,r), which appear in this expression, are a priori functions
of t and r. From the form above we may (analogously to what we did before) calculate the
Christoffel symbols, the curvature tensor and the Ricci tensor. For example, we find

2
Ric;r = _atb
r
and hence
b=>b(r).

With the help of a suitable coordinate re-definition of the time coordinate we may in addition
ensure that a(z, r) does not depend on ¢. This leads to the ansatz

ds? = 022 — 2P g2 — 2402,

which was used for the derivation of the Schwarzschild solution.

Remark: All components of the metric are time-independent. This implies that every spherically
symmetric solution of Einstein’s equation in the vacuum possesses a time-like Killing vector
field.

We call a metric which possesses a Killing vector field that is time-like at infinity a station-
ary metric. The general form of a stationary metric is is given by

ds* = goo(X)dt* + goi(¥) (drdx' +dx'dt) + gij(¥)dx'dx’ .
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We call a metric which possesses a Killing vector field that is time-like and orthogonal to a family
of hypersurfaces a static metric. The general form of a static metric is is given by

ds* = goo(X)dt* + g;;(¥)dx'dx’.
Let us now consider the singularities of the Schwarzschild metric:

e The metric is singular at » = r;. However this is just a coordinate singularity, physical
quantities like the Einstein tensor or the curvature tensor are finite at » = r;. The physical
interpretation of » = r is given as the event horizon of a black hole.

Remark: A trivial example for a coordinate singularity is given at the origin of a two-
dimensional plane, if one uses polar coordinates:

ds® = dr* + rzd(pz.

1 0 1 0
(o0 2) (o 1)
r

1
g(P(P:_

r2

In particular we have

Obviously this is an artefact of the chosen coordinate system, since in a flat plane there are
no distinguished points.

e The point r = 0 is a proper singularity. In order to distinguish proper singularities from
coordinate singularities we consider scalar quantities, like for example

R - g'ule.Cluv, RiC‘LNRiCluv, R'quGRluvp(j.
For example, one finds for the Schwarzschild metric

12r3
ro

vpo
RHVP R,quG —

7.2 The perihelion precession of Mercury

We first consider geodesics for the Schwarzschild metric:
dx" dx® dx°
At | ddx
d\? dh d\
The Christoffel symbols for the Schwarzschild metric read (we set again ¢ = 1):

t rs ro_ TIs ro_ rs
" 20 1—‘n‘ ; (I’—I’S), Frr__ -

= 2 (r—ry)’ — 23 2r(r—rs)?
6 _ 1 _ ¢ _ 1

e =7 [gg = —(r—rs), Do =1
v (e ) 0 _ _ o ¢ __ cosH

[op = —(r—ry)sin®0, 'y =—sinBcos®, Iy, =T
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The geodesic equation gives four coupled second-order differential equations, which are rather
difficult to solve directly. A simpler way to the solution proceeds as follows: We already know
that the Schwarzschild metric possesses four Killing vector fields: One vector field corresponds
to the invariance under time translations, three further vector fields correspond to the spherical
symmetry. For a Killing vector field K* we have

dxt
Kean

In addition there is one further conserved quantity:

const.

dx! dxV

TS an

For the choice A = s we obtain € = 1.

The time-like Killing vector field corresponds to energy conservation and is given in the co-
ordinates (¢,r,0,@) by

K" = (3,)*=(1,0,0,0).

Lowering the index yields

.
K, = ((1—7S> ,0,0,0).

The three Killing vector fields associated to the spherical symmetry correspond to the conser-
vation of angular momentum. One vector field corresponds to the magnitude of the angular
momentum, two vector fields to the direction of the angular momentum. Conservation of the
direction of the angular momentum implies that the particle moves in a plane. We may therefore
choose a coordinate system such that the motion of the particle is within the plane defined by

The Killing vector field corresponding to the magnitude of the angular momentum is given by
R = (9¢)"=1(0,0,0,1).

Lowering the index yields
R, = (0,0,0,—r*sin*@).

With sin® = 1 we have for the conserved quantities

dx* re\ dt
E = K—=(1——)—
Hdn ( r)d?u’

. dx'“_ zd(P

L = R, I =r e
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Let us now consider

dx" dx¥
8uv N dn
Explicitly, we have

= (=) 00" (5) (@)

We substitute the expressions for the conserved quantities £ and L and obtain

(&) 00 () -

This equation may be written as

with
1
€ = _E
2 )
1 ery, L* rl?
V(r) = se— 45— 2.
) = % T e

Remark: Within the Newtonian theory we would find an effective potential which does not in-
clude the 1/ r3-term, but is otherwise identical. The first term of the effective potential is a
constant, the second term corresponds to the Newtonian gravitational potential, the third term
gives a contribution due to the angular momentum. The form of this term is identical within
Newtonian mechanics and general relativity. The last term appears only within general relativity.

The planets move along ellipses around the sun. The point of closest distance to the sun is
called the perihelion. Let us now consider the perihelion precession of Mercury. To this aim
we determine an equation, which gives the radial coordinate r as a function of the angle ¢, i.e.
r = r(@). We multiply the equation of motion with

do\
d\ 12

and obtain
dl” 2 € 4 Srs 3 2 E2 4
(%) A A
We set
212
X =
rsr
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and obtain
dx\* 12 2 ’ 172
— 4— (e—E~) —2¢ = —=x.
<d(P) + 72 ( ) X+ x 2L2x
Let us now differentiate with respect to @:

do do? do dp 212 d¢’

We obtain the following equation:

d*x et 32,
—— —&+Xx = X,
de? 412

We recall that the parameter € was defined by

dx* dx¥

&= 8w an

If we choose as curve parameter A the proper time s, i.e. A = s, we have

d'de’
Suv ds ds
With € = 1 our equation reads
d*x 32,
d—(p2 —1 +x = ZL—SZX .

Within Newtonian mechanics the term on the right-hand side is absent and the equation

d’x

may be solved exactly:
xNewton((P) = l+ecos Q.

This is the solution of Kepler and Newton and describes a perfect ellipse. The quantity e gives
the eccentricity of the ellipse. Within general relativity we treat the term

2
35 2
412
as a small perturbation and seek a solution of the form

x((p) = xNewton((P)"f—j((p)'
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Within perturbation theory we obtain for X the differential equation

d’x 32,
d—(p2+x = ZﬁxNewton
3 2
= Z%(l—i—ecos(p)2
3r§ 2

2
= 12 [(14—%) +2€cos(p+%cos2(p .

We have
d2

49? (psing) +@sin@ = 2cosQ,
2

dd—(p2 (cos2Q) +cos2¢ = —3co0s20.

It follows that

=1

ér_g 1—1—é +e@si —é 2
112 > e@sin @ G 608 (0}

is a solution. The first term 1 + 2 /2 corresponds to a constant displacement of x (respectively
r), the third term —e?/6cos2¢ represents an oscillation, which averages to zero. Of particular
interest is the second term e@sin @, which accumulates over successive orbits. We neglect the
first and the third term and obtain

(@) = 1+ecosot S epsi
x(9) = ecosp+ 7 5epsing.

Approximatively we have

cos((1—a)p) =~ Cos(p—i—oc% cos ((1 —0)@)|y—o = cos @+ opsin@
and therefore

x(@) = l+ecos((1-a)9),
with

2
3r:

o = -=.
412

We see that the perihelion advances per orbit by an angle

3nr?

A0 = 2mo = .
¢ n=on
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Let us determine L?: For a perfect ellipse we have

(1—eé*)a

ro = —
1+ecos@

where a denotes the semi-major axis. On the other hand we have withx = 1+ecos@

o2k 1
1y 14ecos@
and hence
> = %(1 —é?)a.
With r; = 2Gm/c* we finally obtain
6nGm
A = —05—.
¢ (1-e?)a
For the sun we have
G
= 1.48-10°m
c

The orbit of Mercury is specified by
a=5.79-10"m,  e=0.2056.
We therefore find
A@ = 0.103"/orbit.

The precession is usually quoted per century. The time for one orbit for Mercury is 88 days. We
therefore find

Ap = 43.0"/(100y).

We may now compare this number to the observed value:

5601”/(100y)  measured
—5025"/(100y)  precession of equinoxes
—532"/(100y)  perturbation due to other planets
44" /(100 y)

The primary data are optical positions of Mercury on the sky as measured from the earth. We
have to take into account an apparent perihelion shift caused by the precession of the Earth’s
rotational axis. This is called the precession of the equinoxes and is related to the angle of 23.5°
of the Earth’s equatorial plane against the Earth’s ecliptic plane (defined by the Earth’s motion
around the sun).
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7.3 Black holes, Kruskal coordinates and Penrose diagrams

In our previous discussion of the Schwarzschild solution we focussed on the exterior region
(r > rg). Let us now see what happens as we approach the Schwarzschild radius r;. We start by
studying the causal structure. We consider light rays for constant 0 and @:

2
ds? = 0:(1—5>c2dr2— dr

r 1— r—; '
Therefore

dt 1
¢ n

dr 1-%&°

For large r the right-hand side approaches +1, however for r — r; we find

In this coordinate system the light cones become narrower as we approach the Schwarzschild
radius. This does not mean that it is impossible to cross the Schwarzschild radius. An object
has no problems moving towards the black hole. If the object emits in regular intervals (with
respect to the object’s proper time) light signals, an observer on Earth will receive these light
signals with increasing gaps in-between. The observer on Earth will only receive the signals,
which were emitted before the crossing of the Schwarzschild radius.

In order to understand better the event horizon at rg we try to find better coordinate systems
which do not possess a coordinate singularity at r = r;. We will do this in several steps. Let us

define for r > rg
ro= r—l—rﬂn(i—l).
Vs

ast = (1-2)(Fdr? —ar?) - Pag?,

r

The metric reads now

where r should now be understood as a function of r*. We now have

cdt
= =+,
dr*
however the event horizon r = ry corresponds now to r* = —co, If we define
v = ct+r",
u = ct—r",
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we see that infalling radial light-like geodesics are characterised by v = const, while outgoing
radial light-like geodesics are characterised by u = const.

If we now go back to the original radial coordinate r, but replace the time coordinate by

v = ct+rf=ct+r+rgn <L—1>,

Vs

we obtain coordinates known as Eddington-Finkelstein coordinates. The metric reads in these
coordinates

ds* = (1 - 5) dV? — (dvdr +drdv) — PdQ2.

r

The determinant of the metric is given in these coordinates by

-1 0 0 0 4
0 0 0 —r?sin?0

The determinant does not have a singularity for » = ry. For radial light-like curves we have

dv 0, always infalling
dr T2, outgoing for r > ry, infalling for r < ry,

At r = ry a radially outgoing ray turns into an infalling ray. We see that r = r, is a point of no
return: If a particle crosses r = r; it will never return. We define the event horizon as the surface
beyond which particles can never return to spatial infinity. The region bound by the event horizon
is called a black hole.

Up to now we found for the Schwarzschild space-time two regions: the exterior region r > ry and
the region of the black hole, which can be reached from the exterior region on future-directed
curves. Let us note that it is impossible to reach the black hole on past-directed curves.

The Schwarzschild solution is static and therefore invariant under time reversal. Therefore the
two regions found up to now cannot constitute the complete space-time. A further region is
obtained if we use in the redefinition of the time coordinate instead of v the variable u:

r
u = ct—r*:ct—r—rsln(——l),

rs

The metric reads now
rs

ds* = (1 - —) di® — (dudr -+ drdu) — r*dQ>.
r
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In this coordinate system the region r < ry is a region which can be reached from the exterior
region on past-directed curves, but never on future-directed curves. Signals from this region may
reach the exterior region. However, it is impossible for particles to reach this region. This region
is called a white hole.

In order to cover all regions of the Schwarzschild space-time with a single coordinate system,
we introduce a new coordinate system through

r 1
T = ]l —1em sinh(c—),
Is 2r

r t
R = L—leZ_rscosh<c—).

The metric reads in these coordinates

4r3
ds? — s ot (de—dRz) —erQZ,
r

where now r is implicitly defined through

T2_R> — (1—1) e%.
Is

The coordinates (T, R, 0, 9) are known as Kruskal coordinates. In Kruskal coordinates we have
for radial light-like curves

T = =£R+const.
The event horizon r = ry is given by
T = <=R.
More generally, we have for surfaces defined by r = const:
T? —R*> = const.
The allowed regions of (T, R) are therefore given by
—w<R<o, T*<R>+1.

Surfaces defined by t = const are given by
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The essential properties of a space-time can represented with the help of a Penrose diagram.
Penrose diagrams have the following properties:

e Penrose diagrams display the time coordinate and the radial coordinate.
e Light rays in radial direction are in Penrose diagrams lines at angles of 45°.

e Penrose diagrams represent the entire space-time in a finite region.

Let us first consider the construction of the Penrose diagram for the flat Minkowski space-time.
We start with the metric in spherical coordinates (and for simplicity we set ¢ = 1):

ds* = dt* —dr’* —r*dQ’.
We then define light-cone coordinates
u=t-—r, v=t1+r
The regions of u and v are:
—oco LY L oo, —ooLy<Loo, Yy

The metric reads now

1 1
ds® = 3 (dudv+dvdu) — 2 (v—u)?dQ>.
Let us set
W = arctanu,
v/ = arctanv.
The allowed region transforms to
T e < T T o < T e
——<u <= ——<v <z u <v.
2 2’ 2 2’ -

The metric is now given by

1

ds* = —
4cos?u cos? v/

2 (dddV' +dv'du) —sin* (v —u)dQ?] .

Finally we set
t = V4 u',
/ / /

ro= v-—u.
This gives the region
0<r<m |/|+r<m,

and the metric
1
ds®> = ( / /)2 (a,’t/2 —dr'’? —sin? r’sz} )
cost’ 4 cosr
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The Penrose diagram of Minkowski space-time:

i+

Within a Penrose diagram one denotes by

it infinity for all future-directed time-like curves,

i° infinity for all space-like curves,

i infinity for all past-directed time-like curves,
# T infinity for future-directed light-like curves,

&~ infinity for all past-directed light-like curves.

All time-like geodesics start at i~ and end at i*. All space-like geodesics start and end at i¥.
All light-like geodesics start at .# ~ and end at .# *. (Light rays, which start at .# ~ are first
radially incoming until » = 0. Afterwards they are radially outgoing. If we draw such a light ray
in a Penrose diagram, it is effectively reflected at » = 0. This light ray ends at .# ")

We call a space-time (or a region of a space-time) asymptotically flat, if in the associated Pen-
rose diagram .# T, i® and .# ~ are as in the Penrose diagram of Minkowski space-time.

The Penrose diagram of the Scharzschild space-time is obtained in along the same lines. We
start with the Kruskal coordinates and define

U=T-R, V=T+R.

We then set

Vv
Vv’ = arctan ,

NG Vs

U’ = arctan
and finally
T"=v'+U', R =V -U.
The region is given by

T I T I T T
——<U <=, Z<V <=, —Z<U+V <=,
2 2 2 2 2 + 2
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The Penrose diagram of the Schwarzschild space-time:

l'+

It S

s

s

7.4 Charged black holes: The Reissner-Nordstrom solution

There is a theorem which states that within general relativity coupled to electrodynamics sta-
tionary, asymptotically flat black hole solutions, which are non-singular outside an event horizon
are completely characterised by the three quantities mass, charge and angular momentum. This
theorem is known as the no-hair theorem.

The Schwarzschild solution corresponds to the case, where the charge and the angular momen-
tum are zero. Let us now generalise this solution to the case, where we allow a non-zero charge
(but still take the angular momentum to be zero). The Reissner-Nordstrom solution describes
an electrically charged black hole. The charge of the black hole is denoted by Q. The metric is
given by

A 2
ds®> = —zcza’t2 — %drz —r2dQ?,
r

where

A - 2 2G;nr+ Gg{
c c
We set ¢ = 1. We then obtain
A = F—2Gmr+GQ?.

This solution was worked out in the years 1916-1918 by Reissner and Nordstrom. The event
horizon is obtained from the equation

A = 0,
r+ = GmE+/G*m?—GQ>.

We consider the following cases:

Case 1: Gm? < Q.
In this case there is no real solution for r... The quantity A is always positive and the metric is
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regular for all points £ 0. There is no event horizon separating the singularity at » = 0 from
the asymptotically flat region. A singularity from which signals can reach .# " is called a naked
singularity.

The Penrose diagram of the Reissner-Nordstrom solution for Gm? < Q*:

i+

gt
i

-

1

Case 2: Gm? > Q7. In this case we have event horizons at
r+ = GmE+/G*m?—GQ>.

The singularity at » = 0 is time-like.
The Penrose diagram of the Reissner-Nordstrom solution for Gm? > Q*:

It A
r+
i° i°
F+
I~ I
3 . >
> 4
L P
< >
q >
r—
% $
I+ S
r+
i° i°
F+
I I~
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Case 3: Gm? = Q2. This case is called the extreme Reissner-Nordstrom solution. In this case the
values r and r_ coincide:

r = Gm.

The singularity at » = 0 is time-like, if one crosses the event horizon it is possible to avoid the
singularity and to enter another asymptotically flat region.
The Penrose diagram of the Reissner-Nordstrém solution for Gm? = Q?:

7.5 Rotating black holes: The Kerr solution

The Kerr solution describes a rotating black hole (with zero electric charge). The angular mo-
mentum of the black hole is denoted by J. The metric reads

2Gmr 2Gmrjsin’ 0
2 _ 2.2
ds® = (1 — 2y )c dt +T(cdtd(p+d(pcdt)
y 2 ) 2—A )
g sger - (EI A6 o0,
A X
where
2G J
A=r*— ;nr-i—'z, Y =r"4j%cos’®, j=-—.
c mc

This solution was found by Kerr in 1953.

Let us also consider the most general case: A rotating and electrically charged black hole of
mass m, charge Q and angular momentum J. The metric reads

A— j%sin’0 isin? @ (r2 4 j2 — A
ds® = <+sm) czdtz-i-] (rz / )(cdtd(p-l-d(pcdt)
222 2 A2
—%drz—Zdez— <<r +7) 2’ Asin e)sinzed(Pz,
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where

2G GQ? J

;nr—l——g —|—j2, Z:r2+j200529, j=—-:
C mc

A=r?—

c
This metric is known as the Kerr-Newman metric.

The coordinates (¢,r,0,¢) are also known as Boyer-Lindquist coordinates. For Q =J = 0 the
Kerr-Newman metric reduces to the Schwarzschild metric.

We discuss a few peculiarities related to the non-zero angular momentum. For simplicity we
consider the original Kerr solution (Q = 0). If we keep j constant and then consider the limit
m — O we obtain
(r> + j?cos?8)

2 + j2
This is the Minkowski metric in ellipsoidal coordinates

x = /r¥+j?*sinfcosQ,
y = +/r’+j2sin0sing,

z = rcos0.

ds* = cAdi* —

dr? — (r* + j?cos? 0)d6* — (r* + j*)sin®>0d .

In particular, » = O corresponds to a two-dimensional disc.

The Kerr metric is not static, but stationary. The metric contains mixed terms (cdtd@® + d@cdt).
The event horizon is again given by the solution of the equation (we set again ¢ = 1)

A = r»=2Gmr+j*=0.

As in the case of the Reissner-Nordstrom solution we distinguish also for the Kerr solution three
cases: Gm < j, Gm = j and Gm > j. We limit ourselves to discuss the last case in more detail.

In the case Gm > j we find
re = GmE+/G*m?— j2.

Previously we defined the event horizon as a hypersurface beyond which particles can never
return to spatial infinity. The event horizon is a light-like hypersurface. We say that a light-like
hypersurface X is a Killing horizon of a Killing vector field K, if K is light-like on X. For the
Schwarzschild metric and the Reissner-Nordstrom metric we may consider the Killing vector
field K = 9;. In this case the Killing horizon coincides with the event horizon.

However, this is no longer true for the Kerr metric: The Killing horizon of the vector field K = o,
is not identical to the event horizon. The reason is, that the Kerr solution is stationary, but not
static. We obtain the Killing horizon of the vector field K = d; by solving the equation K*K,, = 0.
This leads to

(r—Gm)* = G*m*— j?cos®6.
Let us compare this equation to the equation satisfied by the outer event horizon r :
(rp—Gm)* = G*m*—j2.

The region between these two hypersurfaces is known as ergosphere.
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8 A brief review of statistical physics

Before we start to discuss cosmology, it is worth to review a few key ingredients of thermody-
namics and statistical physics.
The entropy of a system consisting of a single particle species is given by
E pV uN
S = =4+———=
T + T T’
where E denotes the internal energy (usually denoted by U within statistical physics), T the
temperature, p the pressure, V the volume, u the chemical potential and N the particle number.
For a system of bosons, the average occupation number of a state with energy E; is given by
the Bose-Einstein distribution

while for fermions the average occupation number is given by the Fermi-Dirac distribution

1

(i)

e kBT +1

ng =

The thermal wavelength A and the average particle distance [ are given by

A= & [ = Vy?
- \2mmkgT’ AN/

In the limit where the thermal wavelength is much smaller than the average particle distance (A <
[) both the Bose-Einstein distribution and the Fermi-Dirac distribution reduce to the Maxwell-
Boltzmann distribution

(Ei—n)

i = e kBT |
It can be shown that the limit A < [ is equivalent to z < 1, where

u

7z = eksT

denotes the fugacity.
The number of occupied states in d°p is

3
(2mh)

where g denotes the degeneracy factor (the number of spin states). Let us now consider massless
particles. With d°p = 4np?dp and p = hw/c we obtain for the number of occupied states in do

_ V.
gnimﬂ) do.
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The spectral energy density u(®) is defined as energy per volume and unit frequency. We obtain
the spectral energy density by multiplying the expression above by im/V /dw:

gho® _
For photons (g = 2, u = 0) we recover Planck’s radiation law:

ho’ 1
u(w,T) = 25
et — 1
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9 Friedmann-Robertson-Walker cosmology

9.1 Summary on Einstein’s equations

A typical problem in electrodynamics is the following: Given a current density j,, solve the
differential equation

4T |
a'uF,uv = ?]V

for A, (or E and B). The analogue problem in general relativity is the following: Given an
energy-momentum tensor 7y, solve the differential equation

G

. 1
Rlev—igva—Agyv = 77}1\)7

for g,v. Within cosmology we will assume that 7,y is given.

Let us briefly recall, how the left-hand side of Einstein’s equations depends on the metric
guv- We consider a semi-Riemannian manifold (space-time) with the Levi-Civita connection.
The connection coefficients are given by the Christoffel symbols

1
My = Eg‘d“ (9ugva. +0vgn — Nguv) -

From the Christoffel symbols we obtain Riemann’s curvature tensor as

RSy = 9l =0y +T0, iy =TIy,

The Ricci tensor Ricyy and the scalar curvature R are defined by

. A
Ricy,y = R D

R = g"Ricyy.

Thus we see that the left-hand side of Einstein’s equations depends on the metric and the first
and second derivatives thereof.

Let x(A) be a curve describing the world-line of a free particle. Free particles move in curved
space along geodesics, thus

dleu +Fﬂ d_de_xG
d)\? Can dn

As curve parameter it is convenient to choose for massive particles A = s/(mc) = t/m, where T
is the proper time of the particle and s = ¢t. We then have

dx*
uo_ 4
P dn

115



and the geodesic equation reads

P+ Tep™p® = 0.
For massless particles we may still normalise the curve parameter such that p* = dx* /dA, yield-
ing the same geodesic equation in terms of momenta.

We further have

gwp'p’ = m*ct.

9.2 The perfect fluid

A fluid often gives a good approximation for a system with many particles. Instead of specifying
the individual coordinates and velocities of each particle, it is often sufficient to specify just the
four-velocity field u*(x) of the fluid.

A special role is played by the concept of a perfect fluid: By definition, a perfect fluid is de-
scribed in the rest frame of the fluid by two parameters: the energy density p and the pressure
density p.

We are in particular interested in the energy-momentum tensor of the perfect fluid. We may
motivate the expression for energy-momentum tensor of the perfect fluid as follows: We start in
flat space-time and in the rest frame of the fluid. By definition, 7,y depends only on p and p:

0

o O O

T/JV -

=N elelhol

oo
o © O

P

We now seek a generalisation to coordinate systems related to the rest frame by a Lorentz trans-
formation (recall that we are still in flat space-time). Taking into account that in the rest frame
we have

1000 1 0 0 0
o000 o -1 0 o
Uty 0000 [ & o0 -1 0 |’
0000 00 0 —I

we easily derive the sought-after generalisation:

Ty = (p+p)uuty—pguy-

In the final step we will assume that this expression is also valid in curved space-time.
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The concept of a perfect fluid is rather general and allows to describe a variety of physical situa-
tions. In order to specialise to a specific physical situation we impose in addition an equation of
state

p = pp),
which gives a relation between the pressure density and the energy density. Examples are
e Dust: For dust we have the equation of state
p = 0.
In this case the energy-momentum tensor is given by
Tv = puylty.
For example, non-interacting galaxies can be modelled by dust.

e Photon gas: For an isotropic photon gas we have the equation of state

and the energy-momentum tensor reduces to

4 1
Iy = gpu,uuv_gpg,uv-

e Vacuum energy: Here we have the equation of state

p = -p

and the energy-momentum tensor reduces to

T,uv = P8uv-
Remark: If we start from Einstein’s equations without a cosmological constant

) 1 8nG
RlClu\) — Eg/JVR = 77}1\;
and by decomposing the energy-momentum tensor into a part corresponding to the vacuum

energy and a remaining part corresponding to all other matter

M
Iv = T,u(v )‘l‘pvacg,uv
we obtain
) 1 8nG 8nG (m
Ricyy — ig’NR ~—d Prac8wy = 7Ty(v )
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This is equivalent to a cosmological constant

8nG
A = 4 Pvac-
C

Modern cosmology views a term proportional to g,y in Einstein’s equations as a vacuum
energy and part of the energy-momentum tensor. Thus A is set to zero on the left-hand
side and Einstein’s equations read

) 1 8nG
Rlcluv — EgluvR = C—4Tluv,

where T,y includes a vacuum energy. We will adopt this convention from now on.

9.3 Energy conditions

Instead of using specific models for the energy-momentum tensor, it is sometimes useful to
discuss in full generality characteristics of solutions of Einstein’s equations, which derive from
certain properties of the energy-momentum tensor. These properties of the energy-momentum
tensor are formulated as energy conditions:

e The weak energy condition:
Tut“tY > 0  for all time-like vectors .

Applied to the perfect fluid this translates to p > 0 and p+ p > 0. These two conditions are
obtained as follows: Let us first consider the limit, where the time like vector ## approaches
a light-like vector /*. In this limit we have

Tl = (p+p)(1-u)*,
and hence p+p > 0. Let us then consider the case where # = u*. In this case we have
Twu'u’ = p,

and hence p > 0. It remains to show that for an arbitrary time-like vector # no other
constraints arise. We have

Tttt = (p+p)(t-u)—pi* = p[(r-u)? =] +p ()’
= p [(t-u)z—tzuz] +p(t-u).
The Schwarz inequality in Lorentzian signature for two time-like four-vectors reads
(t-u)?—r*u> > 0.
Using p > —p we obtain

Tnt't’ > —p [(t-u)z—tzuz] +p(t-u)? = ptiu?.
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Using p > 0 it follows
Tty > 0,
i.e. no other constraints arise.
e The null energy condition:
TI'lY > 0 for all light-like vectors I*.
Applied to the perfect fluid this translates to p + p > 0.
e The dominant energy condition:

Tyttt
g,uV Tluptp Tvcjtc

> 0 for all time-like vectors #*;
> 0, 1ie. TyptP is not space-like.

Applied to the perfect fluid this translates to p > |p|
e The null dominant energy condition:

TyI'lY > 0  for all light-like vectors I*;
g TplP Tysl® > 0, ie. TyplP is not space-like.

Applied to the perfect fluid this translates to p > |p| or p = —p.

e The strong energy condition:
MgV e o ; ; U
Tt > ET ol for all time-like vectors .

Applied to the perfect fluid this translates top+p >0 and p+3p > 0.

We may summarise the energy conditions for a perfect fluid as follows: Assuming an equation
of state of the form

p = wp,

where w denotes the parameter of the equation of state, and assuming p > 0, each of the energy
conditions above implies

w > —1.

119



9.4 The Robertson-Walker metric

Let us recall the concepts of isotropy and homogeneity of a space: Isotropy is the statement that
there is no preferred direction in the space, homogeneity is the statement that there is no pre-
ferred point in the space. Remark: Isotropy and homogeneity are a priori independent concepts,
there are manifolds which are homogeneous but nowhere isotropic. An example is the space
R x 2.

On the other hand we have: If a space is isotropic everywhere, then it is homogeneous. Fur-
thermore we have: If a space is isotropic at one point and in addition homogeneous, then it is
isotropic at all points.

From the observation of the cosmic microwave background we may conclude, that the universe
as observed from the earth is spatially isotropic at the observation point. As we do not believe
that the position of the earth is a preferred point in space, we may assume spatial isotropy of the
universe and hence spatial homogeneity of the universe follows.

Remark: We made no implications about the time component. Indeed, we will assume that
the universe evolves in time. We will therefore consider a space-time, where the spatial sub-
space is homogeneous and isotropic at all times, and the full space-time evolves in time. We may
assume (at least locally) that space-time can be written as

RxX,

where R represents the time sub-space and X a three-dimensional manifold, representing the
spatial sub-space. Since the spatial sub-space is homogeneous and isotropic, it follows that X
must be a maximally symmetric space. By a suitable choice of the time coordinate we may
achieve that the metric has the form

ds? = c2dr* —R(1)*do?.

R(t) is called the scale factor, do> denotes the metric on the manifold . We will use the
convention that the scale factor R(z) has the dimension of a length, while do? is dimensionless.
For a maximally symmetric space we have

Ronw = %(8ou8rv — 8ov&iyu) -
We now apply this equation to the three-dimensional space X with metric
do® = yjdu'du.
We find

RL(;IZI = K(’Yik’le_'Yilek)a
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where the superscript 3 indicates, that we consider the restriction of the curvature tensor to the
three-dimensional manifold . The constant K is given by

R(G)
K = —.
6
One obtains for the Ricci tensor
. (3) _
Rlcij = ZKYl]

Similar to the case of the Schwarzschild solution, we may put the metric d62 into the form
do® = Yijduiduj =20 dr? 4+ 2dQ2.

As we did for the Schwarzschild solution, we compute from this form the Ricci tensor. In the
coordinates (r,0,@) we find

2
RiclY = Zo,b,

r

Rlcgz) = e ?(ro,b—1)+1,

e
ch33 [ —2b (ro,b—1)+1 sinZ 0.

©)

Equating the above equations to Ric;;

= 2xY;j, we may solve for b(r). We first consider Ricﬁ):

2
Z9,b = 2xe?,
r

e 2bap = Krdr,
1 1 1
_567217 = EKVZ — ECO,
1
b(r) = —Eln (co—xr),

(3)

with some yet unknown integration constant co. In order to fix cg, we consider Ric,, :

Kr?

e (r,b—1)+1 = (CO_Kr>{(c0—KI’)

—1]+1 = 2kr* —¢o+1.

This should be equal to 2kr? and it follows that co = 1. We therefore have

1
b(r) = —Eln(l—KrZ)
and hence
d 2
dc* = 4 2dQ,
1 —xr?
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Combining all results, we obtain for the metric of four-dimensional space-time

dr? 2 ) 2
——— 47 (d®° +sin"0d¢”) | .

2 2 4.2 2
ds® = c“dt“—R(t) 2

A metric of this form is called Robertson-Walker metric. We recall that we use the convention
that R(¢) has dimension of a length. Then the coordinates (r,0,0) and the parameter x are di-
mensionless. In particular r is dimensionless. The Robertson-Walker metric is invariant under a
rescaling

R — AR, r — Arn K — A7k

We may use this rescaling to convert to the convention, where r has the dimension of a length, R
is dimensionless and « has the dimension length 2.

If we stick to our original convention, where r and K are dimensionless, we may use the
rescaling to rescale K to {—1,0,1}.

We still have to determine the scale factor R(¢). The possible geometries can be divided into
three classes according to the parameter K:

k=1  (or more general k >0)  closed geometry
k=0 spatially flat
K= —1 (ormore general K <0)  open geometry

This is most easily seen by introducing a new radial coordinate through

dr

dy = ——
AV

Upon integration of this equation we obtain

siny, K=1,
ro= X k=0,
sinhy, k= —1.

and hence

dy? +sin®xdQ?, x=1,
do® = < dy*+y2dQ2, k=0,
dy? +sinh®>dQ?, k= —1.

For k¥ = 1 we obtain for do? the metric of the sphere S3, for ¥ = 0 we obtain the flat Euclidean
metric and for K = —1 we obtain a hyperbolic metric.
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9.5 Friedmann equations and the Hubble parameter

In order to determine the function R(f) we now use Einstein’s equations and the model of a
perfect fluid for the energy-momentum tensor

Tiv = (p+p)uuity — pguv-
together with the equation of state
p = wp.

In the rest frame of the fluid we have u* = (1,0,0,0). We use the Robertson-Walker metric to
lower the index and we obtain (as in flat space) u, = (1,0,0,0). Hence

0O 0 O

T. =
i —P8ij

(= eNelhol

For the trace we have
T = T, =g"Ty = (p+p)u,—pg™gw = (p+p)—4p = p—3p.
We recall that Einstein’s equations may be written as

i 8nG 1
Rlcluv = c—4 T,LIV — EgluvT .

For the (u,v) = (0,0)-component one finds

1R 4G
3= = 243
and for the (u,v) = (i, j)-components one obtains

.. )
1R 1 (R K AnG
S—=+25 (= 2— = —(p—p).
2R T2 (R) TR o P=p)
(A dot over a function denotes the time derivative d/dt.) We may eliminate the second time
derivative from the last equation. This gives us Friedmann’s equations:

(R) 2 8nGp  kc?

R 32 R’
R 4G
R - —W(P+3p)-



We call the quantity

the Hubble parameter. The value of the Hubble parameter at our current time is called the
Hubble constant Hy. The value of the Hubble constant is

Hy = 67.84£09kms 'Mpc™'  (Planck satellite).

One Megaparsec equals 1Mpc = 3.09 - 10*’m. The Hubble parameter is a measure for the ex-
pansion of the universe.

The rate, by which the expansion of the universe slows down, is described by the parameter

RR R

From Friedmann’s equations we have

g - 4nG (p+3p)  p+3p
@ HOT "~ op- o

For the time variation of the Hubble parameter we have

: . L2

HO = Gro =z~ (z) ——N+alHR
In terms of the Hubble parameter Friedmann’s equations read

2
P = SRR
H(t) = —[1+q(0)]H(1)"
The critical density is defined by k = 0, hence
3¢*H?

Pe = 316

As the Hubble parameter is time-dependent, so is the critical density. We also define a density
parameter Q by

p 8nG

Q - P_2°M
Pe 32m2P
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With these definitions the first Friedmann equation may be written as

2
Q= Irxmm:
We therefore have:

p<pe & Q<1 < x<0 <« open,
p=p: & Q=1 < k=0 <« flat
p>pe & QL>1 < x>0 <« closed.

9.6 Evolution of the universe

We start from energy conservation, or more concretely from
v, Ty = 0.
For the v = 0 component we have
u T A i R
0 = a#T0+FNxT0_Fy0Tx = dop _3E (p+p).

With the equation of state p = wp we obtain

R
= 3(1+w)=
(14w,

o |

or

dlnp(t)

dInR(t)
dt '

dt

= =3(14w)

We may integrate this equation and obtain

R (l‘) ) =3(1+w)
R (to) '

We consider a few special cases: Let us first assume that the universe consists of non-interacting
galaxies (dust). We have w = 0 and

o) = p(m)(

pu(t) ~ R(1)~.

A universe where the energy density decreases as R(t)_3 is called a matter dominated universe.
As a second example let us consider a universe consisting solely of photons. We now have
w=1/3 and

Pr(t) ~ R()™
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A universe where the energy density decreases as R(¢ ) is called a radiation dominated uni-
verse.

As a final example we consider a universe, which consists solely of vacuum energy. In this case
we have w = —1 and

pa(t) ~ R(1)".

A universe where the energy density is constant as a function of time is called a vacuum domi-
nated universe.

In all cases we find a power law

p(1) = po (%?)

with n = 3(1 +w). Let us return to the first Friedmann equation:

3nG (1) — ke’
32 PV T RO

We may interpret the term proportional to the spatial curvature K as an effective energy density

3ctk >
———R(t)"".
8nG (1)

With n = 3(1 +w) we have in this case w = —1 /3. We further set

Pcurv (t) —

'S 'S

Pcurv
-chrv = = =

Pe R@PH(1)? R

With these conventions we have

8nG

H(t)z = 3c Byl (pcurv +Zp] >

Dividing both sides by H(t)? one obtains
I = Qe +ZQJ
J
Remark: The total energy density of the universe is of course just
29,
J
1.e. without Q.. We therefore have
Qeury = 1-Q.
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The introduction of p., and ., only serves to unify the discussion of the various contribu-
tions to H (t).
Let us now consider for simplicity an energy density with the time-dependence

p(1) = po (%?)

H()? =

For n > 0 we obtain from

p(t)

3¢?

. 3G 1—
R(t) = ?PORS R(t)

ST

and hence

2 5 2|"

R(t) = Ry [@n nGpo (t — 1) }
At time ¢t = fo we have R(#y) = 0. This space-time has a true singularity at # = #y. This can be
seen by considering for example the energy density p(7) ~ R(¢)™", which diverges for n > 0 at
t = ty. The singularity at t = 1y is called the big bang. The associated Penrose diagram is given

by

-0
i

Finally, let us consider the special case n = 0, corresponding to a universe consisting of vacuum
energy. In this case the energy density is constant

p(r) = po

R(I) = Rpexp (\/ %TCGPO (t—to)) .

Let us summarise the essential features of the various contributions to the right-hand side of the
first Friedmann equation:

and we find

.. _ 1
radiation : , p~R 4 R~1I,

n=4, w:%
matter : n=3, w=0, pNR_3, th%,
curvature : n=2, w=-1, p~R2 R~t,
vacuumenergy: n=0, w=-1, p~RO, R~¢.

bl

The relevant equations are p =wp, n=3(14+w), p~R " and (forn>0) R ~ £2/n,
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9.7 The red shift

For simplicity we consider a spatially flat universe (x = 0) with the Robertson-Walker metric
ds* = c*dt* —R(t)* [dr* +r* (d0* +sin® 0d¢?)] .

Let us for the moment further assume that the time-dependence of the scale factor is given by a
power law:

t q
R(t) = Ro(t—) , 0<g<1,
0

where Ry is a quantity with the dimension of a length and #( is a quantity with the dimension of
a time interval. The power ¢ is given for a perfect fluid with equation of state p = wp by

2 2

1T T

For example, for a radiation dominated universe we have ¢ = 1/2, while for a matter dominated
universe we have ¢ = 2/3. Light cones in a curved space-time are defined by null paths, i.e.
ds*> = 0. For the light propagation we obtain

dx t\ 1
— = =c| — .
dt ¢ (to)

Here we have introduced x = Ryr. Recall that with our convention r is a dimensionless quantity.
x has dimension of a length. The equation above can be integrated and one obtains

[(1—61)

q

(:I:x—xo)} .

Let us discuss the most important properties of this solution: The light cones at t = 0 are tangen-
tial to the singularity at t = 0:

dt 1/t\?
- — i_(—) =0 fort=0and g >0.
dx c \ Iy

A second important property of this geometry is given by the fact, that the past light cones of
two distinct points are not required to intersect. If there is no intersection, the two points are not
in causal contact. This is in contrast to flat Minkowski space, where the past light cones always
intersect.

Let us now consider light propagation in curved space-time without assuming a power law for
the scale factor. We will however again assume a spatially flat space-time. We start from the
Robertson-Walker metric

ds* = c*dt* —R(t)* [dr* +r* (d6* +sin*0d¢?) |
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and consider the geodesic equation

d?xH u dx®dx®

—+1%6———— = 0
az e
For a massless particle (photon) we have
ax” dx,
dh d\
It will be convenient to normalise the curve parameter A such that
dxt
v 2T
P dx

An observer with four-velocity u* measures a photon energy given by
E = cpuu'.

We obtain for the O-component of the geodesic equation

A2 1. [(dr\?>
+-RR(=) = o

CW c di
With
dro_ cdt
d.  Rd\
one obtains
d* R [dt\?
— 4= — = 0.
d\?> R \ d\
A solution is given by
a
dv R(t)’

where ¢ is a constant. Let us verify this solution:

&t R (di > de Reg _(dodr
d\2 R\d\.)  d\AR RR2 \dtR)d\

. 9
—coR\ co R

= —+4+—==0.
< R? ) R * R3

5
COR

R’

We will see in a second that co = EgR(to)/c?, where Ej is the energy of the photon at some initial
time #p and R(#9) is the scale factor at this time. An observer with constant spatial coordinates

(and hence four-velocity u* = (1,0,0,0)) measures a photon with energy

dx co
Ho_ 2

— M — v
Eo= o = “rey
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This implies the cosmological red shift: A photon emitted with energy E; at a time #; with scale
factor R(#;) and measured with energy E, at a time 7, with scale factor R(z,) satisfies the relation

E> R(l1>

Ei R(12)

The name “red shift” derives from the fact that in an expanding universe we have R(r;) > R(t)
for p > t1. This implies E; < E;. Usually the red shift is denoted as

E\—E, M-M _R(n)

¢ = T M Rm) -
Thus
Rn) _ 1
R(t) 1+z

Given the red shift and the scale factor at the time of the observation, we may deduce the scale
factor at the time of the emission of the photon.

Remark: The red shift and the Doppler effect are conceptually different: The Doppler effect
requires a flat space, such that the relative velocity between two objects is well defined. On a
curved manifold, we may only compare tangent vectors at the same space-time point, a relative
velocity between two distant points is not well-defined. The cosmological red shift is entirely
due to the change in the metric.

With this warning, we are now nevertheless going to associate a velocity to the red shift. We
first introduce the instantaneous physical distance d,,(¢) between two objects (e.g. galaxies). If
the first object is located at the spatial origin and the second object has the radial coordinate r,
we define

dy(t) = R(t)r.

The rate of change of the instantaneous physical distance defines a velocity

This is Hubble’s law.

The instantaneous physical distance is not an observable, as observations always refer to our
past light-cone. In practice, the luminosity distance d; is used. Suppose we know the lumi-
nosity of some object (e.g. stars or galaxies) and measure the photon flux, then we can infer the
distance. In an Euclidean space we have



where L is the luminosity of the source (i.e. emitted energy per unit time) and F the observed
flux (i.e. energy per unit time per unit area). The formula just says that the energy emitted by the
source per unit time is the same as the energy through a sphere with radius dy, per unit time.

Let us now adapt this formula to the Robertson-Walker metric. It will be convenient to use
instead of r as radial variable. The metric reads

2 2 4.2 2
ds = c“dt —R(t) {m

+ 1% (d6* +sin’ edqﬁ)}

— Zdi?—R(1)? [d;& + 8 () (d6? + sin? edqﬂ)} ,

with
siny, k=1,
SK (X) = X K= 07
sinhy, k= —1.

The relation between r and ( is r = Sk ().

Conservation of the photon number tells us, that all photons emitted from the source will even-
tually pass through the sphere with radius . However, we have to take two effects into account:
First of all, photons emitted with an energy E are red-shifted to the energy E /(14 z). Secondly,
the photons arrive less frequently at the sphere: Photons emitted a time Ar apart will hit the
sphere a time (1 + z)Ar apart. Thus

L = (142)%AF,
where A is the area of the sphere, given by
A = 4TR3Sc(x)>.
Ry is the scale factor at the observation time #y. Thus
dp = (1+2)RoSk(x)-

The radial variable 7 is not an observable and we would like to eliminate this variable in favour
of measurable quantities. We can do this as follows: Consider a radial null geodesic:

0 = ds* = c2dr* —R(t)%dy°.

We have
dy ¢
dt  R(1)
and therefore
f R
/° dr’ /0 dR’ c /Z d7
X — C = C - @ @ = — s
R(t") R?H (R') RyJ H(Z)
t R 0
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where we first changed variables from ¢ to the scale factor R, and then from the scale factor R to
the red shift z with R = Ry/(1 +z). Let us define

E(7) is a dimensionless quantity and given by

1
1 (8nG ’
E = — | == - .
@ = & ( 2 Zilpz (Z))
The sum over i includes the curvature component. If all energy densities evolve with power laws

pi(z) = pPio (%j))_ . pio(1+2)",

we have

E(Z) = : (ingGZon 1+Z> > = (Zgi70(1+z)”i>

Putting everything together we obtain

dz'
dp = (1 -I-Z)R()SK(X) (1 +Z RoSx
Ro E (7))
0
If k¥ = 0 we have Sk() = % and Ry drops out. We obtain in this case
Z
c(l+z) / d7
d, = .
Hy J E(Z)
0
For x € {1,—1} we eliminate Ry in favour of Q0
2
K c
o R(Z)H(% HO | chrv,O |

This gives

Z
c(l+z) dz
dp = —————8¢|/|Q / .
L HO |chrv,0‘ h | curv,0 0 E (Z/)

This formula is of central importance in cosmology. Given Hj and €2; o we may calculate the
luminosity distance as a function of z. If we measure both the red shift z and the luminosity
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distance for a number of objects, we may extract information on Hy and £, o.

We may also ask at what time ¢ a photon was emitted, which is observed today at time #y with
red shift z. ¢ is called the look-back time. We have

4

7 R
f t—/odt’— |_dr / —1
0= = ~ / RH(R) 1—|—z )~ Ho
t

0

d7
(1+2)E(Z)

O\N

As a simple example consider a flat matter-dominated universe. Then

[S1I9%}

E(z) = (142

and

1 _5 2 3
to—t = — [df (147 2:——[1 ‘7—1}
0 H/z(+z) 3HO(+Z)

In the limit z — oo we find

2
lim(tg—t) = —
Hlo=t = s
which gives the total age of a flat matter-dominated universe. A value of Hy =70 km s~! Mpc ™!
gives the age 9.3 - 10° yr, which is not too far off from the actual age 13.8 - 10° yr.

Let us define the particle horizon and the event horizon: Using the coordinates (ct,%,0,0)
we consider an observer and an emitter

observer : x =0, 6=0, ¢ =0,
emitter : X =%p, 6=0, 0=0.

We may ask, what is the value of the radial variable ), such that signals emitted by the emitter
at an initial time ¢#; (very often we will take #; = 0) can no longer reach the observer at time f
(usually the time of today). This defines the particle horizon. ), is given by

Xp 1s a dimensionless quantity. In order to get the value of the particle horizon today in units of
length, one multiplies with Ry:

dp = ROXp-
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If we take #; = O this means: Points, which are more than d;,, away from us today, cannot have
affected us up to today (however they may affect us in the future).

If the scale factor grows as R ~ 1%/" (n = 3 for matter, n = 4 for photons), the particle horizon
grows as

2
xp ~ tiTn.

The second question which we may ask is the following: What is the value of the radial variable
Xe> such that signals emitted by the emitter at time 7y (usually the time of today) will not reach us

until a final time ¢z (very often we will take 77 = o). This defines the event horizon. ), is given
by

t R
e, /fL
Ke = R(t) ) REH(R)
1o Ry

In order to get the value of the event horizon today in units of length, one multiplies with Ry:
d = RoXe-

If we take 7y = oo this means: Points, which are more than d, away from us today, cannot affect
us in the future.

9.8 The cosmic microwave background

Consider a universe consisting of photons, electrons and protons. The photons scatter off the
charged electrons and protons through Thomson scattering. They are in thermal equilibrium and
their spectral energy density (i.e. energy per volume and per unit frequency) is described by
Planck’s law for black-body radiation:

with the Stefan-Boltzmann constant

T2k,
60h3¢2

The universe appears opaque with respect to electromagnetic radiation: Photons do not propagate
freely, but scatter frequently. Assume now that the universe is cooling down and electrons and
protons combine to (neutral) hydrogen atoms. This is called the recombination epoch. Being
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neutral, the (low-energy) photons do not scatter on the hydrogen atoms. After sufficient many
charged particles combine to form neutral particles, the photons decouple: There are simply no
charged interaction partners left. The photons now propagate freely and the universe becomes
transparent to electromagnetic radiation. As the universe further expands, the photons are red-
shifted to lower energies and observed as the cosmic microwave background.

Given an initial spectral energy density u(®;,7}) at time #; (at decoupling time) we would like
to derive the spectral energy density u(®,,T») at time #, (today). Consider a photon with energy

E = ho
at decoupling. With a red shift z the observed energy (or frequency) today is
E O]
Ey=—— = ——.
S T 142

As the photons do not interact, the number of photons stays constant. However, the universe
expands. A comoving volume changes from V; to

_ (R@)Y,
Vo = <M) Vi = (1+Z)3V1.

Combining everything we find (please note that “energy per unit frequency” is invariant under a
simultaneous rescaling of the energy and the frequency)

_ _ hi o3
u(@y, ) = (1+2)  u(on,T) = (142 u((l+2) 0, T1) = 23 e
e T —1

T;
= u (DZ’]—H .

Thus the spectrum of the black-body radiation is conserved, however the corresponding temper-
ature is lowered:
T

l1+z
The temperature 7> is very well measured (7, = 2.73K). In addition, the typical energy scale
where decoupling occurs is known: ~ 1 eV. We may therefore deduce the red shift and the ratio
of the scale parameters R(t1)/R(1,).

To a first approximation the observed cosmic microwave background is isotropic. However,
precise measurements reveal an anisotropy at the order of 107.

T, =

9.9 The current paradigm for our universe

The measured density parameters are
Q, = (54£0.1)-107,
Qy = 0.31+0.01,
Qe = 0.69+0.01.
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The matter density parameter is the sum of the baryonic matter density parameter (ordinary
matter) and the dark matter density parameter

Qy = Qp+Qpu,
with the values

Qp = 0.048£0.001,
Qpy = 0.26+0.01.

This gives a value of
Qo = 1= Qe — it — Qy
compatible with k = 0, i.e. a spatially flat universe.
The age of the universe is
T = (13.8040.04)-10%yr.

The large scale structure of the universe: Stars assemble in galaxies, galaxies form clusters
and clusters form super-clusters.

Cornerstones of the universe:

Event Time Energy | Temperature | Red shift
Big bang 0s

Planck era <107 s | > 10" Gev > 101 K

Inflation > 1073 s | <105 GeV <108 K
Baryogenesis < 10710 > 1TeV > 10K
Electroweak symmetry breaking 107105 1 TeV 101K
Quark-hadron transition 107*s | 100 MeV 1012K

Nucleon freeze-out 10725 10 MeV 101 K

Neutrino decoupling Is 1 MeV 101K

Big bang nucleosynthesis 3 min 100 keV 10°K
Matter-radiation equality 10% yr 1eV 10K 10*
Recombination 10° yr 0.3eV 3.-10°K 1100
Dark Ages 10° — 108 yr > 6 meV > 70K > 25
Reionisation 103 yr | 1.5 -6 meV 20-70K 6—25
Galaxy formation ~6-108yr | ~2.6meV ~30K ~ 10
Dark energy dominates ~10°yr | ~0.7meV ~8K ~2
Solar system 8-10% yr 0.35 meV 4K 0.5
Today 14-10% yr 0.24 meV 273K 0
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Please note that energy, temperature and red shift are related: If Ey and Ty denote the energy and
the temperature of the universe today, the corresponding values at red shift z are given by

E = (1—|—Z)E0, T = (1—|—Z)To.

The relation between £ and T is E = kgT.
During the “dark ages” epoch, galaxies and stars gradually form through gravitational inter-
actions. As there are no visible stars yet at the beginning of this era, the epoch is called “dark

ages”. At the end of this epoch, high energy photons from the first stars can ionise hydrogen in
the inter-galactic medium. This is called “reionisation”.

137



10 Dark matter and thermal relics

10.1 Basic facts about dark matter

1. Dark matter has attractive gravitational interactions, hence the name “matter”. Evidence
for dark matter is provided by:

- On galactic scales: Observation of flat rotation curves of disk galaxies.

- On cluster scales: Observation of the velocity dispersion of galaxies in the Coma Cluster.

- On cosmological scales: Measurement of the matter density parameter: Qy = Qp +
Qpy with Qp ~ 0.05 and Qpys ~ 0.26.

There is no evidence that dark matter has any other interaction but gravity.

2. Dark matter is either stable or has a lifetime larger than the age of the universe. Otherwise
it wouldn’t be here today.

3. Dark matter is not observed to interact with light, hence the name “dark”. This implies
that the coupling to the electromagnetic field is either small and/or the dark matter particles
are heavy.

4. The major part of dark matter must be dissipationless. “Dissipationless” means that dark
matter particles cannot cool down by emitting particles like photons. If dark matter would
be dissipative, the dark halos would not exist.

Galaxy formation starts from a mixture of ordinary and dark matter. The visible matter dis-
sipates energy by emitting photons and falls into the potential well of the object. Because
the emission is isotropic, the angular momentum of the visible matter is preserved. Thus
as the visible matter collapses to the centre, it increases its angular speed until it becomes
unstable towards the formation of a disk, which thus rotates much faster than the dark halo.

5. The mass m of the major component of dark matter is bounded by
m < 2-10% Gev.

This is a very weak constraint. This bound comes from the non-observation of massive
astrophysical compact halo objects (MACHOS). in the dark halo of our galaxy.

6. Dark matter is usually assumed to be collisionless, however the limit on dark matter self-
interactions is very large:

Ogelf
m

< 2 barn Gev~l.

The limit comes from two colliding galaxies in the bullet cluster.
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7. The bulk of dark matter is either cold or warm. Dark matter is classified as hot, warm
or cold according to how relativistic it was when the temperature of the universe was of
the order of ~ keV. Hot dark matter is relativistic at that time, cold dark matter is non-
relativistic at that time and warm dark matter just turns from relativistic to non-relativistic
at that time. Simulations of the formation of the large scale structure of our universe shows
that cold dark matter models are compatible with the observed large scale structure, while
hot dark matter models are not.

Baryonic matter can only cluster after recombination, before recombination the photon
pressure in the plasma prevents it. However, shortly after recombination baryonic mat-
ter must be attracted by already existing inhomogeneities of dark matter, otherwise there
would be not enough time to form the structures we observe now.

Stars and galaxies should form first, while clusters and super-clusters should form second.
This requires galaxy-size dark matter inhomogeneities to survive the horizon crossing (i.e.
when Ygalaxy = Xp» Which corresponds to the temperature being ~ keV). After horizon
crossing, the inhomogeneities could potentially be washed out. This happens for hot dark
matter. However this does not happen, if dark matter is cold or warm.

Simulations of hot dark matter show, that in these models super-clusters and clusters form
fist and later fragment into galaxies.

8. Most dark matter candidates are relics from pre-big bang nucleosynthesis. This implies
that the calculation of the dark matter relic abundance or the primordial dark matter ve-
locity distribution depends on assumptions on the thermal history of the universe. With
different viable assumptions, the relic density and velocity distribution may change con-
siderably.

10.2 Thermal freeze-out

Let us discuss a dark matter particle X together with its anti-particle X. The dark matter particle
and the anti-particle may annihilate, let us assume that the reaction is

X+X — Y+7Y,
where Y and Y are two Standard Model particles. The inverse reaction is the production process
Y+Y — X+X.

We say that the particles are in chemical equilibrium, if the production and annihilation pro-
cesses occur at the same rate, i.e. on the average the particle numbers are conserved. Let us also
consider an elastic scattering process like

X+Y — X+7Y,

If elastic scattering processes occur frequently enough, the particles are in kinetic equilibrium.
Please note that it is possible that particles are no longer in chemical equilibrium, but maintain
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kinetic equilibrium.

If mx > my we would expect that at low temperatures most dark matter particles would have
annihilated into Standard Model particles. We have to find a mechanism, which explains the dark
matter energy density.

Let us first discuss the mechanisms for baryons and photons:

1. Baryon-anti-baryon asymmetry: It is generally believed, that initially there has been
roughly the same number of baryons as anti-baryons with a tiny asymmetry, making the

number of baryons slightly higher than the number of anti-baryons, i.e. at times r < 10~ %s
" 39078

ng

All anti-baryons annihilate with a baryon, such that the tiny surplus of baryons survives
and constitutes the matter we observe today.

2. Photon decoupling: Before photon decoupling, photons are in thermal equilibrium through
elastic scattering processes like

Y+e — Yy+e or Y+p — Y+p.

At recombination, the electrons and protons form neutral hydrogen atoms and the scatter-
ing partners disappear.

A third possibility is thermal freeze-out. It is similar to photon decoupling. Instead of Y+e¢~ —
Y+e~ or (Y+p — Y+ p) we now consider X +X — Y +Y. While in the case of photon decoupling
the basic reason was that the scattering partners fade away, the mechanism for thermal freeze-out
is a little bit more subtle: In an expanding universe it becomes more and more unlikely for two
particles X and X to find each other and to annihilate. This happens, when the annihilation rate

FX,eq = NXeq <GXX—>YY VMgller)

where ny ¢q is the number density of particle X in equilibrium and (Gyx_,yy VMmgiler) the ther-
mal average of the annihilation cross section times velocity, becomes smaller than the Hubble
parameter. Thus the condition for thermal freeze-out is

Txeq = H.

Note that both sides have units s~ 1.

10.2.1 The Boltzmann equation

Let us denote by fx (X, j,t) the phase space density of particle X.



gives the probability of finding a particle X at time  in a small volume d>x d° p of phase space at
the point (X, p) in phase space.

The number density ny(¥X,7) is the integral of the phase space density over all momenta times
a factor g;)m, taking degenerate states (e.g. spin states) into account:

. in [ dp .
nX(x7t> = g;(pm/ T 3fX(X,p,l)-

The energy density is given by

prin) = g [

The Boltzmann equation in classical statistical mechanics reads

p
(2mh)?

d A
— = Cfy.
7 fx fx
dfx/dt is called the flow term, C fx is called the collision term. For the flow term we have

d
Tf = fx+ 5 fe -+ 0% 5 Vol

Let us define an operator L by

s 0 diz dpe
L= 5+5%+3 "

such that the left-hand side of the Boltzmann equation is L fx. We call L the Liouville operator.

Warning: In statistical mechanics the Liouville operator is usually defined slightly differently:
Without the partial time derivative and for a N-particle system:

ax, ap,

Lstatistical mechanic — Z

Let us seek a generalisation of the Liouville operator to curved space. First of all, we write
fx(X,p,t) as fx(x*, p*). Please note that both versions depend on seven independent variables,
p! is constrained by

22
bt = m°ct.

Instead of the total time derivative (which would not respect general covariance) we consider the
derivative with respect to an affine parameter A:

if _ d¥dfx | dp'dfx
a5 T an o T dan opr
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From the geodesic equation we have

dp*
N —Tp"p°

and hence

d 0 0
ﬁfx = PP@—F%GPTPGQ fx.

Thus the generalisation of the Liouville operator is given by

. 0 0
_ i l",u T O
L P oxH wP P opH

Let us now specialise to the Robertson-Walker metric. In a homogeneous and isotropic universe
the phase space density fx (X, p,7) depends only on E = /c?p? + ¢*m? and . Thus we consider
fx(E,t). We obtain

. E d 5, d
Lfx = 2 ath 2 g%
or
2. 0 Hc? p 0
ELfX = gfx ——z aEfX'

Our basic interest is the number density ny (7). We integrate the above equation over p. We have

~ d’p czA 0 ~ d’p Hp? 9
spin spin
8x /(2 h) Lix(E:1) o X 8x /(2nh)3 E 3EfX( 2

We simplify the second term with the help of integration-by-parts:

~—=Jx(E,t)

spin/ d3p HCp fX(

~ dpdQ p4 0
. _ spmHC/
8x (anh) E OE t) g

X (2nh)® E OE

3
= & H/ (21h)’? <__sz2) o X (E:1)

win.. [ dEAQ Ep
= 3t [ S e

spin dpdQ
= 3P H/(zp) P (E.r)
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Thus

2

- d’p c 0
spin _ ¢
8x /(2 77,) Lfx(E,t) = 8tnX+3HnX'

Let us now consider the collision term. We consider the processes X +X — Y +Y and Y +Y —
X +X. Integrated over the momenta the collision term is given by

. d3pX C2
spin il Ex.t) =
o /(2 sy G B =
Z/ cd3px cd’py  cd’py  cdpyp 2
spins Znh‘, 2Ex ( Znh) 2E3 (Znh) 2Ey (Znh‘,) 2Ey

< e (1 1) (U fy) Do yg P — fofy (1 ) (1 ) Doy sl

2nh)* 8* (px + pg — pr — py)

Ay g_yy is the scattering amplitude for X +X — Y + Y. If we normalise the creation and anni-
hilation operators by

A A 3 g —
[%a}] = (2nh)’ 8 (F-4),
the one-particle states by
L
c
define the transition operator 7' by
S = 1+i(2nh)*s* (Zp,—) T,
i=1
and the n-particle scattering amplitude o, (py, ..., pn) by
<O‘if"p1...pn> = i, (p1y..-ypn)

and demand that the S-matrix operator S is dimensionless, we find that
4—n n
dimsf, = [dimp]* " [dimK]>"* = [dim %} [dim 7]? .

The factors (1=+ f;) are of statistical origin and incorporate Bose enhancement (14 f;) for bosons
and Pauli blocking (1 — f;) for fermions.
We will make a few simplifying assumptions: We will assume that for all particles we have
E —pu > kpT. In this limit the Bose-Einstein distribution and the Fermi-Dirac distribution reduce
to the Maxwell-Boltzmann distribution:
1 ~gpr(E—n).

im — = e
E—u>kpT ekaT(E*,u) :Fl
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In this limit we may also neglect the statistical factors (1 + f;).
Secondly, we assume that the fundamental interactions entering the amplitude are T-invariant.
This implies

2 2
Y lsdxgyrl” = ) |dyyoxzl

spins spins

Thirdly, we assume that particles Y and ¥ go quickly into thermal equilibrium. This allows us to
replace fy and fy by the equilibrium distributions

— g7 (Ey—ny)

1
_ i (Eruy)
fY,eq =€ ) fY,eq =e s :

Fourthly, we neglect the chemical potentials. Due to the presence of the delta distribution §(E, +
Eg —Ey —Ey) we have

1 1
_ T (ExtEg) _  —pr(Ey+Ep)
fX,equ,eq - ‘81 ¥o=e " = erqfY eq

Putting all this together, the collision term simplifies to
i d Px C
spin
8 / fX
") GmnyE (Ex,t) =

Z/ cd’ Px cd’py  cd’py  cdpy
spins Znh‘, 2Ex ( Znh) 2E3 (Znh) 2Ey (Znh‘,) 2Ey

X |sﬂXg_>yf/| (foX _fXﬁquﬁ(l) :

We introduce the cross section

o = ! / cd3py cd’py
XX—YY E
4\/ (px - pz)’ —c4m)2(m)2(g§§’mgsf’m spins (2mh)? 2Ey (2mh)° 2E;

(2nh)*8* (px + px — py — py)

x (2mh)*8* (px + px — py — py) [y gyl

Thus
2

gspin/ d? pPx ¢
X J (2nn)’ Ex

spin spin/ d3pX d3PX

—Cfx(Ex,t) =

0xx v VMolier (fx fx — fx eaf% eq)

T8 8% | nn)? (2mh)

where vygler 15 defined by

2
A\ (px ) — cHnim

VMgller —
ExEy
X
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Let us introduce the thermal average of the annihilation cross section times the velocity

spin _spin
o _ 8 & Ipx dpg — b (Bx+Ey)
(Oxx 7 VMoller) = 3 30x % —y7VMgller€
NX.eq% eq / (27h)” (27h)

with

__ _spin
NXeq — 8x / (znh>3 e ~ kgT )

and a similar definition applies to ng ... We would like to express the collision term in terms
of the thermal average of the annihilation cross section times the velocity. This is possible, if
the phase space densities fx and fy are proportional to their thermal equilibrium densities fx eq
and fz ., with a momentum-independent constant of proportionality. It can be shown that this
is the case if the particles X and X stay after decoupling (when they are no longer in chemical
equilibrium) in kinetic equilibrium. With this assumption one obtains for the collision term

i d Px 6'2 N
pm —Cfx(Ex,t) = —{(Oy%_.yy Vgller) (IxN% — NX eql¥ .
8x /(2nh)3 Ex ( ) (Oxx_y7 YMp er>( X eq X,eq)

With ny = nx and ng ., = nx ¢q We finally obtain the Boltzmann equation in a form most useful
for cosmology:

0
5, = —3Hnx —(Oxg vy VMoller) (n% — 1% eq) -

We define the equilibrium annihilation rate as

Ixeq = nNx.eq(Oxx_yy VMller) -

10.2.2 The thermal average of the cross section times velocity

Let us work out in more detail neq and (G VMgiller)- We continue to work with Maxwell-Boltzmann
distributions (and thus neglect differences between bosons and fermions). However, we allow for
non-zero particle masses.

We start with neq. We have (g*P™™ denotes the degeneracy factor, i.e. the number of spin

states) with E = \/c2p? + c*m?
) 3 spin < spin
Neq = gSpm/(dipe_"BET = 4mg /dpl?ze_"gT = 4Tcg /dEE\/EZ—c“m2 "BT

2mh)? (2nh)? , 3 (2mh)?

_ 4 gspin /dE [i (Ez_c4m2)g} e*kBLT
3¢3 (2mh)?

mc

4 spin < 3 B
S L S 3 /dE (Ez—c4m2)ze kT
3c3 (ZEﬁ) kgT )
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Let us now substitute

‘We obtain

4mgspin (mcz)4
3¢3 (2mh)* kgT

/dz (z2 - 1)%67“.

1

neq

The modified Bessel function Ky (x) is defined by

Ky(x) = 1“(\/7\/—17_?%) (g)vlfdz (- 1)V*%e—xz’

and in particular

Therefore

47tg"P" (mc?) 2 (kgT) mc?
neq — 3 K2 .
3 (2mh) kT

In the limit mc? < kgT (i.e. for relativistic particles) we have x — 0. The modified Bessel
function behaves as

2
K ~ —
2(x) 2
and we obtain
_ 8ngspin (kBT)3 __ . spin (kBT)3
feq = 35— 8 3
3 (2mh) 72 (he)

In the limit mc? > kgT (i.e. for non-relativistic particles) we have x — co. The modified Bessel
function behaves as

and we obtain

_ kpT
flea = ¢ 21h?2

. 3 3
4n%gspm (mcz) 2 (kBT)7 _ mé* _ gspin (kaT) 3 e_ﬂ.
V2c3 (2mh)?
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Let us now consider the thermal average of the cross section times velocity (G vigiier). We recall

spin _spin 3 3
8x 8% d°px d’pg Ex+E
(O vMgller) = X / 3 X3 GVMgller€ ~rr (Bt %),
X ,eq"x eq (ZTCh> (27‘Ch)

The Mandelstam variable s is given by

2
s = (px+pg) = Px + Py +2px - pg = imy +c? mX+ —ExEx —2|px|-|pg|cos®.
The cross section ¢ is a function of s. We examine the integral

d3 d3 _
I= /(275;;3 (2 ;))(3GVM¢Here kBT( X+EX)

- /de/dPX/dGSIHGpoXGVM¢llere kBT(EX+EX)
(Znh

= (ZT / dEx / dEX/desmerEXpXEXGvaere kBT(EX+EX)
I8

myc? mgc? 0

Let us now substitute the variable 6 by the Mandelstam variable s. We have

d
d—g 2px pg sind.
We define
2.2 2
s+ = c“my+c mX—i—c—zEXEX:I:ZpoX.
Thus
[ = — / dEx / dEg / dsExEgGvngiiere 7 EXHER)
(27th
myc mgc? S—

We introduce
E, = Ex+Ey, E_ = Ex —FEy.

We change variables from (Ex,Ex) to (E4+,E_). In addition, we change the order of integration
o (s,E4+,E_). Let us work out the region of integration. From the Schwartz inequality we have

2px -px > ZmeXc2
and therefore

s > (mx+mg)*c.
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The original constraints are

Ex > mxc”,
Eg > mgc,
20 2.2 2 ’ 4 0 42 2_ 4.2
§s—c"my—c mx_gEXEX < F(EX_C mx) (EX—C mX).

The first two constraints give
E, > (mX-i-mX)cz, 2myc? —E. <E <E; —ZmXcz.

We write the last constraint as a quadratic equation in E_. For real solutions E_ the discriminant
should be positive, this gives the constraint

Since s > (myx + mg)?c? the constraint Ey > (mx +myg) c?

tions for £_ are

is automatically satisfied. The solu-

. C E2
pmax/min : E. (m§—m§)ci\/[s—62 (my -i-mX)Z} [s—c2 (mx—m)z)z] L_;r—s}

One checks that E™* < E, — ZmXC2 and E™" > 2myc? — E.. The requirement E™* < E, —
2mgc? is equivalent to

(2ng+ —s—l—m)zf —m)zz)2 > 0,

which for real values is always satisfied. The requirement E™™ > 2myc”> — E leads to a similar
condition, where my and myx are exchanged. Thus

[ —
W / ds/dE+ / dE\/[s—cz(mx—l—mX) } [s—cz(mx—mg) }Ge kBT
T Cc
(mx+mg)*c2  cVs Emin

The integration over E_ is trivial. One obtains

)

2 d
I = 2nh c / ?S [s—cz(mx —|—mX)2} [s—cz(mx—mg)z]c
T
(mx-+mg)~c?
E?2 2 _Ey
></dEJr (—;—s> e T
c
C\/S
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The integration over E yields a modified Bessel function K;. We obtain

2k T [ ds c
I = (2 7;6 \/_[S—cz(mx—i—m)—()z} [s—cz(mx—mx)]Kl (k;/;) o,
T
(mx-i-mg)zcz
and therefore
(G vMgller) =
oy gspmgspm kgT oy ds c
(znh;f - X — \/_ [S e (mX —l—m)—()z} [s —c? (mx — mx) ] K (k;/;)
X,eq X,eq(mx_i_m)_()zc2
In the case where X and X are particle and anti-particle, we have my = my and gSp n_ gi—fin and

our formula simplifies to

N 2
o2 ( %P kgT
(0 vMglter) = ( ) / dsv/s [s — 4c2m)2(} K (c_\/E) c
(27‘577,) I’ZX eq kBT

2.2
4myc

o5}

1 c\/s
- — — [ asvs[s-aemi] K <k T)
8cmykpT (Kz ( TuT )) am3 2

or in natural units c = h=kg = 1:

(O VMgller) = 2 /dS\/_ 4mx} K (\/7)
8mXT(K2 )7, r
mg

10.2.3 The effective number of relativistic degrees of freedom

In this paragraph we introduce two effective numbers of relativistic degrees of freedom, g, and
8+«s. The first (g.) one enters the relation between energy density and temperature, the second
one (g« s) enters the relation between scale factor and temperature. We now distinguish between
bosons and fermions, using Bose-Einstein and Fermi-Dirac distributions, respectively. However,
we neglect particle masses. In the relativistic limit this is justified.

Let’s start with g,. Let’s consider a relativistic boson with gls-p " spin degrees of freedom at
temperature 7;. A typical example is a photon, where gzlt);lton = 2. If the relativistic boson is
decoupled, its spectral energy density corresponds to the temperature 7;, which does not need to
be the temperature of the other particle species. The spectral energy density is given by

spin 3
i (0,T) g h_ o
1 s L1 2n2c3 khuq)" 17
eksli —
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and the energy density is obtained by

gP" (ksT)" / s s (kTh)*

pi(T}) = /dcou,-(o;),T,-) an (he)’ =

X .
;e 730 (he)®

This is the Stefan-Boltzmann law. For the number density we obtain

(o)

B ui (0, T;) g™ (kgTy)? 2 oinG(ksTy)?
)~ Jontle L) [ 2 )

1 % T2 (he)?

0 0

Let’s repeat the calculation for a relativistic fermion with g?p " spin degrees of freedom The
spectral energy density is now

spmh o3
ui(0,T;) = 27t2c3 Tl’
e*Bli 4

and we obtain for the energy density

7 &M (kgT; 3 7 )
Faouton - Lo 2 7
27t2 (hc) e+1 8% 3O(hc)3

Compared to the boson case we get an extra factor 7/8. For the number density we obtain

@) = [aoOT) GG [y 23 enallal)
i \4i ho 2752 (hc) €x+1 4°! TCZ(hC>3 .

0

Compared to the boson case we get an extra factor 3 /4.
Let us now consider various relativistic species i, each with their own temperature 7;. The
total energy density is then

Z pi (T7)
i
Let us denote by T the photon temperature. We take 7" as a reference temperature. We may write

b= ()
30(he)3 S B

with

- /TN\Y 7 TN\
gy = Z g?Pm(Tz) +§ Z g?P1n<Tz> .
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This defines g.. The effective number g, enters the relation between the energy density and
the temperature. The relation is applicable as long as the universe is radiation dominated (i.e.
dominated by relativistic particles).
Let us now define g, 5. The sub-script S refers to the entropy. We first consider an individual
species of particles i. For vanishing chemical potential y; the entropy is given by
Ei+pV

s, = L 27
1 7—}7

where p; denotes the pressure due to the species i. We will also consider the entropy density s;:

Si _ Pitpi
% T

For relativistic particles we have

N
pz—SPl-

This holds for bosons and for fermions. To see this, we note that the pressure p; is given for
relativistic particles (with E = c¢p) by

(o)

. d3 2 =2 d 2 4
o= g™ [P ) = ang?™ [P g

(2nh)’ 3E ) (2nh)* 3E
spm 1

3
32n23/d0;)cof,hcoT /do;)u,coT 3p

Please note that p; denotes the pressure, while p = |p| denotes the absolute value of the three-
momentum. We further used

1 Spmh o’
[(ET) = — ) ui (0, 7;) = 23 he
efsTi I 1 ¢ okgT; 1

The entropy density is therefore given by

Adding up the different species we obtain

2’k 3
= ——58+«s(ksT)",
45 (he)>" (ksT)
with

3 3
n (TN 7 in (T
es = Yo (1) 45 ¥ (7).
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If entropy is conserved, we have
g*?ST3R3 = const,

leading to

10.3 Neutrinos and hot relics

Let us now discuss the implications of the Boltzmann equation

d
EnX = —3HnX - <G VM¢11€I"> (n.%( - n)2(7eq) :

The first term on the right-hand side gives the dilution of the number density due to the expansion
of the universe. The second term accounts for annihilation, while the third term (which comes
with a positive sign) corresponds to the production process. As long as the first term on the right-
hand side can be neglected against the second and the third term, the Boltzmann equation will
drive the number density ny towards the equilibrium number density ny ¢q. This changes when
the first term becomes comparable to the other two terms. We define the freeze-out condition by

Neq <G VM;zsller> = H.

For the thermal average of the cross section times velocity we will use very crude approxima-
tions. For relativistic particles we will assume

2
234 (kgT)
(O VvMgller) = h7C'g T
(mmediatorc )
where g is a dimensionless coupling and mipediator 1S the mass of a mediator particle through
which annihilation proceeds.
An example for relativistic particles are neutrinos. In this case mpyediator = Mz and g is the

weak coupling. Fermi’s constant is defined by

GF . \/562

— ~ 1.166-10°GeV 2.
(he)® 8 sin® By m3, c*

For the neutrino annihilation cross section we make the crude approximation

G> 5
O VMgll = ﬁ2C3—F kpT)”.
(0 VMter) (e (ksT)
For relativistic fermions we use
o 3G ksT)’
“ 4 72 (he)’
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We assume that decoupling of the neutrinos occurs, when the universe is radiation dominated.
With the first Friedmann equation and the effective number g, of relativistic degrees of freedom

TG 72
H?> = ——p, = = 0. (kgT)*
2P P 30(hc)3g (ksT)

=\ smcs KsT)

We may now calculate the freeze-out temperature:

one obtains

Neq (O VMgller) = H,
3¢ (ksT)” 5 5 G 2 413 Gg.. 2
.k knT = ———— (kT
a2 (he) (hc)6( s7) asiics ko1

wWIN

1 — 1
4 \3 [ Gr 4nGg, \ ©
kT = — .
B T (3§3) ((hc)3> (45hc5 )
Let us first calculate the effective number g, of relativistic degrees of freedom. Let us assume

that the relativistic particles at freeze-out are photons, electrons, positrons and neutrinos. We
have

fermion factor g

Y 2
e % 2
et % 2
Ve, Vi, Ve 5 1
Ve, Vi, Va g |1

43
8x vy

With G = 6.7086 - 103°hc>GeV 2 one obtains an estimate for the freeze-out temperature of
neutrinos:

1 1
4 \3 ~3 (4n 43 g
keT ~ n<f) <1.166-10’5> 3(4—§~Z-6.7086-1039) GeV ~ 3.3 MeV.
3

With the current upper limit on the neutrino masses myc> < 2 eV we have
mV6'2 < kB T,

which justifies a posteriori the use of the relativistic approximation. It also justifies a posteriori
that the relativistic degrees of freedom are photons, electrons, positrons and neutrinos. Neutrinos
are hot relics.
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Let us discuss the temperature of the cosmic neutrino background. Our previous formulae
are valid as long as the neutrinos are relativistic. We denote by 7;y the temperature of the
neutrinos at decoupling. At decoupling the neutrino temperature equals the temperature of the
rest of the universe, and in particular equals the temperature of the photons 77 y:

Tl v = Tl'Y

)

After decoupling, the temperature of the neutrinos is simply red-shifted:

e = (B)7
2v = R2 1L,

where R is the scale factor at decoupling and R; is the scale factor at time #,. We are interested
in the relation of the neutrino temperature to the photon temperature. We have seen that the
neutrinos decouple around kT ~ 3.3 MeV. Around 1 MeV (x 2-511 keV) a large fraction
of electrons and positrons annihilate, leaving only a tiny fraction of electrons behind (which
are part of the observed matter today). The electron-positron annihilation reheats the photon
gas. We may calculate the change in the photon temperature due to reheating, assuming that
the process conserves entropy. Let us introduce the effective number gECSf"re corresponding to
just before electron-positron annihilation and taking only photons, electrons and positrons into

account. gzegore is given by

7 11
before

= 24-22=—.
g*7s 8 2

Immediately after electron-positron annihilation there are only photons (and neutrinos) left and
we set

after
8 *,8 = 2.

The neutrinos are already decoupled and take no part in the temperature/entropy increase. Their
entropy is the same before and after electron-positron annihilation. We further assume that
electron-positron annihilation occurs in a time interval, where we may neglect changes in the
scale factor R. If the entropy is conserved (i.e. the entropy from the electrons/positrons is trans-
ferred to the photons) we have

gl:‘/gore (Tbefore R)3 + SV — git:?r (Tafter R)3 + SV,
where Sy denotes the entropy of the neutrinos. We therefore have

1
before \ 3
Tafter _ g*7S Tbefore
- after :
*,5

Thus after electron-positron annihilation the neutrino temperature and the photon temperature

are related by
after % 1
g * 4\3
TV - bz}ire TY - (ﬁ) T'Y'
8y S
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As long as the neutrinos are relativistic (and after electron-positron annihilation) we have for the
effective number g, s

43
. — =~ 3.91.
11 1

o
*
o)
|
2
+
|
)
w
I

This is based on the assumption that the neutrinos freeze-out first and electron-positron anni-
hilation occurs afterwards. As the temperatures of neutrino freeze-out and electron-positron
annihilation are quite close, the neutrino freeze-out is not fully completed as electron-positron
annihilation starts. Thus some energy/entropy is transferred to the neutrinos. This leads to a
small corrections, which may be described by changing the number of neutrinos from three to an
effective number of neutrino species Negr = 3.046. This yields

g. = 3.38,  g.s = 3.94.

Let us now discuss the neutrino contribution to the density parameter. We set

G

Qy WPV7

Let us assume that the neutrinos have (small) masses and that they are non-relativistic today. Let
t; denote today’s time. With three neutrinos (and three anti-neutrinos) we have

py = 2<Zmic2> ny (2),

where ny(r2) denotes today’s number density of one neutrino species. We assume the number
densities of all neutrinos (and anti-neutrinos) to be the same. Let ny(2) denote today’s number
density of the photons from the cosmic microwave background. ny(t2) is given by

285 (kaTy2) :

ny(t2) 2 (he)?

We may re-write the energy density as

_ ny (t2)
o= 2 (Z’”2> (i) e

Let us now consider a time #;, where the neutrinos where still relativistic, but after neutrinos
and photons decoupled. Since both neutrinos and photons are decoupled their numbers does not
change from 7 to #, and we have
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Since the neutrinos are still relativistic at #;, we may use

3¢5 (kpTy1)’

ny (1) a2 (he)?

Combining everything we obtain

and thus
3
8nG 3 48C3 G\ (ksTy2)
Q, = — . = . ) = —225 i ) BB Tv2)
YT 3@HE T (;mc )"V(Z) 33m (zl.:mc> <c5h) (hH)?
with kgTy» = 2.35-10"* eV and hH = 1.45- 10~ eV one obtains

Zmicz
Q, ~ 0.023[ -

eV

The neutrinos are hot dark matter. They cannot constitute the bulk of dark matter. Let us assume
that their contribution to the density parameter is x, with

x < Qpu = 0.26.

We thus obtain a bound on the neutrino masses

Zmicz < x-43.2eV.

A conservative estimate for x is x < 0.13, e.g. assuming that the neutrino contribution is not more
than half of the total dark matter contribution. We then find

Z:rn,-c2 < 5.6eV.

i

10.4 Cold relics and the WIMP miracle

Let us now turn to cold dark matter. We consider a dark matter particle with mass my and we
will assume that this particle decouples when it is non-relativistic, i.e. mxc? > kgT. We do not
distinguish between bosons and fermions and work for simplicity with the Maxwell-Boltzmann
distribution.

The thermal average of the annihilation cross section times velocity is denoted by (G vmgiter) -
We keep the dependence on this quantity explicit. A concrete crude approximation is for example
given by

2
3GF

(0 vMoler) = B h*c (he)f (mxc?)’
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Such a cross section would arise, if the dark matter particles annihilate through a mediator par-
ticle with coupling and mass similar to the electro-weak bosons. This is encoded in the factor
G%. In order to get the dimensions right, we need an additional factor E. The appropriate scale
is now myc?. B = v/c is the ratio of a typical non-relativistic velocity to the speed of light. As a
numerical example let us take my = 1 TeV and

G2
(6 Wpller) g = 1.4-1075 - 523 hg - (mx?)? ~ 2221072 m¥s 1,
C

For the number density we use the non-relativistic approximation

3
mxkpT \?2 _ ”;(X‘Tz
n = e B! |
e 2mh?2

We will again assume that freeze-out occurs while the universe is radiation dominated. Thus

=\ ses K1)

Assuming that the freeze-out occurs before electroweak symmetry breaking, we may assume that
all particles of the Standard Model are relativistic. Thus

7
g« = 2(1+3+8)+g 2:2.6:3+ 223 4+ 23 |+ 4 =

gauge bosons quarks charged leptons  neutrinos Higgs

Before electroweak symmetry breaking the complex Higgs doublet contributes four degrees of
freedom. Three degrees of freedom become after electroweak symmetry breaking the longitudi-
nal modes of the W*- and Z-bosons. The fourth degree of freedom is the Higgs boson. Let us
introduce

mX02
X = .
kgT
The condition for freeze-out
Neq <G VMQ)ller> = H

yields

3

2 2 3
myc“kgT _ 413Gy, )
-7 Yo = ———— (kgT
<2n(hc)2> ¢ ol =y g5pacs BTV
_ 132Gg h*c3
X 3 *
= T .
Ve 45hc> myc? (G VMgller)
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Given my and (G vpgper) We may solve this equation (numerically) for x and obtain in this
way the freeze-out temperature 7;. For our numerical example myx = 1 TeV and (G Vyglier ) ref =
2.22-107% m?s~! we find x = 26.82.

Let us now turn to the contribution to the density parameter. We denote quantities at the time
of the freeze-out with a subscript 1, while today’s quantities are denoted with a subscript 2. We
first consider a crude “sudden approximation”: For 7 > T; we assume that the number density
ny is given by the equilibrium distribution, while for 7 < 77 we assume that all particles X are
frozen out and the total number of particles X stays constant. With these assumptions we have

G R\’
O = sipepx(). pr(n) = meny (), (e = () nx(o).

The last equation states that after freeze-out the dark matter particles X are decoupled. The
number of particles X is conserved, the number density is diluted by the third power of the scale

factor. For this factor we have
3 3
(&) = 2 (7)
R gisa\T1 /)’

8xS1 = g 8xS2 = 3.94

with

and T, = 2.73K is the temperature of the cosmic microwave background. Putting everything
together we get
8 ksTy\? o
nG 8,52 mxkpl] — X
Q = 2 kpTy
X 322 X¢ 8x.8.1 ( ) ( 2mh? ) ¢

_ ( ) 4g*52 <E)3X_ge_xl
3v2n(hH)? \ hed 8«51 \ 11 !

- g* 5,2 SEG) kBTz)
9\/ ¥ g* S ( he> ) H? (G VMgller)
For our numerical example my = 1 TeV and (G vmglier)ref = 2.22 - 10732 m3s~! (and 8,1 =8%.5,1)
we obtain

In the discussion above we made the (unrealistic) assumption that above the freeze-out temper-
ature the number density ny is in thermal equilibrium, while below the freeze-out temperature
the particle number Ny is constant. In reality freeze-out does nor occur suddenly, but proceeds
gradually. We may model this more accurately with the help of the Boltzmann equation

0
gn)( = —SHnX - <G vM¢ller> (n)2( - n)2(7eq) :
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It is convenient to use as evolution variable not the time ¢, but the dimensionless parameter
x = myc?/(kgT) introduced above. In addition, we scale out the effect of the expansion of the
universe by considering instead of ny the quantity

where s is the entropy density. Note that sR*> = const and hence

0 )
RZ L3RR = 0,

ot
0
a—j = —3sH.
Furthermore
0x myc® 1 9T myc* 1 9T3 myc* 1 9s mXCZH H
—_— = _—— = —-—-—— = —— = — — XI1.
ot kgT T ot kT 373 ot kT 3s ot kgT
The Boltzmann equation may re-written as
0 s
a—xY = _x_H <G VMQ)ller> (Y2 — Yezq) .

The Hubble parameter is x-dependent. In a radiation dominated universe we have H> ~ p ~ T*.
Thus

H(x=1
yoo e
X
Let us introduce
3
A sx° (v > 21kp g (mxcz) (G VMgller)
= T 1N Mgl = *,8
Hx=1)" """ 45 (he)? H(x=1)

Assuming that in the range of interest (G Vmgiier) and g s are temperature-independent, it follows
that A is temperature-independent constant as well, and hence a x-independent constant. Then

20 A

=Y = 3 (Y?-va).
At high temperatures, corresponding to x < 1 we have Y =~ Y.q. This gives a boundary con-
dition and we may integrate the differential equation numerically towards low temperatures,
corresponding to x > 1.

In order to get a qualitative understanding we consider the following approximation: For

x> x1 (where x; denotes the freeze-out value defined by I'x ¢q = H) we have Y >> Y4 and the
differential equation simplifies to



Integration from x = x| to x = oo yields

1 A
Yoo Vi xi

Typically, Y| > Y., and hence

X1

Yo = —.

A

Within this approximation we obtain
T 8852 8nG % C3 (kBT2>3
QX = V 8x,1 el < ) ’
9v10V " gusa \ kS ) H2 (G vmgiter)

i.e. the same result as within the “sudden approximation”. This is not surprising, as we made
again essentially the same approximation. Please note the factor 1/(G vygiier), the higher the
thermal average of the cross section times velocity, the lower the relic abundance. The factor x|
depends only mildly on the product myx (G VMglier) -
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11 Inflation

11.1 The horizon problem

Let us consider photons from the cosmic microwave background. They decoupled at #{ = trecomb
and had no interaction afterwards. At ¢, their particle horizon is given by

n R 20 o

_ . e . ' dR o dz ¢ dz
X = R(t) J R2ZH(R) RH»J) E(z) RHJ E(2)
0 21 <1

where today’s quantities (2 = fioday) are denoted by H, = H. Quantities at the time of the big
bang (fp = tyig bang) are denoted with a subscript 0.

tbig bang

Up to recombination the universe was dominated by radiation and matter. We therefore model
E(z) by

E(z) = [9R7z<1+z)4+QM72<1+z)3}5.

‘We obtain

2c

Xp =

Qrp Qrp

I+(I+z1) ———/(I+z1) =

\/ (1+21) Qurs \/( 1) Qs
Numerically we have with z; = 1100, Qg > = 103 and Qu2=0.31

Q Q
C = \/1+(1+z1)ﬁ—\/(1+zl)ﬁ = 0.83.
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Thus
4cR 1 4c

1 = 1 3
HQjy 5 (1+21)?

An event at £y = fpig bang Cannot influence simultaneously two photons, which were separated
more than 2dp at recombination time.

Let us now consider an object of spatial size dians, Which is observed on the sky today (, =
foday) and extends over an angle 6. The angular diameter distance d,4 is defined by

2dp = 2Rixp =

I ; Ci.
RyHQy 5 (1421)?

d
dA — treans )
It can be shown that the angular diameter distance is related to the luminosity distance
d = (1 +Z>2dA,

where 7 is the red shift. We have

d dL C dz
A = = .
(1+z)  H({+z)) E@)

With

D=

E() = [0.69+031(1+2)]

we obtain for the integral

21 d
L 315,

/ E(z)

Let us now consider the angle under which we observe today a region of cosmic microwave
photons, which could have had a chance to reach thermal equilibrium between 7y and ;. We
have

2dp 4 1 Ci

~ ~ 571072 ~ 3°
da 3.15vVQu V1+21

0 —

Further more

92
= 26-107%
4m 6-10

We observe in experiments that the cosmic microwave background is isotropic over the complete
sky with anisotropies < 107>. Within the Robertson-Walker model of cosmology we see that
photons could have reached thermal equilibrium between fy = fpig bang @nd 71 = frecomb in regions
of the size ©2. Within these regions we would expect the cosmic microwave background to be
isotropic. The fact that the cosmic microwave background is isotropic over the complete sky
can be explained within the Robertson-Walker model of cosmology only by fine-tuned initial
conditions at #) = fyjg bang. This is the horizon problem.
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11.2 The flatness problem

Consider the differential equation
dx
dt
with two constants A and xp. It is clear that x(z) = xo is a fixed-point of the differential equation.
What happens if we start from the initial condition at time #; with initial value

= Ax—x0)

x(t1) = x0+39,

with & small? For A < 0 the system will evolve towards the fixed point and we call the point
x(t) = x¢ a stable fixed point.

For A > 0 the system will evolve away from the fixed point. We say that in this case the point
x(t) = xo is an unstable fixed point.

Let us now assume A > 0. A solution to the differential equation with initial condition x(¢;) =
X0 + 0 is given by

x(t) = xo+8MM),

Assume now that we observe today (at time #;) the value xo + 8. We may then ask, what was the
initial condition at an earlier time 7o leading to the observed value x(f;) = xo + 0 today. This is
easily answered:

x(ty) = xo+ 8o,

In other words, if the value today is a small quantity 6 away from the unstable fixed point xy, it
must have even closer (by an exponential factor) to the unstable fixed point at earlier times:

x(fg) —xg = & Mu—io),

Thus we need very precisely fine-tuned initial conditions at time #y to explain the observed value
at t today.
Let us now apply this to cosmology. The time evolution of the density parameter

2
is given by
d 2k¢* (H R 2Kc?
—Q = ——=(=+=] = ——=[-(1 H+H| = 2qH (Q—1).
d HZR? (H+R) e T H T H] = 2H(Q 1)

The point Q =1 is a fixed point of the differential equation. The prefactors H and ¢ determine
whether it is a stable or an unstable fixed point. We may assume H > O for all past times (i.e. the
universe was not collapsing in the past). The parameter ¢ is given by

AnG 1
qg = szi(l+3wi) = EZQi(1+3Wi)-

163



The parameter g is positive if all components i satisfy the strong energy condition w; > —%. The
notable exception is the vacuum energy, for which we have wy = —1.

For a radiation dominated universe or a matter dominated universe we have H > 0 and g > 0.
This implies that in these cases the value Q = 1 is an unstable fixed point.

In a vacuum dominated universe (like ours today) we have wy = —1 and therefore H > 0
and ¢ < 0. This implies that for a vacuum dominated universe the value Q =1 is a stable fixed
point. Note that on cosmological time scales the period where the universe is vacuum dominated
is quite recent.

Changing the evolution variable from the time ¢ to the scale factor R, the above differential
equation may re-written as

dQ

= 2q(Q—1).
dInR a( )
If we assume in addition, that the universe consists only of one component we have
1
qg = EQ (1+3w)
and
dQ
= (14+3w)Q(Q—1).
TR (1+3w)Q(Q—-1)

The flatness problem is the following: Given that we measure today (at time #,) a value of Q
close to 1, we may first evolve back to the time 71, where the parameter g changed sign. At time
t1 the deviation of Q from 1 was larger, but still quite close to 1. Evolving backwards would
require extremely fine-tuned initial conditions to arrive at this value.

Let us estimate the amplification due to the evolution from 7, backwards to #;. We model our
universe as consisting of vacuum energy only. We find

Q-1 ~ (Q—1)n)
With tp) —r; ~ 13- 10° yr we find
AHn=1) ~ 607,
and hence
O(lQi—1]) = 0(Q2—1]).

Let us now consider the backward evolution from #; to an earlier time 7). For simplicity we
assume a radiation dominated universe. We now obtain

Ro 2 to
Q-1 =~ (Q—-1)|=—) = -1)—]).
’ @ ><R1) @ )<fl)
Taking for #o the Planck time 7o = 10~ s gives

Iy
n

10761,
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11.3 Basics of inflation

Please note that the horizon problem and the flatness problem do not contradict the standard
Friedmann-Robertson-Walker cosmology model. All observed phenomena are in agreement with
the Friedmann-Robertson-Walker cosmology model and specific initial conditions. The problem
is only that the initial conditions need to be extremely fine-tuned to arrive at the universe observed
today. We would prefer a mechanism, which starts from rather random initial conditions and
nevertheless explains the observations today. This is the motivation for inflationary models.

We call

C C

RH R
the comoving Hubble radius. During the radiation or matter dominated period, the expansion
of the universe decelerates and the comoving Hubble radius increases. The basic idea of inflation
is a shrinking comoving Hubble radius at the beginning of the universe.

i () < o

This is equivalent to

R > 0,
or
RR

The conditions R > 0 or ¢ < 0 describe an accelerated expansion, hence the name “inflation”.
We may also translate the condition of a shrinking comoving Hubble radius to a condition on
the equation of state for a perfect fluid: From the second Friedmann equation

R 4nG

R - —?(P+3P)

we obtain with R > 0 the condition
< !
p p.

Thus we see that during inflation we had negative pressure.

Remark: This violates the strong energy condition (p +3p > 0), but so does a universe
dominated by vacuum energy with an equation of state p = —p. There is nothing wrong with
that, it only means that it is not sensible to impose the strong energy condition.

Let us now discuss how inflation solves the horizon problem and the flatness problem. We
first consider the horizon problem. Here, the problem was the finite particle horizon at recombi-
nation time. Let us now denote by 7y the time when inflation ends. During inflation we have an
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equation of state with w < —% or n < 2, where n = 3(1 +w). The comoving particle horizon at
time fg is given by

c dz

Xp = Roih ] EQ)
20

If we assume

with n < 2 we obtain for the red shift integral

S}

r L 2 2|
/dz(l-l-z) . (1427 .
20

2—n

<

For n < 2 the integral diverges and we obtain an infinite comoving particle horizon. This solves
the horizon problem.
Let us now discuss the flatness problem. We recall the differential equation

k9
dInR

= 29(Q-1).

For g < 0 the point Q = 1 is a stable fixed point of the differential equation. Thus, if we start with
random initial conditions before inflation, a sufficient long inflation period will evolve the value
of Q very close to 1 at the end of inflation, such that the further evolution according to standard
Friedmann-Robertson-Walker cosmology is compatible with the observed value of Q today. We
may estimate the required time period of inflation. Let us denote by 7_; the time when inflation
starts and by #y the time when inflation ends. We assume that

Q1] = o),
and
Qo—1] = @(10—63).

It is common practice to give the time of the inflation period by a number N, which corresponds
to the power of e, by which the scale factor increases during the inflation period. N is also called
the number of e-folds. In detail, dN is defined by

dN = Hdt = dnR.
Integration yields (with N(z_;) = 0 and N(#9) = N)

R R
N = ln—o or 0 eN.
R_,4 R_,4
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Integration of the differential equation

dQ
TR (1+3w)Q(Q—1)
gives
1Q-1] _ [ Ro e _ 3N
Q1 —1| R_

and therefore

1 |Q_; —1|
— In .
1+3w  \ [Qo—1]
For example, for [Q_; — 1|/|Qo— 1| = 10 and w = —1 we obtain N ~ 73.

For a perfect fluid with —1 <w < —1/3 we have 0 < n < 2 and

For

we see that the Hubble parameter does not change much during inflation. Let us introduce two
slow-roll parameters € and 1 defined by

e - _H _ RddH _ dhH
H2 H dR dN ’
B H B 1 de
"= TopE T ¥ 2ean

We recall that g was defined by H = —(1 4 ¢)H? and therefore
e = l+4g.
For the perfect fluid discussed above we find

E_n _n
- "N=73

11.4 The inflaton field

Up to now we discussed inflation as a period where we have (i) a shrinking comoving Hubble
radius, (ii) accelerated expansion, (iii) negative pressure p < —p/3. The three conditions are
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(under modest assumptions) equivalent. Let us now discuss how inflation can be realised. We
already know about one scenario, which has all the three properties listed above: A universe
dominated by vacuum energy. However, just simply postulating that the universe was vacuum
dominated early on is not what we want: Such a universe will remain vacuum dominated forever.
We would like to have an inflation period, which comes to an end, followed by a radiation dom-
inated period, which is then followed by a matter dominated and finally by a vacuum dominated
period.
Let us consider the action of a scalar field minimally coupled to gravity. The action reads

S = Sgu+S,
Sen = d*x \/—gR,
B 167tG/ g
hZ
So = - [dinvTEt,  Fo = " (3,0) )V (9).
We determine the energy-momentum tensor
2 d/—g<¢ 0% 2 0\/— 0%
Ty = 82 %= | 2 gtV 8 _ 2= g,
V—g oJg dg" /-8  dg" dgH

= 20 [2(2,0) (0u0) — sy (010) () |+ 5V ().

Let us now specialise to the Robertson-Walker metric with coordinates (ct,r,0,¢) and assume
that the field ¢(x) is homogeneous:

0(x) = 0(1,X) = 0().

This implies
9,0 = 990 = g0 = 0.
Then
hZ
Too = TC(30¢)2+V(¢),

hZ
Tj = —8&i (aotb) V(9)

and Tp; = 0. This is the energy-momentum tensor of a perfect fluid with

- eV @), = - @),

As usual we define the parameter w by p = wp, this yields

1 (309)° ~V ().
12 (900)* 4V (9)
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For V() > h%c(dpd)* we have
< ——1

Thus we have inflation if the potential energy of the field is larger than twice the kinetic energy
of the field.

Let us now discuss the equation of motion for the field ¢. For the Robertson-Walker metric
we have g% =1 and

R(t)*r*sin®

VIE S e

Therefore
10 3R 3
dov—g = —=v/—g=-=v—¢g=-H\/—g.
c ot cR c
With the assumptions as above £ simplifies to

hZ
Ly = = (@00) -V (9)

The variation of Sy with respect to the field ¢ gives

55y = % / d4x¢——glh2c(ao¢) (350) — 8¢}

o0
(v=500) + 5] %

I
_ /d \/_g[\/_
- __/d“x\/_[hzca O+ 3h*H0 + qj 30.

Thus the equation of motion for the field ¢ is

oV

h2co} ¢+3h2H80¢+ 3% 0.
c dV
¢+3H¢—i—hza¢ = 0.

In addition, we have the Friedmann equations, which for k¥ = 0 read

i = SO v ).
R I ey v @).
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Previously we introduced the slow-roll parameter € = —H /H 2. We have

)ik . R d (R R
H2(1-¢) = H2(1+22)) = g2 = (2 a(ry R

and therefore
2 2
1< (909)
20 2 :
1€ (300)” +V (9)
Inflation occurs for € < 1, i.e. when the potential energy of the inflaton field dominates over

the kinetic energy of the inflaton field. This motivates the name “slow-roll parameter”. Inflation
ends when w = —1/3 or V(0) = h?c(dp0)?. In terms of € this translates to

e = 1.

The inflation period should be sufficiently long, i.e. ¢ should not change too fast. Therefore we
require

0] < |3H9|,

c
In this limit the equation of motion for the field ¢ simplifies to
. C
3HO+ ﬁaq)v = 0,

and the Friedmann equation to

&nG
3c?
In the limit € < 1 the two slow-roll parameters are given by

2 .
L@’ §
v Ho
Thus we see that |¢| < [3H¢| implies |n| < 1. In the limit € < 1 and || < 1 we further have
e n O (VY | My (3
l6nh?*G \ vV lonh* \ v )’
2 2
8nh2G \ V 8nht \ V

Let us now estimate the number of e-folds:

H> =

l

_ _ o7 o7
N:/dN:/Hdt: 540 = o [ oy
. ) 4

0 0
8GR |V St |V
= o = —ar o
c ) oV cMqu)‘ 4
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Let us now specialise to the simplest potential

1
V = §m263¢2.

We have

and

. CMIZJI 8¢V 2 B C M Pl 2
~lemht \ Vv CAmRr\ ¢ )
¢ is determined by € = 1. We find
1 c
= —\/—Mpy.
\ 2\ 4n Pl
The number of e-folds is

smht _4mnt omht o, 2mhto? 1
- T2 / - T2 /¢d¢ —5 (07— 07) = 2 T 5
CMPZ 8¢V Mpz cMp cMp 2

The number of e-folds determines how close the density parameter Q is driven to one during
inflation. To solve the flatness problem we require

N > 60.

Remark: The values of the inflaton field in this model are of the order of the Planck mass.
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12 Gravitational waves

The first experimental evidence for gravitational waves came from an indirect measurement: the
observation of binaries of neutron stars. As the two stars inspiral towards each other they emit
gravitational waves. The emission of the gravitational waves is strong enough that it affects the
dynamics of the binary system. It carries away energy and angular momentum from the system,
reducing the size of the orbit. This effect may occur on a timescale short enough to be observable.
This effect has been observed by Hulse and Taylor in 1974 in a binary system consisting of a
pulsar and a companion neutron star (Nobel prize 1993).

In 2015 there has been the first direct detection of gravitational waves by the LIGO interfer-
ometers, followed by further detections of gravitational waves by the LIGO and VIRGO collab-
orations (Nobel prize 2017).

12.1 Gauge invariance of gravity
The Einstein-Hilbert action is invariant under general coordinate transformations
o= ).

In fact, one of Einstein’s original motivations was to find a theory invariant under these transfor-
mations. We may view a general coordinate transformations as a (generalised) gauge transfor-
mations. We write an infinitesimal general coordinate transformation as

o= M —eB (x).

The minus sign has no particular importance and is just a convention. The infinitesimal inverse
transformation is given by

o= et (x)+0 (82) .
Let us now work out the metric in the transformed system:

oxt oxY
8t () = Wﬁ&w (x(x'))

= (3B () (B e () (o (V) 462 () ot (V) +0 (&)

= guv () +&[(0x8" () g () + (9w E" () gurv () +EP (+') Opgrwr (+')]
+0 (7).

We may write this in a shortened form as

g,:lv = gu t+E€ [(a,u{;p) 8pv T (avap)g,up +‘t:papg,uv} +6 (82) .

Let us now specialise to an expansion around the flat Minkowski metric. With
8uv (x) = Nuv + Ky (x),
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we find for Ay, :

Wy = v+ % [(94EP) Mpv + (9vEP) My
+€ [(uEP) gy + (OvEP) hyp +EP Il | +0 (€7) .

This expression can be simplified and we find
€
Wy = I+ < (Vv + VvEu] +06 (),

where &, = gvE¥ = Nw&" + khE’. We may view the transformation from /,y to /,, as an
infinitesimal gauge transformation.

12.2 Linearised gravity

Einstein’s equations are non-linear differential equations in the metric. We recall that the New-
tonian limit is defined as the limit where

e the gravitational field is weak, such that it can be treated as a perturbation of flat space-
time,

e all particle velocities are small compared to the speed of light,
e the gravitational field is static (i.e. time-independent).

In this chapter we are interested in a less restrictive scenario: We consider the situation where
the gravitational field is weak, but we will not require that the particle velocities are small nor
that the gravitational field is static. (It is clear that we have to allow time-dependent fields in
order to describe gravitational waves.) For a weak gravitational field we expand around the flat
Minkowski metric

v = M+ Ky,
with
[khw| <1,  w,ve{0,1,2,3}.
For |h,y| = O(1) this implies
K < 1,

and we may use K for power counting in perturbation theory. In linearised gravity we keep only
the first non-trivial order in an expansion in K. Since g,y and 1y are symmetric, /s,y is symmetric
as well:

hV,u - h:u .
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In writing g,v = Muv + Kh,y we have picked a reference frame and broken the invariance under
general coordinate transformations. However, there remains a residual freedom in the choice of
coordinates. Under an infinitesimal transformation

K= M —eE (x).
we have
Kh,:iv = Ky +¢ [(a,ugp) Npv + (avép) T],up:| +0 (82, SK)
= Khuy +€(9Ev +9vE,) +0 (e,ex).

To lowest order we have &, = g,n&" =nw&" +0O(k). We have [/, | < 1 provided 6(g) = O(k)
and

0,6 = 0O(1),

i.e. the coordinate transformation is not fastly varying. We call these coordinate transformations
gauge transformations in the linearised theory.

Let us now work out the expressions for the most important quantities in linearised gravity.
The inverse metric is given by

gv = " -k +6 (),
where A" is given by
h,LlV — T]'Upnvchpc

In general we may rise and lower indices with n*¥ and 1,y in quantities which are first order in
K. The Christoffel symbols in linearised gravity are

1
"y = igpk (0ugva +vgun — Nguv)
= 50 Qs+~ ) +0 ()
= 2 (0P 0P~ Ph) +0 ().

Since the Christoffel symbols are first order in k, we need to keep for the Riemann curvature
tensor only the derivatives of the Christoffel symbols, but not the [2-terms:
R%uv = a,urgfo - avrr/)m + FQ/GF‘;JI] - FT/!IGFQ/H
= 9% —Ih6+0 (k)
K
The Ricci tensor is given by
Riclu\) — RX/IJXV
K
= 5 (9u0phy” +9vdph,” — 9,0vhg’ — Blyw) +0 (x%).
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For the scalar curvature we obtain
R = x(0“0"huy — Ohuym™) +06 (7).

Putting everything together we obtain for the Einstein tensor

i 1
G/JV = Rlcluv — EgluvR

K
Let us introduce the trace-reversed perturbation:

- 1
h,uv = h,u _En,uv}% h = hpcnpc-

We have

A uv 7 1 uv

h = N"hy = h—in Nwh = —h.
This motivates the name “trace-reversed perturbation”. The inverse transformation from }_L,N to
h,y is given by

1 -
hlu\) - hlu\) - Enluvh

In terms of /4 the Einstein tensor reads
K _ _ _ _
Gw = 5 (9u0p/y” +0v0ph,P — Oy — My P hps) +6 (K2) .
The expression for the Einstein tensor is slightly simpler when expressed through 7 instead of /.

Einstein’s equations read now

167G
Kkct

Ohyy +Muw0P0%hps — 0udphy” — dydph,P = — T +0 ().

This equation simplifies if we choose a coordinate system in which
avljlluv - 0

This equation defines the Lorenz gauge. Due to the freedom of gauge transformations in the
linearised theory we may always impose this condition. To see this, assume that /,, is not of this
form. Under the gauge transformation x* = x — k& (x) we have

}_l/{zv = ljl,uv + (a,uév + aV‘i,u - n,uvapép) +0 (K) )
and
hyy = 0Vhy+ 08, +0(x),
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If we want to enforce 0" h;,, = 0 we have to find a §, such that
D&,Ll — —av}_lluv.
From the theory of Green functions we know that a solution of the equation

OGu(x) = Julx)

is given by

Eulx) = /d4y G (x =) july),
where G(x — y) is the Green function satifying
O0:Gx—y) = &(x—y).

Thus we see that in Lorenz gauge the linearised Einstein’s equations take the form of a wave
equation with a source (neglecting O(x)-terms):

. B 167G

T = e

Ty
Outside the source we have
D}_Z,UV — O.

Let us count the degrees of freedom. We have

}_llu\) — }_ZV,U = 10 d.O.f.,
Qhy =0 = (10—4) dof. = 6d.of.

However, imposing just the Lorenz gauge does not eliminate completely all gauge freedom. We
may still perform gauge transformations

o= ¥ —xE, with D& = 0.
Under these transformation we have

}_lllxv = }_ZNV—l_&/JV-i_@(K)v &/JV = auﬁv‘i‘av&u—nyvap‘t:p,
My = 'y +0(x),

and we see that we stay within Lorenz gauge if the original field &,y satisfies the Lorenz condi-
tion. Thus we may impose four additional constraints on &,y. A possible choice of additional
constraints is

h = 0,
hoi = 0, i€{l1,2,3}.

176



The first additional constraint (2 = 0) implies

h,uv = h,u\h
the second additional constraint combined with the Lorenz condition implies
avf_l()v = 80E00+8ii10i = aof_l()() = aoh()() = 0.

Thus hqg is a time-independent or non-dynamical component. If non-zero, it corresponds to a
static Newtonian potential. For the discussion of gravitational waves we are not interested in
static components and one takes hgyp = 0. Technically, we replace the first Lorenz condition
0" hoy = 0 by hgo = 0. Thus we arrive at the conditions for the transverse traceless gauge:

hoy = 0,
h' = 0,
dhij = 0.

One easily checks that these conditions imply the Lorenz condition aVBNV = 0. It is common
practice to denote the field 7,y in the transverse traceless gauge by

TT
My s

where TT stands for “transverse traceless”. Let us now count again the degrees of freedom. We
have

h/JV - hV,u = 10 d.O.f.,

hoy = 0 = (10—4) dof. = 6d.o.f,
h' =0 = (10-4—1)dof. = 5do.f,
’hij =0 = (10-4—1-3)dof. = 2dof.

Thus we are left with 2 independent components of the metric, which correspond to the two
physical degrees of freedom for a gravitational wave.

In a particle picture the field 4,y describes a graviton, which is a massless spin-2 particle,
whose helicity states are only +2 and —2. This is similar to the photon field A,, which describes
a massless spin-1 particle, whose helicity states are only +1 and —1.

Remark: One may choose the transverse traceless gauge in vacuum (7,,y = 0), but not inside
the source. The transverse traceless gauge imposes hgg = 0, which implies that there are no static
components. This is true in the vacuum (far away from the sources), but not inside the sources.
Inside the source we may decompose £,y into

e unphysical gauge degrees of freedom,
e physical non-radiative degrees of freedom related to matter sources,

e physical radiative degrees of freedom.
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By a careful analysis one may show, that the physical radiative degrees of freedom obey a wave
equation, while the physical non-radiative degrees of freedom obey a Poisson equation (i.e. an
equation of the type A¢p = —4mnp). For the piece of the metric corresponding to the physical
radiative degrees of freedom one may impose the transverse traceless conditions.

Let us now return to the wave equation in the vacuum:

TT
Oh,y = 0.
Solutions to this equation are
. o -
BT = Gue . iy = (28).
where C,y is a constant symmetric rank-2 tensor, which is purely spatial and traceless:

Cou = 0,
cf = 0.

NOte that COO frd O 1mplleS C M — CJJ. We haVe
DhZVT = C/JVDe:tikpxp — _Cluvkze:tikpxp

and C,Neiikp)‘p is a solution of the wave equation provided k> = 0. Thus

The condition k? = 0 also implies that gravitational waves propagate with the speed of light. We
set k = |k| and write

kK = kn,

where 7 is a unit vector (|/i| = 1). Of course, the perturbation of the metric should be real. This
is easily enforced by replacing e** and e~** by

cos(k-x), sin(k-x).

Let us investigate the polarisation tensor C,y in more detail. As C,y is purely spatial we have
Clu\) —

The Lorenz condition implies
dhij =0 = AC; = 0.
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7l is a vector in the three-dimensional spatial sub-space and defines a plane in this sub-space as
the vectors perpendicular to 7. Let i and ¥ be two orthogonal unit vectors in this plane. With the
help of i and ¥ we may express the two polarisation states of C;; as

>

=

J
ivj+

<>
<>

+
Cl'j = i iVj,

o —

<>

>
=
<

itj.

One easily verifies that C™ and C* satisfy the traceless condition:

(c*)! = —@+? = -1+1 =0,

()] = ap/+00) = —a-v—9-a = ~2a-9 = 0.
Let us now specialise to 71 = é;and iI = é,, V = é,. We define

hy = Cpi, hx = Cp.

Then
0 O 00
0 h hy 0O z
T __ + X _ =
by = o oo |s(@(-5)):
0 O 00

Let 71 be a three-dimensional unit vector
3 .
Y apl =1,
j=1

describing the propagation direction of a gravitational wave. Given a solution }_LIN of D}_LH =0in
Lorenz gauge, we may easily project on the transverse traceless gauge as follows: We first define
projection operators

P =8 —ad,  Pj =P =mi—ninj, NS = PP PP

We use the convention that repeated latin indices i, j, ... are summed over {1,2,3}. A, jkl satisfies

A kLA A KklAj A Kkla A KlA
A Kkl A nm A m
ij kl — My oo

niinjkl — Aijklnkl — 0.
We then define hEVT by hg; =0and
h’l-'ro - Al'jkl ljl]d .
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One easily verifies that hg;r is in the transverse traceless gauge:
ij, TT ij A kT
nYhi; = MYA Ty = 0,
Ihil = Liki'hl' = Liki/ ARy = 0.
Remark: The polarisation states of a classical radiation field are related to the particles that
one obtains upon quantisation. In particular one obtains the spin of the quantised field from the

transformation properties of the polarisation modes: If the polarisation modes are invariant under
a rotation of an angle 6, the spin of the quantised particle is given by

21

S =
0

Let us consider a rotation in the x-y-plane:

cos® sin@ O
Rij = —sin® cos6 0
0 01

The field transforms as
/
(hi") = RuRjhy .
Explicitly we find

W, = hycos(20)+h,sin(20),
W, = —hysin(20)+hycos(260).

This is invariant for © = 1 and therefore

12.3 Detection of gravitational waves

In this section we investigate the effect of gravitational waves on test masses. The metric of a
gravitational wave is given by

1 0 O 0 O 00

0O -1 0 O 0 h hy O z
8wy = nﬂv‘f‘KhEvT = 0O 0 —1 0 TK 0 h:: —hi 0 COS(O)(I—;)).

0 0 0 -1 0 O 00

In general relativity, a particle moves along a geodesic. The geodesic equation reads

e
ds? “as ds 7
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where s = ¢t and 7 is the proper time. Let us work out the coordinate acceleration d’x’ / dr? for
ie{l1,2,3}:

B (e a fod )
c2dr? d(x0)? dxV ) ds | ds dx°
_ (d_)d__(d_)(d_)d_
ds ds? ds ds ) ds*
_ _(d_xO)‘zp- w_ﬂ+<d_x°)‘3<d_f)ro dxt dxt
ds W ds ds ds ds W ds ds
0\ 2 0 7,0 0 7.j i .k
(%) s e T

dxO\ 7 [ dx dx® dx® dx® dx/ dx/ dx*
= ) I, = qor?, 0, 2
+<ds) (ds)[ 0G5 ds o % ds ds T K s ds
; codx) o odx dxk dx o dx/ dx/ dxk
= —FOO—ZFOJ'@—FJW@+@(f{’w“rw@”{’fk@@)
; v Y o Vo vk
= _FZOO_ZFZOj?_FljkC—Q"‘; <r000+2r 0+ c—)

In the last line we introduced the coordinate velocities v/ = dx'/dt. Let us assume that our test
mass is initially at rest in our coordinate system. In this case the geodesic equation reduces to

d*x
c2dt?

In the transverse traceless gauge we have

Iy, = g(aoh0f+aohof —heg) = 0

and hence
d%x
c2dt?
Thus
X = const.

This does not mean that a gravitational wave has no effect on test masses. It only means that our
chosen coordinate system moves with the waves.

In order to understand the situation consider a spherical balloon, where we mark a few points.
As coordinates on the surface of the balloon we use two angles 6 and ¢. We then periodically
increase/decrease the air inside the balloon. Thus the metric on the surface of the balloon is given
by

ds*> = [Ro+Acos(wr))? [d92+sin29d¢2}.
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The marked points stay at constant 6 and ¢, however the distance between two marked points is
varying with time.

Let us now return to gravitational waves. We have to look at the distance between two test
masses. Consider a gravitational wave propagating along the z-direction. Assume that at each of
the two points

Py : (x,y,z) = (0707())7 P, (x,y,z) = ()Cz,0,0)

we have a test mass. The distance between the two points is

X2 X2 X2
d12 = /d}ﬁ/‘gll‘ = /dX\/‘—l—f—Kh?IT = /dX\/l—Kh+COS <(D(t—5)>
C
0 0 0

- XZ\/l—KMCOS (‘”("g))
(1= %0 9)).

Thus we see that the distance between the two test masses is changing with time in the presence
of a gravitational wave. For the fractional distance change one has

dd» Kh Z
=L =t r—=)).
di 2 o8 ((D( C))

Q

Let us now repeat the calculation, where the point P, has coordinates

Py (x,y,z) = (COS(P,SiIl(P,O).

‘We now have

1
d, = /d?u\/‘gncosz(p—i—gzzsinz(p—i—Zglgsin(pcos(p‘
0

= \/1 —Kh4 cos (2¢)cos <0) (t — g)) —Khy sin (2Q) cos (0) (t — é))

Khy

1— KhTJrcos(Z(p)cos (0;) <t— E)) - sin (2¢) cos <co (t— g)) .

Let us now specialise to case, where the gravitaional wave has a pure “plus’-polarisation, i.e.
hy #0, hy = 0. In this case

Sdill; ~ —%COS(Z(P)COS<m<t_§>)'

Consider now a test mass at the origin in the x — y-plane and a number of test masses on a circle in
the x — y-plane with centre (0,0). Plotting the distance between the test mass at the centre and a
test mass at an angle @ at various times gives us the following picture for the “plus”-polarisation:
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For a gravitational wave, which has a pure “cross”-polarisation, i.e. 2y =0 and i, # 0 we have

Sdill; ~ —Kgx sin(2(p)cos(co(t—§)).

This gives us the following picture for the the “cross”’-polarisation:

000000C

4
»>

These plots clarify also the motivation for the names “plus”-polarisation and “cross”-polarisation.
As in optics, we may consider linear combinations of the “plus”-polarisation and the “cross”-
polarisation. Left- and right-circular polarisations are defined by

= Gieon(o(=3)) s6in(o(c-)

The corresponding plot for a circular polarisation looks as follows:

SINISIZA0AN e

4
Typical experiments for the detection of gravitational waves work as follows: A laser beam
splitter is placed at

Pl : (X,y,z) = (07070)
Two mirrors are placed at

P, : (x,y,z) = (L,0,0), Ps: (x,y,z) = (0,L,0).
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A laser beam is sent to the splitter, the light travels than along the x-arm and y-arm. At the
mirrors it is reflected. At the splitter, the two beams are combined again and sent to the detector.
A non-equal change in the distance from the splitter to the mirrors will result in an observable
interference pattern at the detector.

A typical range for observable gravitational wave frequencies for terrestial detectors is

0.1s7' < o < 10%7 L.
Typical values for the amplitude of the metric perturbation are

[kh| = 6(1072).

12.4 Production of gravitational waves

Let us now consider the production of gravitational waves. To simplify the derivation we will
again assume that the gravitational field is weak. In addition we assume that the velocities of
the sources are small. The need for the second assumption can be anticipated from classical
Newtonian mechanics. The virial theorem for a two-body system with an 1/r-potential states

1
1) = —5),
1 , 1 GuM mimy

Here, (...) denotes the time average. We denote the Scharzschild radius by

2GM
r = .
N C2

(v )2 g

c/  2r

A weak gravitational field implies ry < r, within classical Newtonian mechanics this implies
v L.

Then

Let us now discuss the generation of gravitational waves. We start from Einstein’s equations
with a source term. In Lorenz gauge we have

- 167G

We recall from electrodynamics that an equation of the form

184



is solved with the help of the Green’s function. By definition, the Green’s function G(x,x') =
G(ct, %, ct’,X') satisfies

06 (nd) = 8 (x-¥) = 18(1-1)8 (1),

The Green’s function for the d’ Alembert operator

is well-known:

1 1
Gi(ct,)_é,ct/,)_é/) = EWS(CT— [Ct/:t})_(f)—.?_é/”)

G is called the retarded Green’s function, G~ is called the advanced Green’s function. In
the following we will only consider the retarded Green’s function and drop the superscript “+”.

A solution to Of(x) = j(x) is given by
flx) = /d4x'G (x,x) j (*).

Thus

- l6nG [ 4
= T /d XG (x,x’) Ty (x/)
_4G 3 T (et — X=X, X))

ke X — 7|

We are in particular interested in the spatial part

' 4G [ 5 Tyler—[i-7|,%)

e X — |

Far away from the source we may approximate |X —X'| by

~ | =l

‘)_c’—)_c”‘ = r—ﬁ~5€”—|—®(fl), r= x|, A= ] =
X

For the energy-momentum tensor we have
Tij(ct— |#=%|,%) =~ Tij(ct—r+n-¥%) = T;j(ct —rX)+ (A-X)00T;j (ct — r,X).
Let ¢, be the typical time scale of variation of the source, i.e.

7’[..
T ~ —L.
04ij ot
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Then

T, =
(1-¥) Ty ~ (3-¥) 2 = <nv_) Tij.

ct c

Since we assumed that the velocities of the sources are small (|V'| < ¢), we may neglect this
term. Thus

- 4G

hi; = ——Kc4r/d3x’Tl~j (et —nX).
Within linearised gravity the Christoffel symbols are of order k and therefore
Thus

AT +3'Ty = 0,
80T0j+8iTij = 0.

Combining the two equations we obtain
(80)2 Ty = akalT]d.
We multiply both sides by x;x;. Rearranging the right-hand side we obtain
2
(80) (T()()xix]') = (akalTk,) XiXj = 8" [(817}{1) x,-x]} — (8’Tll> Xj— (alTj1> Xi

= 90" (Thaxixj) — 0 (Tiej) — 8 (Tiji) — 0" (Tixj) — O (Tjes) + Ty + T
= 8"8’ (Tklxixj) — 28" (Tk,-xj) — 28" (Tiji) + 2T,J

Thus

1
(8)" (Toovix;) — 599" (Tuwix) + 0 (Thax;) +3 (Tag)

| =

I;; =

The last three terms on the right-hand side are total derivatives with respect to the spatial coordi-
nates. Plugging the expression for 7;; into our formula for 4;; we obtain

7 3./ - 3 /7700 AR
hij = Kc4 /de,] r,x) = Kc4 a(,/de x)x,—xj
— 2 3 /
= KC48/dxp ct—rx)xx].
We obtain hl-TjT with the help of the projection operator A, jkl
h’l-'ro - Al'jklljlkl.
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The quadrupole moment is defined by
0i; (x) = /d3xlp (x°,%) (3xid; — r'28ij).

We finally obtain

2G

The term proportional to &y in the quadrupole moment projects to zero. This formula is known as
the quadrupole formula. Note the second time derivative: A static source cannot radiate gravi-
tational waves. Note also that the source must possess at least a quadrupole moment. Monopole
and dipole radiation is absent for gravitational waves.

Let us consider a simple example: A binary system of equal masses m; = my = m rotating
on a circular orbit in the x — y-pane around the centre of mass.

cos (W) cos (mpt)
— rb . — rb .
X(t) = > sin(wpt) |, X(t) = —5 sin (@pt)
0 0

Kepler’s third law relates rj, and mp:

p is given by
p(x) = mc?8(2)
X [8 (x— r—zbcos (wbt)> ) <y - %bsin (cobt)) +9 (x—f— %bcos (cobt)> ) (y—f— %b sin (wbt))] .

The quadrupole moment is given by

2 3cos? (mpt) —1  3cos(wyt)sin(wpt) O

1 5(2Gm)3 : .2
Qij(ct) = S 3cos (mpt)sin(mpt)  3sin” (@pt) — 1 0
; 0 0 1

For the second time derivative we obtain

cos (2mpt)  sin(2mpt) 0

sin (2wpt) —cos (2mpt) 0
0 0 0

Wi

8(2) Qij = —3m(2Gm0)b)

Let us assume that the observer is placed along the z-direction at the distance z. Then
(2Gm)% m% cos (2mpt — o) sin(20pr — ) O
khiT = ——b | sin(2wyt—¢o) —cos(2wpt—o) 0 |,
c*z 0 0 0
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where ¢ is given by

2(,01,2

b = .

c

This corresponds to a circular polarised gravitational wave. Note that the gravitational wave has
angular frequency 2, where ®j, is the angular frequency of the rotating binary system.

For m = mg,, @, = 2n/(1h) and z = 1kpc one obtains

Wl
S Lo

(2Gm)3 o;
ki ]

c'z

~ 1072,

We may repeat the exercise in the slightly more general situation for a binary system with unequal
masses m| # mj. It is convenient to introduce the total mass M and the reduced mass u

minm;
mi +my '

M:ml+m27 M =

We may directly translate our previous formulae by noting that the energy density is proportional
to the reduced mass u, while the total mass enters Kepler’s third law:

(,oir?) = GM.
Thus
., o [ cos(2apt) sin(2apr) 0
8% Qij = —6G3uM3®; | sin(20p1) —cos(2mpt) 0
0 0 0
and
4G%,uM%0;)% cos (205t —Gp)  sin(2wpt —¢o) O
KT 2| sin(2pt — o) —cos (2wt — o) O
c'Z 0 0 0

We see that these formulae only depend on the combination
3 2
MC = ‘u§ Ms5s.

M_. is called the chirp mass. In terms of the chirp mass we have

, s 2 cos (2mpt)  sin(2mpt) 0
% Qi = —6G3Miw) | sin(20pt) —cos(2wpt) O
0 0 0

and

hTT

2 3 205t — o) sin (2ot — o) O
dcws /am. N3 [ €08 (20t —do bt — o
e (G C) sin (2@t — 0g)  —cos (2wt — o) O

0

3
¢ 0 0

4
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12.5 The energy-momentum tensor for gravitational waves

Up to now we treated gravitational waves in linearised gravity, expanded around flat Minkowski
metric

Euwv = nyv+Khyv-

We have seen that gravitational waves change the distance between two test masses and it is
therefore clear that gravitational waves carry energy and momentum. We would like to determine
the energy-momentum tensor associated to a gravitational wave. In order to this, we have to
extend our formalism. There are two modifications required:

1. We have to set up a formalism, which allows an expansion around a curved background,
2. We have to expand to order k°.

Let us understand the first point: Within general relativity, any form of energy is a source of
space-time curvature. A decomposition of the form g,y = My + Khyy excludes from the very
beginning the possibility that a gravitational wave deforms the background metric.

We therefore would like to write

8w = 8uv +Kh,uw

where we think about g,y as the background metric. However, in general such a decomposition
is not unique. We have the problem of deciding which part belongs to g,y and which part to
hyy. In order to have an un-ambiguous decomposition we need a hierarchy of scales: Let o be
the angular frequency of the gravitational wave and A = A/(21) = ¢/® the reduced wavelength.
Denote by A the typical scale of the spatial variation of the background and by wg the typical
angular frequency of the time variation of the background. Note that Az and g need not be
related by Agwp = ¢, they can be independent. We require

7i<<7\‘3, o > p.

Let’s consider a classical analogy: Suppose that we are interested in water waves on the ocean.
Take the reduced wavelength to be ©(10'm)-6(10?m). Typical wave velocities are 5 —25ms ™!,
giving @ == 6(1s~!). The water waves propagate on a curved background: There is a spatial
curvature due to the fact that the earth is a sphere, defining a length Az = rg of the order of
the earth’s radius. In addition, there is a time variation due to tidal effects, defining an angular
frequency g ~ O(1h~!). For both cases we have a clear separation of scales.

Let us now assume a clear separation of scales: We assume A < Ag and/or ® > wp. We may
project to the background quantities by averaging: For X < &g we choose a [ with X < [ < Ap
and average over spatial volumes />. The short-wavelength modes of the gravitational waves will
average out. For ® > wp we choose a T with 1 /0 < T < 1 /mp and average over a time intervall
of length 7. Again, the high-frequency modes of the gravitational waves will average out. We
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denote the average by (...). A few examples for explicit averages (either over a time intervall or
over a spatial volume or both) are

(o (0~ 0)))= (o (0~ )%

<g,,v>

gives the slowly-varying piece of the metric. We expand the full metric in K:

The average

Suwv = gyv+thv+K2jNv+@(K3).

The lowest-order term g,y is slowly-varying, while the first-order term Ay is rapidly-varying.
The second-order term j,y has rapidly-varying and slowly-varying contributions. We split the

second-order piece into a slowly-varying piece j,y and a rapidly-varying piece j,}}i,gh:

. .high
Juw = ],uv+]1g

Separating the terms in the metric into slowly-varying / rapidly-varying contributions we have
g = (@) + () 0 ().
We would like to determine the contribution due to j,y. We expand the Einstein tensor in k:
G = G (8po) TGl (Zpo:ic) +K2Gi (Zposjne) +K2Gy (Zporhae) +0 ()

G,(N) and G(V) can be obtained from a straightforward, but tedious second-order calculation.

Let us consider Einstein’s equations in the vacuum. Einstein’s equations hold order-by-order
in x:
0) /-
G/(,IV) (gpc) = 0,
1) /-
G,L(N) (gp07h7»’t) = 07
1) /- . 2) (=
G/SV) (gpca]M) +G/SV) (8pcah>w) = 0.

We perform an average of the Einstein tensor:

= (Guw) = Gl (8p0) + Gl (Zpo. Jie) +1 (G (Folc) ) +0 (7).

We re-write this equation as

Gl (Zp0) +1°GN (8por fre) = — (GIR) (8porac) ) +6 ().



and define the effective energy-momentum tensor of a gravitational wave by
2.4
Gw _ _Kc¢ /()
T,uv - - e <G,uv (gpcah?w)> .

It remain to calculate Tﬂcv}w. One finds

2 4
K - - | - - - -
7oV = ﬁ <v,,hpovvhp<’ — 5 VulVsh =Vl Vol — Vvh,,pvohpﬁ> ,

where the covariant derivatives and the raising/lowering of indices are done with respect to g,y.
(As we work to order ©(«?) and this expression is already of order ©(k?) anything else would be
of higher order.) In the transverse traceless gauge this simplifies to

GW Kt PG
T,uV — % <V,uhpGVVh > .
The energy density of a gravitational wave in the transverse traceless gauge is given by

GW _  —GW K22 <'l_j'ij>_

_ qGwW _ ¢
P 0 = 3556

Let us now specialise to the case where

uw = Muw
and
0 O 00
o =kl o o (e(3)
0 O 00
We find

2 2.2 2 2.2
GW K°c“® 2 2 < 2( ( Z))>_KCO) 2 2
— h h r— - = h h).
P teng (i) (eos”™ (@12 Tong )

Let us now consider a binary system and let us work out the radiated energy per unit time (i.e.
the radiation power). We start from

2G
3Kclr

h;l;-T Aijkl O (et —r).

As in electrodynamics we define Poynting’s vector (i.e. energy flux per unit time and unit area)
by

Sk o= 7% — ﬁ<80h--8khij>
321G Y '
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It is convenient to use as spatial coordiantes (r,0,9). For a function h;; = (1/r) - fij(ct —r) we
have

0 c .,

Ehij = ;fij (ct—7),

0 1 1, 10 1
ghl] = —ﬁfij(ct—r)—;fij(ct—r) = _Eghl]-l_@(ﬁ),

and hence
1 - 0 1
arh,-j = —aohij+® (ﬁ) , 0 hij =0 h,J—l—@ (ﬁ) ,

We obtain the radiated energy per unit time by integrating the energy flux per unit time and unit
area over sphere with radius r:

2 3 2 K2cr? 0. .307ij

= A= — Ay

P r /dQS n r /dQS 3 /dQ <8 hlja h >
G

— o (Oulct=1) G (ct=n) [aQaf A

727mcd

The angular integral gives

/ dQ A; M AT — / dQ AKm — 2—7[<115’<’"81”—48"18’"”+8""8’"’)
Y 15 :
Thus
G oo ...l'j
P = 25(0ilc—n0"(@—r).
With
5, 55 sin (20t —¢g)  —cos (20pt — o) O
0;; = 128°G3Miw; | —cos(2mpt — o)  —sin (2wt — ) O
0 0 0
we finally obtain
32 o 10
P = SGM7 o).

12.6 The inspiral phase of a binary system

When we first derived the emission of gravitational waves from a binary system we assumed
that the emission of gravitational waves has no impact on the binary system. In particular we
assumed that the orbit is not changed. In reality this is not true. The gravitational waves carry
away energy and momentum, causing the orbit of the binary system to shrink until coalescence.
We may model the initial phase of the inspiral process with the tools we have up to now. The
final phase of the inspiral process and the merger involve strong fields and cannot be described
by perturbation theory. Here one resorts to numerical general relativity.
During the inspiral phase the following things happen:
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e The total energy of the binary system decreases due to the emission of gravitational waves.
e This implies that r;, decreases and ® increases.

e If m, increases, the radiated power increases even more. This accelerates the process of
energy-loss.

This will end with the coalescence.

We will model the beginning of the inspiral phase of the binary system by assuming that the
orbit stays circular with a slowly decreasing radius ( |is| < v). The total energy of the binary
system is (M = m| +my, u=mymy/(m; +my))

1 GuM GuM
E, = (T)+(U) = jw?— 222 = 2%

2 rp 21‘1, ’
where we used the virial theorem. Kepler’s third law relates w;, and ry:
0;);271’,3, = GM,
and therefore
1 2 1 502
E, = —E,uG%M%cog = —EG%MS o
The loss of energy is given by the radiated power:
dE,
dt
This leads to the equation
5
9% (GM.\3 LU
wb — ? c3 (Db .

The angular frequency ® of the gravitational wave is related to ®, by ® = 2w,. We therefore

have
o L 12:28 (GMAT
N 5 a3 ’

This equation allows us to determine the chirp mass of a binary system from the observation of
the variation of the angular frequency of a gravitational wave.
We may integrate the differential equation and obtain

o) = 55 (GM.\ ¢ 1
- 4 c3 (tc—l‘)%,

where 7. denotes the time of coalescence. This expression is divergent at ¢t = ¢., indicating that
our perturbative treatment is not valid close to coalescence. The amplitude of the gravitational

wave grows as
5

dc (GM \ 3 2 4

—c< ) oy ()7 = 235

p

Wl—

ool

r c3



12.7 Post-Newtonian and post-Minkowskian expansions

Within perturbation theory we may systematically improve our predictions by including higher-
order terms. Two formalisms are frequently used: The post-Newtonian and the post-Minkowskian
expansion.

We start with the post-Newtonian expansion. In the dicussion of the production of gravita-
tional waves we assumed weak gravitational fields and small velocities. If we consider again a
binary system, we defined the Scharzschild radius as

2GM
r =
N c2 9

where M denotes the total mass. The requirement of a weak gravitational field implies

s
— < 1,
Zrb

the requirement of small velocities implies

2
(E) < 1.
C

The virial theorem relates the two small quantities:

<vb ) 2
c N 21”1, '
The post-Newtonian expansion is a simultaneous expansion in the two small quantities

Vp r
— and =
C Zl’b

where we treat vy, /c of the same order as \/rs/(2rp). This is an expansion in the weak gravita-
tional field limit and the small velocity limit. When we derived the quadrupole formula for the
emission of gravitational waves we basically worked in the lowest order of the post-Newtonian
expansion.

For the post-Minkowksian expansion we only expand in the weak gravitational field limit.
There are no restrictions on the velocities. The post-Minkowksian expansion is usually applied

outside the source. We have
I
21”1,

Outside the source we may treat M and r, as fixed parameters and the post-Minkowskian ex-
pansion becomes an expansion in v/G. When we discussed the propagation of gravitational
waves and the detection of gravitational waves we basically worked in the lowest order of the
post-Minkowskian expansion.
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One usually employs the post-Newtonian expansion inside the source and the post-Minkow-
skian expansion outside the source. The reason is as follows: The post-Newtonian expansion is
not valid far away from the source. To see this, we first note that for typical binary systems we
have r, < A, i.e. a hierarchy

rg L rp, < A

We call r;, < r < A the near zone and & < r the far zone. In the far zone, the metric perturbation
is of the form

1
h/JV - ;fluv (Ct - I’) .

Within the post-Newtonian expansion we reconstruct this function from its expansion for small
retardations:

1 1
hy =~ . {f#\’ (ct) —rdo fuv (ct)+ Erza%fyv (ct)+.. ]

For

fu (ct—r) ~ cos (m(t—£>> = cos (ct}:r)

each derivative brings a factor 1/A. Within the post-Newtonian expansion we compute the re-
tarded function as an expansion in r/A. The expansion parameter is smaller one in the near zone,
but not in the far zone. We do not expect the series expansion to converge in the far zone.

On the other hand, the post-Minkowksian expansion assumes only a weak gravitational field.
If the gravitational field is weak inside the source (which we assume to be the case), then it is
also weak outside the source and we may use the post-Minkowksian expansion down to r > rp.
(We do not use the post-Minkowksian expansion inside the source, the reason is simply that it is
too complicated to keep the full velocity dependence.)

Thus the two expansions overlap in the near zone. In the near zone the predictions from the
two expansions can be matched order by order in perturbation theory.
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13 Perturbative quantum gravity

This chapter assumes a knowledge of quantum field theory.

13.1 Natural units
In quantum field theory it is common practice to use natural units
c=1, h=1.

Furthermore it is common practice to rescale the fields and the sources. In the case of electrody-
namics one rescales the fields and the sources as follows:

— 1 -
Enat — Gauss, pnat — / 4anauss,
Var
- l -, A "
Bnat — Gauss , J_hat — / 4n]_Gauss )

Jan

Maxwell’s equations in natural units (and with rescaled fields and sources) read
V.B=0 VE =p,
6 X E + atE = O, 6 X

The Poisson equation in electrostatics reads

AP = —p.
The Lagrange density of electrodynamics is given in natural units by
z = ! F*
- Z uv 9

i.e. without an additional factor 1/(4m). The energy-momentum tensor of electrodynamics has
in natural units likewise no explicit prefactor 1/(4m).
In this chapter we use natural units. Einstein’s equations read in natural units

) 1
Rlcluv - EgluvR - Ag,LlV — 2GT/JV

The action of general relativity reads in natural units

Sen = —%/d“x\/—_g(R-i-ZA).
We set
Kk = V8G,
and hence

2
Sen = —E/d“x\/—g(R-l-ZA).
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13.2 Low-energy effective theory of quantum gravity

In the derivation/motivation of Einstein’s equations we considered the Newtonian limit. The
Newtonian limit is defined by three conditions: (i) the gravitational field is weak, (ii) all velocities
are small compared to the speed of ligth and (iii) the gravitational field is static. In this chapter
we do not impose the last two conditions. We only assume that the gravitational field is weak.
Thus we will treat the gravitational field as a small perturbation of the flat Minkowski metric.

Previously, we only considered classical physics, i.e. we looked at solutions of Einstein’s
equations (in the limit, where the gravitational field is weak). The path integral formalism allows
us to go from classical physics to quantum physics: Instead of just considering the field config-
uration, which happens to be the solution of Einstein’s equations, we now consider all possible
field configurations and weight each field configuration by expiS. This gives us the low-energy
effective theory of quantum gravity, which we may treat with perturbation theory. This gives us
the correct quantum theory at low-energy. The effective theory breaks down at higher energies,
where perturbations to the flat Minkowski metric no longer are small. The situation is similar to
other effective theories like Fermi’s four-fermion theory or chiral perturbation theory.

Within the low-energy effective theory we have a correspondence between gravitational
waves and gravitons, in the same way as we have in quantum electrodynamics a correspon-
dence between electromagnetic waves and photons. We may therefore discuss the scattering of
gravitons. Let us stress that the experimental requirements for measuring the corresponding cross
sections are far beyond the current experimental abilities. However, the discussion of graviton
scattering amplitudes will reveal intriguing connections with Yang-Mills amplitudes.

We denote by

1 0 0 0
0 -1 0 0
w = o o0 -1 o0
0 0 0 —1

the metric of flat Minkowski space. We write
Sw = MNu+ Kh,uv

and treat KA,y as a perturbation. We recall that we defined k = v/8G. The tensor h,y describes
the graviton field. The metric 1,y of flat Minkowski space is a solution of Einstein’s equations
without a cosmological constant:

1
Rl.cluv - EgluvR — 0

We stress that 1,y is not a solution of Einstein’s equations with a non-zero cosmological constant.
Our plan is to use perturbation theory around a solution of Einstein’s euqations, therefore we
restrict ourselves to A = 0. The Einstein-Hilbert action without a cosmological constant reads

2
Spr — /d“xse, % =5 VgR.
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We will treat k/4 as a small coupling.
Let us now consider for 4,y the effective (not necessarily renormalisable) quantum field the-
ory described by the generating functional

Z*) = /%hyv cXp [i/d4x ZLen +ZLor + ZLre + IV hyy |

where Zgr denotes the gauge-fixing term and Zgp the corresponding Faddeev-Popov term. We
will give an expression for the gauge-fixing term later on. The Faddeev-Popov term will only
contribute to loop amplitudes. We will treat the quantum field theory defined by the equation
above perturbatively. Our first goal is the expansion of the Lagrange density in powers of A, (or
equivalently in powers of k). Let us introduce the following abbreviations:

()™ =y Y
(T] mhm )/JV — n,um h'umznllzm h/ls/u an,
(nhn hmhn )NV = " hulyzﬂ“2“3 Pyispuy U hﬂs#m%\/'

With the help of these abbreviations we may express the inverse metric tensor g through 7,

gV = " —xmm)* +1* Mminim)* — 1 mimhnim)* +6 (x*).

The inverse metric tensor is an infinite power series in K. Let us now turn to the determinant
g = det(guv). Also here we introduce a few abbreviations:

( — T]IULUZh'u

2H1

h)
(mimh) = 2Ry, Ry,
(MAmh) = N2 Ry 3 Ry By
(nininhnh) T Py T g s VFSHO P P78 g

We then find for the determinant:
—det (gu) =

k(i) + B <nh>2—§<nhnh>] i [1 ()? — & () <nh>+1<nhnhnh>}

(MAnimh) (k) — (nhnhnhnh)]

Lyt L RV,
| ) = () 00+ (i

Note that this expression is a polynomial in k and terminates with the k*-term. However, by
taking the square root of this expression we again obtain an infinite power series in K:

K2

V=g = 145 i)+ () =2 (nimp)|
+®( ).

k) — 6 (mhm) () + 8 (s
+ 25 | (MA)* — 6 (nimp) (i) + 8 (nimimpn) |
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In order to find the expression for the scalar curvature R let us first consider the Christoffel
symbols

1 K
FK,LN = E (apgvx+avgyK - aKg,uv) = 5 (a,uhVK +avh,u1< - aKh,uv) .

Here we used dgMpgy = 0. The Riemann curvature tensor is then given by
K
RK)\,,UV - 5 (a}baluhw - aKaluh;w + aKath - a}ba\)h](lu) + gén (Féwr‘n}bﬂ - Fgmrn;w) .

The first term is linear in Ay, while the second term is at least quadratic in h,y. For the scalar
curvature we have then

R = g%¢™Rgun-

Since both g"V and /—g are infinite power series in K we obtain for the Lagrange density an
infinite power series in K as well. We write

Len+%Por = Y, LY,
=1

where the term £ (/) contains the field hyy exactly j times. In this way we obtain a theory with
an infinite tower of vertices, ordered by the number of the fields. The term 2£() is given by

2
P — _Enmn“ax(aﬂhw—avhw)-

This term is a total derivative and vanishes in the action after partial integration:

—%n‘("n“ / d*x 9, (Quhy — dvhiy) = 0.

We may therefore ignore this term and start the expansion of the Lagrange density in powers of
K with the term quadratic in /.

Let us add the following remark: If we would have expanded naively the Einstein-Hilbert ac-
tion with a cosmological constant A # 0 around the flat Minkowski metric 1y, we would have
picked up an additional term

2A
_ ?n:uv h,uV

contributing to £(1), coming from the expansion of \/—g. This additional term is not a total
derivative and does not vanish. Terms of this type are called tadpoles and indicate that we ex-
panded around the wrong background field.
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Let us now return to the case A = 0. We consider the term £(?), bilinear in hy. The gauge-
fixing term &Fgr gives a contribution to £ @ A popular gauge choice for gravity is de Donder
gauge. This gauge is defined by

1
££GF — ) ,un'uVC\H
K
where C, is given by

K 1

Cu = NPTygp= Enaﬁ (alpy +Aphay — duhop) = KNP (a“hﬁﬂ B Eaﬂhocf’) '

In this gauge one finds

P2 — %hﬂlﬂz (%nﬂlﬂznVle _ %anlnﬂsz _ %nm\’znﬂzw) Ohy,v, -

Here, we symmetrised the expression in the bracket in (u;,u7) and (vi, V). We are free to do this,
since hyy is symmetric under an exchange of u and v. Let us first consider the tensor structure
(in D space-time dimensions). For

MHHVIV2 lnﬂlVlnﬂz\’z + ln/ﬂ\’zn#zw _ lnm#znVle
2 2 2 ’

1 2
Nuyvivy = D) (anlnﬂsz FMuvaMppvy — ﬁnﬂmznVle)

we have
1
Mmmplpszlszle = 5 (&l\ﬁ &g + &g&’?) :

The propagator of the graviton is therefore given by

1 2 i
2 <n/11\’1n,u2v2 +Nuyva vy — ﬁnm#znwvz) 1?

Let us now turn to the three-graviton vertex. The three-graviton vertex is determined by 206,
After a longer calculation and by using integration-by-parts one finds

PG — l_%nmwn#zvznmvznpzpz + %nmvlnﬂz\’znﬂzvznpzm V2 Vi3 Vay P23
_nﬂlvznﬂz\’znmvlnpzpz + %nmpznpwlnﬂzvznmvz _ %nmpznpwlnﬂzvznmvz

1
uip pP3Vv U v u3V uip p3v v u3V u3p p3v v VvV

% v \% v \% v v v \Y
_H]szznm 2nm 3n/12 1_nmpznp3 3n/12 2n/13 1_n#392np3 3n/11 2nﬂz 1

1
+§ﬂ’“’3p2ﬂp3v3ﬂ’“"“ﬂ“m h,ul\’l (apzhﬂz\’z) (aP3hM3V3) :
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Let us write ) as
3(3) = QMY (817827 83) h#lVlhliszh/J3V37

where OH1#2H3V1V2V3 (91 0,,03) is defined by comparison with the previous equation (2). The
notation d; denotes a derivative acting on the field £, ;v;- The Feynman rule for the three-graviton
vertex is then

Y HIH2H3V1V2V3 (p1,p2,p3) = i Z OMs()Hs(2)Ho(3)Ve(1)Vo(2) Ve (3) (ip0(1)7ip0(2)7ip0(3))-
CES3

The explicit expression for V#1#2#3V1V2V3 ig rather long and not given here. However, one inter-
esting property should be mentioned: The three-graviton vertex can be written as

K
VHIHRHEVIV2YS (pl 71727173) =i Z VHIkaks (Pl 7P27P3) yyivaYs (pl 7P27P3) + o
where the dots denote terms, which vanish in the on-shell limit. The expression V¥1#243 (py. ps, p3)
is the Feynman rule for the colour-stripped cyclic-order three-gluon vertex, given by

VHIH2H3 (P17P27P3) = [gﬂlﬂz (p/i’3 _p/213) _|_g,uz,u3 (p/éll _pgl) _|_g/13/11 (p/é’Z _p/fZ)} )

We see that the three-graviton vertex in the on-shell limit is given (up to a prefactor involving
the coupling) as the square of the cyclic-ordered three gluon vertex. This relates gravity with
non-abelian gauge theories and is known as the double-copy property.

In principle it is possible to derive from the Lagrange density systematically the additional
Feynman rules for vertices with four, five, ..., n gravitons. In addition we need a rule for the
external graviton states. This rule is rather simple. A graviton is a spin 2 particle with two
polarisation states, corresponding to the helicities 4 = +2 and h = —2. We label these states by
++ and ——. We may describe the polarisation tensor of an external graviton by a product of
two polarisation vectors for gauge bosons:

en (P) = & (P)ey(p), &y (p) = & (p)e; (p).

For the calculation of the scattering amplitude with n gravitons we will need all vertices with
up to n gravitons. The scattering amplitude may then be computed through Feynman diagrams.
However, this approach is rather tedious. More efficient methods are based on the “double-
copy’’-property or on-shell recursion formulae.

13.3 Interaction of gravitons with matter

We will model matter by a massive (complex) scalar field. The relevant Lagrangian for the
coupling of a complex scalar field to gravity is given by

Lscalar = \/__g [(a,uq)*) (av¢) g,uv - m2¢*¢} :
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As previously, we expand this Lagrange density in a series in X:
Locatar = Y. L)
scalar — Z scalar*
i=0

(0)

scalar
gs(c?a)lar = (a,uq)*) (8V¢) T]'uv - m2¢*¢

This term gives the propagator of the scalar field:

The zeroth-order term & reads

i
P —m?

The term & (1) reads

scalar

()

scalar —
K

Z [2 (nm#znﬂsm _ n#lﬂsnﬂzm _ n#1#4n/12#3) h#l/iz (% q)*) (aﬂ4¢) _ 2m2n,u1,u2hmy2¢*¢} )

From this term we derive the Feynman rule for the scalar-scalar-graviton vertex:
K
iq 2P0 P 205 P — (201 pa+2m?) iR

where p; denotes the momentum of the outgoing ¢*-particle and p, denotes the momentum of
the outgoing ¢-particle.

We may now calculate the scattering amplitude for the scattering of two scalar particles with
masses m and m’ through the exchange of a graviton. Theres is only one Feynman diagram:

P2 pP3

p1 D4

We obtain for the scattering amplitude

Ky .
a = (5 )il2r Py 28 5 — (2paps +2m) ]
1 i
X 5 [T]#lvmliz\’z My voNiovy _T],Ul,uznvl\’Z} S 2
(p2+p3)

K
X (Z) i [2]9\1/le2 -i-ZPle\l’Z _ (2p1p4 +2m2) nvlvz] ’
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where the first line contains the Feynman rule for the upper scalar-scalar-graviton vertex, the
second line contains the Feynman rule for the graviton propagator and the third line contains the
Feynman rule for the lower scalar-scalar-graviton vertex. The contraction of the indices leads to

2
M= —i <§) ? [(s+u) (m* +m?) —su—m* —m"* — dm*m”] .

Here we introduced the Mandelstam variables
_ 2 2 N 2 2 o 2 2
s=(p1+p2) =(p3+pa)”, t=(p2+p3) " =(p1+p4)°, u=(pi1+p3) =(p2+ps).

Let us now consider the scattering process 019> — 0304 in the non-relativistic limit. In this limit
the spatial components of the four-vectors are small against the energy components. If we only
keep the leading term of each component we have

plll = (_m7_ﬁ1)7 p'lzl = (_m/7_ﬁ2)7 Pg = (m/7ﬁ3)7 pZ = <m7ﬁ4)'

The minus sign in p; and p» is related to the fact that within our convention we consider all
momenta as outgoing. For the Mandelstam variables s and u we obtain

s:(m-l—m’)z, u:(m—m’)z.
For the Mandelstam variable t we obtain
_ — - 2 _ — - 12 . =12
t = —|p3—p2/° = —|pa—p1I” = —|q]".

In the non-relativistic limit the Mandelstam variable ¢ is small against all other variables s, u,
m? und m"?. Thus, we may neglect 7 in the numerator of the scattering amplitude. In the non-
relativistic limit the scattering amplitude simplifies to

K\ 2 8m?m'? Gm*m'?
47 gl 4]
Let us compare this scattering amplitude to the scattering amplitude for the scattering of two
electrically charged fermions with charges Q and Q' and masses m and m’. Within quantum
electrodynamics we obtain in the non-relativistic limit
/ /
mm
d = 422
a*
Let us first consider the signs. From electrodynamics we know that equal-sign charges (QQ’ > 0)
repel each other, while opposite-sign charges (QQ’ < 0) attract each other. From the sign of /il
we conclude that gravitation is always an attractive force.
The two scattering amplitudes agree up to prefactors. The kinematic dependence on the
momenta is given in both cases by the factor 1/|g|? and corresponds in the classicial limit to an
1 /r-potential.
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13.4 The relation between graviton amplitudes and Yang-Mills amplitudes

We finish this lecture with a remarkable relation between scattering amplitudes in three — at
first-sight — different theories. We consider (i) gravity specified by

2
gEH = - F Y\ —gR,
(i1) Yang-Mills theory specified by the Lagrangian
1 a a
££YM - _ZF,“VF ,uV,

and (iii) a bi-adjoint scalar theory specified by the Lagrangian

1 a a }\‘ ayanas g a a a
gbi—adjoint scalar  — 5 (a,uq) b) (a,u¢ b) - yf 1 3fblb2b3¢ 1b1¢ 2b2¢ 3b3-

Let us first comment on the last two theories: We start with Yang-Mill theory. This is a gauge
theory. Gauge theories describe the strong, weak and electromagnetic interactions. We denote
by G the gauge group, this is a Lie group. We consider a non-Abelian gauge group (an example
could be SU(3), which is relevant for the strong interactions). We denote g its Lie algebra and
T“ the generators of the Lie algebra where the index a takes values from 1 to dimG. We use the
conventions

- |
e r?| = iptere, T (1) = S8,

We denote by A/‘j(x) the gauge field. The field describes a massless spin-1 boson. The field
strength is given by

Fo = 04A5 — VAL + g fCALAS,.

The coupling of Yang-Mills theory is denoted by g. The Lagrange density is invariant under
local gauge transformations

TS > U) (T"AZ(X) + éa,,) Ut ),
with
U(x) =exp(—iT0,4(x)).

Let us now consider scattering amplitudes of n gauge bosons to lowest in perturbation theory.
These amplitudes depend on a set of n four-vectors p = (p1, p2,...,pn), describing the mo-
menta of the n gauge bosons and a set of n polarisation vectors € = (€1, ...,€,), describing the
spins/polarisations of the n gauge bosons. A gauge boson is a spin 1 particle and has two spin
states, either the projection of the spin along the momentum is +1 (positive helicity) or —1 (neg-
ative helicity). We denote the corresponding polarisation vectors by 8:{ and €,. We denote the
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(0)

tree amplitude by o, ' (p,€). We may write the amplitude in a form, where we group terms with
the same group-theoretical factors together:

dy (pe) = &2 Y 2Tr(1%0..T%m) A (o,p,€).
GESn/Zn

The expression on the right-hand side is called the colour-decomposition of the Yang-Mills
amplitude. The quantities ASZO) (o, p,€) accompanying the colour factor 2 Tr(7%M...T%®) ) are
called partial amplitudes. Partial amplitudes are gauge-invariant. Closely related are primitive
amplitudes, which for tree-level Yang-Mills amplitudes are calculated from planar diagrams
with a fixed cyclic ordering of the external legs and cyclic-ordered Feynman rules. Primitive
amplitudes are gauge invariant as well. For tree-level Yang-Mills amplitudes the notions of
partial amplitudes and primitive amplitudes coincide. Primitive amplitudes depend on p, € and a
permutation ¢ € §,,. Let us now keep p and € fixed and view A,(,O) (o,p,€) as a function of ¢. For
simplicity we suppress the dependence on p and € and write
A,(,O) (01,...,0p) = A,SO) (o,p,€).

An obvious question related to the colour decomposition is: How many independent primitive
amplitudes are there for n external particles? For a fixed set of external momenta and a fixed
set of polarisations the primitive amplitudes are distinguished by the permutation specifying the
order of the external particles. For n external particles there are n! permutations and therefore n!
different orders. However, there are relations among primitive amplitudes with different external
order. The first set of relations is rather trivial and given by cyclic invariance:

AV 1,20 = AV @01

Cyclic invariance is the statement that only the external cyclic order matters, not the point, where
we start to read off the order. Cyclic invariance reduces the number of independent primitive
amplitudes to (n— 1)!.

The first non-trivial relations are the Kleiss-Kuijf relations. Let

&= (o,00,.,0),  B=(B1,B2s-rBu2-))

be two ordered sequences of numbers, such that

{(1YU{0, ..., 0 U{B1, oo Buaj}U{n} = {1,....n}.

We further set BT = (Br—2—j,---,P2,P1). The Kleiss-Kuijf relations read

AP (1,00, 0y, Bl eeesBaa—j) = (=12 Y AP (1,61,.,60m0,n).

o€, BT

Here, o LU BT denotes the set of all shuffles of & with BT, i.e. the set of all permutations of the
elements of & and BT, which preserve the relative order of the elements of ¢ and of the elements
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of BT. The Kleiss-Kuijf relations reduce the number of independent primitive amplitudes to
(n—2)\.

Apart from cyclic invariance and the Kleiss-Kuijf relations there are in addition the Bern-
Carrasco-Johansson relations (BCJ relations). The fundamental BCJ relations read

n—1 n
y ( y 2p2pj>Aslo)(l,3,...,i,2,i—|—l,...,n—l,n) — 0.

i=2 \j=i+1

Cyclic invariance allows us to fix one external particle at a specified position, say position 1. The
Kleiss-Kuijf relations allow us to fix a second external particle at another specified position, say
position n. The BCJ relations allow us to fix a third external particle at a third specified position,
say position 2. The BCIJ relations reduce the number of independent primitive amplitudes to
(n—3)!. The full set of relations among primitive tree amplitudes in pure Yang-Mills theory is
given by cyclic invariance, Kleiss-Kuijf relations, and the fundamental BCJ relations. Therefore
a basis of independent primitive amplitudes consists of (n — 3)! elements.

Let us now turn to the bi-adjoint scalar theory. This theory consists of a scalar field ¢ in
adjoint representation of two Lie groups G and G. We will denote indices referring to G by
a, indices referring to G by b. Amplitudes in this theory have a double colour decomposition,
similar to the (single) colour decomposition of gauge amplitudes:

m(p) = A2 Y Y 2T (%0, 7%0) 2Tr<Tb6<1>...Tb6<n>) 'Y (6,5,p).
0€S,/Z,6ES,/Zy

The double-ordered amplitude mslo) (0,6, p) is rather simple and explicitly given by

) (0.6.p) = i(-1y sy ] L

GET,(0)Tn(8) ecE(G) e

We denote by J,(0) the set of all ordered tree diagrams with trivalent vertices and external
order 6. Two diagrams with different external orders are considered to be equivalent, if we can
transform one diagram into the other by a sequence of flips. Under a flip operation one exchanges
at a vertex two branches. We denote by J,,(c) NJ,(6) the set of diagrams compatible with the
external orders ¢ and & and by 74i,(0, ) the number of flips needed to transform any diagram
from 7,(c) N J,(6) with the external order G into a diagram with the external order 6. The
number ng;p(6,8) will be the same for all diagrams from J,(6) NJ,(6). For a diagram G we
denote by E(G) the set of the internal edges and by s, the Lorentz invariant corresponding to the
internal edge e.

Let us now consider graviton scattering amplitudes. The polarisation of an external graviton
is described by a product of two spin-1 polarisation vectors

S = e

We may therefore describe the polarisation configuration of n external gravitons by two n-tuples
A A = A A
e = (ell,...,en>, g = <ell,...,sn>,
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where for each graviton the n-tuple € contains one polarisation vector and the n-tuple € the other
polarisation vector. Of course, since either (A;,A;) = (+,+) or (Aj,A;) = (—,—) we have e = €
for gravitons. Thus we denote the tree-level scattering amplitude for n gravitons by /%,(10) (p,€,€)
It will be convenient to factor of the gravitational coupling and we define M,(,O) by

. K\ "2 .
M (p,eg) = (Z> MY (p,e,8).

We recall that there are (n—3)! independent primitive tree-level amplitudes in Yang-Mills theory.
Using cyclic-invariance, the Kleiss-Kuijf relations and the BCJ relations we may fix three exter-
nal particles at specified positions. A basis of the independent cyclic orders is then for example
given by

B = {62(617'“76}1)Esn‘clzl,GZZZ,Gn:n}.
Clearly,
B = (n—3)".

Let us now define a (n — 3)! x (n — 3)!-dimensional matrix mgg, indexed by permutations ¢ and
G from B. We set

Mes = mlgl()) (6767p>'

The entries of the matrix mgg are the double-ordered primitive amplitudes for the bi-adjoint
scalar theory with trivalent vertices encountered in the previous paragraphs. The matrix mgg 1s
invertible and we set

Sos = (m_l)cé'

The Kawai-Lewellen-Tye (KLT) relation reads

My (p,e,E) = Y AV (6,p,8) Sz AY) (5,p,E),

c,6€B

where the sum runs over a basis of cyclic orders. This formula relates the n-graviton amplitude
to Yang-Mills amplitudes and the bi-adjoint scalar amplitudes.
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