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1 Introduction

These lecture notes are based on a two-semester course on “General Relativity and Cosmology”

given at the University of Mainz. The first semester covers the basics of general relativity and

black holes, while the second semester is focussed on cosmology and starts with chapter 8.

Text books:

- R. Sexl und H. Urbantke, Gravitation und Kosmologie, Spektrum Akademischer Verlag

- W. Rindler, Relativity, Oxford University Press

- S. Carroll, Spacetime and Geometry, Addison-Wesley

- J. Peacock, Cosmological Physics, Cambridge University Press

- Ch. Misner, K. Thorne and J. Wheeler, Gravitation, Freeman and Company

- S. Weinberg, Gravitation and Cosmology, John Wiley

- G. Ellis and S. Hawking, The Large-Scale Structure of Space-time, Cambridge University

Press

- G. Börner, The Early Universe - Facts and Fiction, Springer

- L.D. Landau und E.M. Lifschitz, Band II, Klassische Feldtheorie, Akademie-Verlag

- E. Kolb and M. Turner, The Early Universe, CRC Press

- S. Dodelson, Modern Cosmology, Academic Press

- M. Maggiore, Gravitational Waves, Oxford University Press

Lecture notes:

- D. Hooper, Dark Matter, arXiv:0901.4090

- S. Profumo, Astrophysical Probes of Dark Matter, arXiv:1301.0952

- G. Gelmini, The Hunt for Dark Matter, arXiv:1502.01320

- D. Baumann, Lectures on Inflation, arXiv:0907.5424

- E. Flanagan and S. Hughes, The basics of gravitational wave theory, arXiv:gr-qc/0501041
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1.1 History

1638 G. Galilei Principle of relativity

1676 O. Rømer speed of light is finite

Ch. Huygens 1000 earth’s diameter per minute

1687 I. Newton laws of mechanics

1864 J. C. Maxwell Maxwell’s equations

1900 M. Planck h: Planck’s constant

1905 A. Einstein special relativity

1915 A. Einstein general relativity

1919 A. Eddingtons experimental confirmation of general relativity

1.2 Newtonian mechanics

Newton’s laws:

1. A free particle moves with constant velocity along straight lines.

2. The force acting on a particle equals the product of its mass and its acceleration:

~F = m~a.

3. The forces of action and reaction have the same absolute value and opposite directions. If

particle A exerts a force ~F on particle B, then particle B exerts a force −~F on particle A.

Remark: Usually we state physical laws with respect to a reference system. A rigid reference

system is an (imaginary) extension of a rigid body. For example, the earth defines a rigid refer-

ence system in the complete space, consisting of all points which are fixed relatively to the earth

and among themselves. A concrete example is given by the positions of geostationary satellites.

Among all rigid reference systems the inertial systems play a special role. Inertial system are

by definition reference systems, where free particles move with constant velocity along straight

lines. The inertial systems are the reference systems where Newton’s laws are valid.

Remark: Newton postulated the existence of an absolute space, which he identified with the

centre-of-mass system of the solar system. In addition, Newton assumed the concept of an abso-

lute time.

Galilei transformations: Given two inertial systems K and K′, such that the origin of K moves

with velocity v along the x-axis of K′, the Galilei transformation reads

x′ = x+ vt, y′ = y, z′ = z, t ′ = t.
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2 Special relativity

2.1 Postulates

Inertial system: Reference system, in which a force-free body moves with constant velocity.

The relative velocity of one inertial system against another inertial system is constant.

Principle of relativity: The law of nature have the same form in all inertial systems.

Principle of a finite signal speed (i.e. there exists a maximal speed of action propagation).

The signal speed has the same value in every inertial system and equals the speed of light

c = 2.99792 ·108m/s.

The limit case of classical mechanics: c → ∞. Within classical mechanics we have Galilei’s

principle of relativity: Spatial relations depend on the reference system. Time is considered as

an absolute quantity.

Within special relativity time is no longer an absolute quantity. Example: Consider two iner-

tial systems K and K′, where K moves relative to K′ along the x′-axis. Assume further that the

direction of the x-axis in K coincides with the direction of the x′-axis in K′. Assume now that

from a point A on the x-axis one emits a signal in the positive and negative x-direction. Since

the signal speed in system K equals c in any direction, the signal will reach two points B and C,

which are located at equal distance from A, but in opposite directions, at the same time. However,

these two events (arrival of the signal at point B, respectively C) do not occur at the same time

for an observer in system K′.

2.2 Distance, metric and four-vectors

An event is characterised by the spatial position, where it takes place and by the time, when it

takes place. Thus, an event is characterised by three spatial coordinates and one time coordinate,

which together form a four-dimensional space.

Consider again the reference systems K and K′: Consider two events: The first event is de-

fined by emitting at the position (x1,y1,z1) at the time t1 a light signal. This light signal arrives at

time t2 at position (x2,y2,z2), which defines the second event. Since the signal propagates with

the speed of light, it has travelled the distance

c(t2− t1).

On the other hand, the distance is of course also given by
√

(x1 − x2)2 +(y1 − y2)2 +(z1 − z2)2.
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Therefore we have:

c2(t2− t1)
2 − (x1 − x2)

2 − (y1 − y2)
2 − (z1 − z2)

2 = 0.

Let us denote in the system K′ the coordinates of the first event by x′1,y
′
1,z

′
1, t

′
1 and the coordinates

of the second event by x′2,y
′
2,z

′
2, t

′
2. Since the speed of light has the same value c in all inertial

coordinate systems, we have with the same argumentation as above

c2(t ′2− t ′1)
2 − (x′1 − x′2)

2 − (y′1 − y′2)
2 − (z′1 − z′2)

2 = 0.

Definition: Denote by x1,y1,z1, t1 and x2,y2,z2, t2 the coordinates of two arbitrary events. We

call the quantity

s12 =
√

c2(t2− t1)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2

the distance between these two events.

From the invariance of the speed of light it follows that if the distance between two events van-

ishes in one reference system, it will also vanish in all other reference systems.

More general we have: The distance between two events is the same in all reference systems.

Proof: We first consider two events, which are separated by an infinitesimal distance

ds2 = c2dt2−dx2 −dy2 −dz2.

The vanishing of the infinitesimal distance ds = 0 in one inertial system implies the vanishing of

the infinitesimal distance ds′ = 0 in any other system. ds and ds′ are infinitesimal quantities of

the same order. These two facts imply that they have to be proportional:

ds2 = a ds′2.

The constant of proportionality a cannot depend on space- and time coordinates, as this would

contradict the homogeneity of space-time. Furthermore, a cannot depend on the direction of

the relative velocity between the two reference systems, as this would contradict the isotropy of

space. This implies that a can only depend on the absolute value of the relative velocity between

the two inertial systems. Consider now the reference systems K, K1 and K2. Let ~v1 be the

velocity of K1 relative to K, let ~v2 be the velocity of K2 relative to K and let ~v12 be the velocity

of K2 relative to K1. We have

ds2 = a(v1)ds2
1, ds2 = a(v2)ds2

2, ds2
1 = a(v12)ds2

2,

and therefore

a(v2)

a(v1)
= a(v12).
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Since v12 depends on the angle between ~v1 and ~v2, so does the right-hand side. However, the

left-hand side does not depend on the angle. It follows, that a(v) must be a constant, and from

the same equation it follows that the constant must be equal to 1. Therefore

ds2 = ds′2,

and the equality of the infinitesimal distances implies the equality of finite distances:

s = s′.

s2
12 > 0 time-like distance;

there exists a reference systems, where the events 1 and 2 occur at the same spatial

position.

s2
12 < 0 space-like distance;

there exists a reference systems, where the events 1 and 2 occur at the same time.

s2
12 = 0 light-like distance;

light cone

Two events can only be causally connected, if the distance between them satisfies s12 ≥ 0. This

follows immediately from the fact, that no casual action can propagate with a speed greater than

the speed of light.

Four-vectors: We may view the coordinates (ct,x,y,z) of an event as the components of a vector

in a four-dimensional space.

x0 = ct, x1 = x, x2 = y, x3 = z.

xµ = (x0,x1,x2,x3),

= (x0,~x).

We use greek indices µ,ν, ..., which take the values 0,1,2,3, to denote the components of a four-

vector. Latin indices i, j, ..., which take the values 1,2,3, are used to denote the components of a

spatial three-vector.

The distance of two evens xa and xb is given by

s2
ab = (x0

a − x0
b)

2 − (x1
a − x1

b)
2 − (x2

a − x2
b)

2 − (x3
a − x3

b)
2.

We define the metric tensor gµν by

gµν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1






.
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This allows us to write the distance as

s2
ab =

3

∑
µ=0

3

∑
ν=0

gµν

(
xµ

a − x
µ
b

)
(xν

a − xν
b) .

Einstein’s summation convention: Sums as above are often written without the summation

sign. In general, Einstein’s summation convention is the rule, that indices which occur in pairs

imply a summation over all values of this index. The summation sign is not written explicitly.

For each pair of indices, one index must occur as a subscript, the other as a superscript.

Therefore

s2
ab = gµν (xa − xb)

µ (xa − xb)
ν .

We call a four-vector xµ with an upper index a contravariant four-vector, a four-vector xµ with a

lower index is called a covariant four-vector. The relation between covariant and contravariant

four-vectors is given by

xµ = gµνxν, xµ = gµνxν, gµν =
(
g−1
)µν

= diag(1,−1,−1,−1).

Thus, we may write the distance equally well as

s2
ab = (xa − xb)µ (xa − xb)

µ = (xa − xb)
µ (xa − xb)µ .

Remark: The geometry defined by the quadratic form gµν = diag(1,−1,−1,−1) is not an Eu-

clidean geometry. One speaks of a pseudo-Euclidean geometry. The special case of a four-

dimensional space with the metric diag(1,−1,−1,−1) is known as Minkowski space.

2.3 Proper time

Consider the following situation: We observe from an inertial system K′ a moving clock. The

motion of the clock may be arbitrary. We may approximate the motion of the clock by sequence

of motions with constant velocity. Thus, we may associate for every time t an inertial system K

to the clock, such that the clock is at rest in K at time t. (If the clock is accelerating, we will

need different inertial systems at different times.) In the original system K′ the clock travels in

the infinitesimal time interval dt ′ the spatial distance

√

dx′2 +dy′2 +dz′2.

We may ask, what time the clock displays in system K at the end of this infinitesimal trajectory.

Phrased differently, we ask what is the infinitesimal time interval dt in K. From the invariance of

the distance we have

c2dt ′2 −dx′2 −dy′2 −dz′2 = c2dt2

10



and therefore

dt = dt ′

√

1− dx′2 +dy′2 +dz′2

c2dt ′2
= dt ′

√

1− v2

c2
.

Integration gives for an arbitrary motion

t2 − t1 =

t ′2∫

t ′1

dt ′
√

1− v2

c2
.

With t1 = t ′1 = 0 this simplifies to

t2 =

t ′2∫

0

dt ′
√

1− v2

c2
.

t2 is called the proper time of the moving object.

Remark 1: The proper time of a moving object is always smaller than the corresponding time

interval in a non-moving reference system.

Remark 2: This is no contradiction to the principle of relativity, since for a comparison of the

clocks we need one clock in the moving system but several clocks in the non-moving system.

Remark 3: Also a clock, whose spatial motion is given by a closed curve, does not contra-

dict the principle of relativity. Such a clock cannot be at rest in a single inertial systems at all

times.

2.4 Lorentz transformations

Let K and K′ be two inertial systems. We would like to have a formula which allows to compute

the coordinates x′,y′,z′, t ′ of an event in the inertial system K′, given that we know the coordi-

nates x,y,z, t of the same event in system K.

Recall: The Galilei transformation:

x′ = x+ vt, y′ = y, z′ = z, t ′ = t.

System K moves with velocity v relative to system K′ along the x-axis.

The relativistic generalisation has to keep the distance invariant. This implies that we only have

to consider translations and rotations. Translations correspond to a redefinition of the origin of

the coordinate system and are not new. We therefore focus on rotations. Each rotation in the
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four-dimensional space can be decomposed into the six basic rotations in the planes xy, yz, zx,

tx, ty and tz. Basic rotations in the first three planes (xy, yz and zx) correspond to ordinary spatial

rotations. Let us therefore consider as an example a rotation in the tx-plane. This leaves the y-

and z-coordinates unchanged. The rotation has to keep the difference

ct2 − x2

invariant. Due to the pseudo-Euclidean metric with a minus sign we either obtain an imaginary

rotation angle or (converting sin and cos with imaginary arguments to sinh and cosh) hyperbolic

functions:

ct ′ = xsinhφ+ ct coshφ,

x′ = xcoshφ+ ct sinhφ,

or in four-vector notation

x′µ = Λ
µ

νxν,

with

Λ
µ

ν =







coshφ sinhφ 0 0

sinhφ coshφ 0 0

0 0 1 0

0 0 0 1






.

Determination of φ: We consider the origin of the system K in K′:

ct ′ = ct coshφ, x′ = ct sinhφ,

therefore

tanhφ =
x′

ct ′
=

v

c
.

Thus

sinhφ =
v
c

√

1− v2

c2

, coshφ =
1

√

1− v2

c2

.

In the limit v ≪ c we recover the Galilei transformation.

Common abbreviations:

β =
v

c
, γ =

1
√

1− v2

c2

.

Length contraction: A rod of length l, which is at rest in system K and oriented parallel to the

x-axis, has in system K′ the length

l′ = l

√

1− v2

c2
.

(In order to prove this formula determine the x′-coordinates x′1 and x′2 of the two end points of

the rod at a common time t ′ in system K′.)
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2.5 Transformation of the velocity

Assume that system K moves relative to system K′ with the velocity V in the direction of the

positive x-axis. Let the velocity of a particle in system K be

vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt
,

and denote the corresponding velocity in system K′ by

v′x =
dx′

dt ′
, v′y =

dy′

dt ′
, v′z =

dz′

dt ′
.

The infinitesimal quantities are related by the Lorentz transformation

dx′ = γ(dx+V dt) , dy′ = dy, dz′ = dz, dt ′ = γ

(

dt +
V

c2
dx

)

.

Division of the first three equations by the fourth equation gives:

v′x =
vx +V

1+ vxV

c2

, v′y =
vy

γ(1+ vxV

c2 )
, vz =

vz

γ(1+ vxV

c2 )
.

Special case: vx = v, vy = vz = 0:

v′ =
v+V

1+ vV
c2

.

If we calculate v′ with the help of this formula, the result will always be smaller or equal than c.

2.6 The four-velocity

The four-velocity of a particle is the four-vector

uµ =
dxµ

ds
,

where ds is the infinitesimal proper time interval in units of length. Explicitly, ds is given by

ds = cdt

√

1− v2

c2
,

where v is the usual (spatial) speed of the particle. Therefore

u1 =
dx1

ds
=

dx1

cdt

√

1− v2

c2

=
vx

c

√

1− v2

c2

.
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Repeating this for all components we find

uµ =




1

√

1− v2

c2

,
~v

c

√

1− v2

c2



 .

The components of uµ are not independent, but satisfy the relation

uµuµ = 1.

We may interpret the four-velocity geometrically as a unit four-vector, tangent to the world line

of the particle.

2.7 The Lorentz group

Group axioms: Let G be a non-empty set with a composition. G is a group, if the following

conditions are satisfied:

• Associative law: a · (b · c) = (a ·b) · c.

• Existence of a neutral element e: e ·a = a.

• Existence of an inverse element a−1 for each element a: a−1 ·a = e.

Example: Matrix groups.

- GL(n,R), GL(n,C): Group of invertible n×n matrices: det M 6= 1

- SL(n,R), SL(n,C): det M = 1;

- O(n) : MMT = 1

- SO(n): MMT = 1 and det M = 1.

- U(n): MM† = 1.

- SU(n): MM† = 1 and det M = 1.

Definition of the Lorentz group:

Matrix group, which leaves the metric tensor gµν = diag(1,−1,−1,−1) invariant:

ΛT gΛ = g,

or equivalently in greater detail with indices:

Λ
µ
σgµνΛν

τ = gστ.

14



This group is denoted by O(1,3). It is easy to see that

(det Λ)2 = 1,

and hence

det Λ = ±1.

If in addition det Λ = 1 holds, we call this group the proper Lorentz group and denote it by

SO(1,3).
A further distinction can be made depending on whether the time direction is conserved or not.

If

Λ0
0 ≥ 1,

the time direction is conserved and we call the corresponding group the orthochronous Lorentz

group. If on the other hand we have

Λ0
0 ≤ −1,

then the time direction is reversed.

Remark:

∣
∣Λ0

0

∣
∣ ≥ 1

follows from Λ
µ
σgµνΛν

τ = gστ for σ = τ = 0:

(
Λ0

0

)2 −
3

∑
j=1

(

Λ
j
0

)2

= 1.

In summary we find that the Lorentz group consists of four connected components. The con-

nected components are characterised by the values

det Λ and Λ0
0.

Among the four connected components the proper orthochronous Lorentz group defined by

Λ
µ
σgµνΛν

τ = gστ, det Λ = 1, Λ0
0 ≥ 1,

is of particular interest. (The other three connected components are not groups, as they do not

contain the neutral element.) We may obtain the other three connected components from the

composition of an element of the proper orthochronous Lorentz group and the two discrete trans-

formations of time reversal

Λ
µ

ν =







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






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and space inversion

Λ
µ

ν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1






.

The Poincaré group: The Poincaré group consists of all elements of the Lorentz group and the

translations. The coordinates transform according to

x′µ = Λ
µ

νxν +bµ.

2.8 Tensors in Minkowski space

Let V be a vector space and G a group. We say G acts on V , if there is a map

G×V →V

such that

g1 (g2v) = (g1g2)v.

In this case we call V a representation of G.

Example 1: Let V be a n-dimensional vector space and G = GL(n,R). The map G×V → V

is defined as the multiplication of a matrix with a column vector:

v′i =
n

∑
j=1

Mi jv j

example 2: Take V to be Minkowski space and G the Lorentz group.

x′µ = Λ
µ
νxν, (Einstein’s summation convention)

Example 3: Let V be a n2-dimensional vector space and G = GL(n,R). We write elements of V

as vi j with 1 ≤ i, j ≤ n. G acts on V as follows:

v′i j =
n

∑
k=1

n

∑
l=1

MikM jlvkl

We call vi j a rank 2 tensor.

Example 4: Let V be a 16-dimensional vector space and G the Lorentz group.

T ′µν
= Λ

µ
ρΛν

σT ρσ
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T µν is a rank 2 tensor.

Example 5: Let V be a 64-dimensional vector space and G the Lorentz group.

T ′µνρ
= Λ

µ
σΛν

κΛ
ρ
λT σκλ

T µνρ is a rank 4 tensor.

Let us now give the general definition: Consider a vector space endowed with a group action. A

tensor is an element of this vector space. The rank of the tensor is the number of copies of the

group element required to define the group action.

Let us now specialise to Minkowski space and the Lorentz group. We also define pseudoten-

sors. Pseudotensors transform as tensors under all transformations of the proper orthochronous

Lorentz group. However, the transformation law of a pseudotensor differs by a minus sign from

the transformation law of a tensor for the two discrete transformations of time reversal and spa-

tial inversion.

We call a rank 0 pseudotensor a pseudoscalar and we call a rank 1 pseudotensor an axial vector.

Within special relativity we distinguish in addition between upper and lower indices (contravari-

ant and covariant components). The relation between upper and lower indices is again provided

by the metric tensor:

T
µ
ν = gνρT µρ, Tµν = gµρgνσT ρσ

Tensors with particular symmetry properties: A tensor is called symmetric in two indices µ and

ν, if

S...µ...ν... = S...ν...µ....

A tensor is called anti-symmetric in two indices µ and ν, if

A...µ...ν... = −A...ν...µ....

In particular we have for an anti-symmetric rank 2 tensor A00 = A11 = A22 = A33 = 0.

Examples of tensors appearing within special relativity:

Rank 1: Position vector xµ, momentum vector pµ.

Rank 2: Metric tensor gµν.
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Rank 4: Total anti-symmetric tensor (Levi-Civita tensor) εµνρσ. The total anti-symmetric tensor

is defined by

ε0123 = 1,

εµνρσ = 1 if (µ,ν,ρ,σ is an even permutation of (0,1,2,3),

εµνρσ = −1 if (µ,ν,ρ,σ is an odd permutation of (0,1,2,3),

εµνρσ = 0 otherwise.

The total anti-symmetric tensor is a pseudotensor, the components remain unchanged under time

reversal and spatial inversion.

Dual tensors: Let Fµν be an anti-symmetric rank 2 tensor. The pseudotensor

F̃µν =
1

2
εµνρσFρσ

is called the dual tensor of Fµν.

A similar concept applies to vectors Aµ: The rank 3 tensor

Ãµνρ = εµνρσAσ

is called the dual tensor of Aµ.

2.9 Relativistic mechanic

The essential elements of classical mechanics: Within the Lagrange formalism one considers

generalised coordinates qi(t) and the corresponding generalised velocities q̇i(t) =
∂
∂t

qi(t).
Lagrange function:

L(qi, q̇i)

Action:

S [qi(t)] =

tb∫

ta

dt L(qi, q̇i)

Principle of least action: A particle moves in such a way that the action is extremal.

Action for a free matter particle:

- has to be invariant under Lorentz transformations,

- must only contain first order differentials.

This implies that the action for a free particle is of the form

S = −α

b∫

a

ds.
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The path of integration is along the worldline of the particle between two events a and b. In

order to have a minimum for the action S, we must require α > 0. In order to see this, we first

consider a particle at rest, for which ds = cdt. Let us then consider a trajectory where the particle

is moving. We write

S =

tb∫

ta

L dt,

where L is called the Lagrange function. With

ds = cdt

√

1− v2

c2

we obtain

L = −αc

√

1− v2

c2
.

We would like to have that the trajectory where the particle is at rest, is a minimum of the action.

Since

√

1− v2

c2 ≤ 1 it follows that we must require α > 0. Let us now consider the classical limit:

lim
c→∞

L = const+
1

2
mv2.

We expand L in v/c:

L = −αc

√

1− v2

c2
≈−αc+

αv2

2c

Therefore α = mc and

S =−mc2

tb∫

ta

dt

√

1− v2

c2
, L =−mc2

√

1− v2

c2
.

The three-momentum of a particle is the vector

~p =
∂L

∂~v
=

m~v
√

1− v2

c2

with ~v = ~̇x,

(

recall : pi =
∂L

∂q̇i

)

.

The energy of a particle is the quantity

E = ~p~v−L, (recall : E = piq̇i −L) ,

=
m~v

√

1− v2

c2

~v+mc2

√

1− v2

c2
=

m
√

1− v2

c2

(
v2 + c2 − v2

)
=

mc2

√

1− v2

c2

,
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For small velocities we obtain

E ≈ mc2 +
1

2
mv2.

mc2 is called the rest energy.

Derivation of the equation of motion for a free particle in four-vector notation: We start from

S = −mc

b∫

a

ds.

Variation of the coordinates:

xµ → xµ +δxµ

Principle of variation:

δ

δxµ(t)
S [xµ(t)] = 0.

Auxiliary calculation:

δ

δxµ
ds =

δ

δxµ

√

dxνdxν =
1

2
√

ds2
2dxν

δ

δxµ
dxν = uν

δ

δxµ
dxν

Therefore

δds = uνδdxν

Further

δS = −mc

b∫

a

δds =−mc

b∫

a

uνδdxν =−mc

b∫

a

uν
dδxν

ds
ds

= −mc uνδxν|ba +mc

b∫

a

(
d

ds
uν

)

δxνds

We therefore have

d

ds
uν = 0,

i.e. the free motion of a particle is a motion with constant four-velocity.

Definition of the contravariant momentum four-vector:

pµ = (E/c,~p) =




mc

√

1− v2

c2

,
m~v

√

1− v2

c2



 = mcuµ

Remark: p2 is Lorentz invariant.
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3 Electrodynamics

3.1 Maxwell’s equations

Maxwell’s equations:

~∇ ·~B(t,~x) = 0,

~∇×~E(t,~x)+
1

c

∂

∂t
~B(t,~x) = 0,

~∇ ·~E(t,~x) = 4πρ(t,~x),

~∇×~B(t,~x)− 1

c

∂

∂t
~E(t,~x) =

4π

c
~j(t,~x).

Potentials:

~E(t,~x) = −~∇Φ(t,~x)− 1

c

∂

∂t
~A(t,~x),

~B(t,~x) = ~∇×~A(t,~x).

Gauge transformation:

Φ′(t,~x) = Φ(t,~x)− 1

c

∂

∂t
χ(t,~x),

~A′(t,~x) = ~A(t,~x)+~∇χ(t,~x),

Lorentz force:

~F(t,~x) = q

(

~E(t,~x)+
~v

c
×~B(t,~x)

)

.

Equivalently we may present electrodynamics in a manifest covariant form. We recall the for-

mula for the four-velocity

uµ =
dxµ

ds
=




1

√

1− v2

c2

,
~v

c

√

1− v2

c2



= γ

(

1,
1

c
~v

)

.

ds =
c

γ
dt,

We introduce the four-acceleration:

wµ =
duµ

ds

The relativistic generalisation of Newton’s law ~F = m~a:

mc2 d

ds
uµ = Kµ.
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Contraction with uµ gives:

mc2uµ
d

ds
uµ =

1

2
mc2 d

ds
u2
︸︷︷︸

1

= 0,

and therefore

Kµuµ = 0.

For the spatial components we have

~K = γ~F

We apply this to the Lorentz force:

mc2 d

ds
~u = mc2 d

ds

(

γ
~v

c

)

= qγ

(

~E +
~v

c
×~B

)

.

For the time component we have

uµKµ = γK0 − γ

c
~v~K = 0,

K0 =
1

c
~v~K,

and therefore

mc2 d

ds
u0 = mc2 d

ds
γ =

1

c
qγ~E~v.

In summary we have:

mc2 d

ds
(γ) = γq~E ·~v

c
,

mc2 d

ds

(

γ
~v

c

)

= γq

(

~E +
~v

c
×~B

)

.

The left-hand side may be written covariantly as

mc2 d

ds
uµ

Let us now set

Fµν =







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0






.
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With this definition we have

Fµνuν =







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0













γ

−γ vx

c

−γ vy

c

−γ vz

c







=







γ~E~v
c

γEx + γ
c
(vyBz − vzBy)

γEy + γ
c
(vzBx − vxBz)

γEz + γ
c
(vxBy − vyBx)







= γ

(
~E~v

c
~E + ~v

c
×~B

)

.

Thus we arrive at

mc2 d

ds
uµ = qFµνuν

The left-hand side transforms as a contravariant four-vector under Lorentz transformations, uν

transforms as a covariant four-vector. This implies that Fµν must transform as a contravariant

rank 2 tensor:

F ′µν
= Λ

µ
ρΛν

σFρσ

We call Fµν the field strength tensor. We obtain the electric and the magnetic field from Fµν

through

E i = F i 0 =−F0 i,

Bi = −1

2

3

∑
j,k=1

εi jkF jk.

Remark: Fµν is anti-symmetric:

Fµν = −Fνµ.

Summary of the covariant formulation:

Definition of the field strength tensor:

Fµν =







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0







Maxwell’s equations:

∂λFµν +∂µFνλ +∂νFλµ = 0,

∂µFµν =
4π

c
jν,
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with jµ = (cρ,~j).
Remark: With the help of the total anti-symmetric tensor εµνρσ and due to the anti-symmetry of

Fµν we may rewrite the first equation as

εµνρσ∂νFρσ = 0.

Lorentz force:

mc2 d

ds
uµ = qFµνuν

Four-potential:

Aµ =
(

Φ,~A
)

,

Fµν = ∂µAν −∂νAµ.

Inhomogeneous Maxell’s equation:

✷Aν −∂ν∂µAµ =
4π

c
jν.

Lorenz gauge:

∂µAµ = 0

Inhomogeneous Maxell’s equation in Lorenz gauge:

✷Aν =
4π

c
jν.

3.2 Lagrange density for the interaction of a particle with the electromag-

netic field

Recall: Action for a free particle:

Sparticle = −mc

b∫

a

ds

For the interaction between a particle and the electromagnetic field we set

Sinteraction = −q

c

b∫

a

dxµ Aµ(x).
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For a particle we have to consider

Sparticle +Sinteraction = −mc

b∫

a

ds− q

c

b∫

a

dxµ Aµ(x).

Variation of the coordinates:

xµ → xµ +δxµ

Principle of variation:

δ
(
Sparticle +Sinteraction

)
= 0.

Recall

δds = uνdδxν.

Furthermore

δ
(
Aµdxµ

)
= Aµdδxµ +

(
δAµ

)
dxµ

and

δAµ = Aµ(x+δx)−Aµ(x) =
(
∂νAµ

)
δxν.

Hence

δ
(
Sparticle +Sinteraction

)
= −mc

b∫

a

δds− q

c

b∫

a

δ(dxµ Aµ(x))

= −mc

b∫

a

uνdδxν − q

c

b∫

a

Aµdδxµ − q

c

b∫

a

(
δAµ

)
dxµ

= mc

b∫

a

(
d

ds
uν

)

δxνds− q

c

b∫

a

Aµdδxµ − q

c

b∫

a

(
∂νAµ

)
dxµδxν

We also have

b∫

a

(
∂νAµ

)
dxµδxν =

b∫

a

(
∂νAµ

)
uµδxνds,

b∫

a

Aµdδxµ =

b∫

a

Aµ
d

ds
δxµds =−

b∫

a

(
d

ds
Aµ

)

δxµds =−
b∫

a

∂Aµ

∂xν

∂xν

ds
δxµds

= −
b∫

a

∂νAµuνδxµds =−
b∫

a

∂µAνuµδxνds
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and therefore

δ
(
Sparticle +Sinteraction

)
=

b∫

a

(

mc
d

ds
uν+

q

c
∂µAνuµ − q

c
∂νAµuµ

)

δxνds

=

b∫

a

(

mc
d

ds
uν+

q

c
Fµνuµ

)

δxνds.

It follows that we must have

mc
d

ds
uν +

q

c
Fµνuµ = 0,

and therefore

mc2 d

ds
uµ = qFµνuν.

3.3 Lagrange density of electrodynamics

We make the ansatz that the action of electrodynamics consists of a term describing free fields

and a term describing the interaction of the fields with matter.

S = Sfields +Sinteraction

In order to construct Sinteraction we generalise the expression of the interaction term for a point

source towards a general charge density:

Sinteraction,point source = −q

c

b∫

a

dxµ Aµ(x).

The charge density and the current density of a point source with trajectory~x′(t) read:

ρ(t,~x) = qδ3(~x−~x′(t)),
~j(t,~x) = q~v(t)δ3(~x−~x′(t)).

Therefore

jµ(x) =
(

cρ,~j
)

= qc

∫
ds uµ δ4

(
x− x′(s)

)

and

Sinteraction = −∑
i

qi

c

b∫

a

dxµ Aµ(x)

→ − 1

c2

∫
d3x cρ(x)

∫
ds

dxµ

ds
Aµ(x) =− 1

c2

∫
d4xcρ(x)

dxµ

ds
︸ ︷︷ ︸

jµ(x)

Aµ(x)

= − 1

c2

∫
d4x jµ(x) Aµ(x).
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Let us now turn to the free field part. For the construction of Sfields we require:

• Lorentz invariance.

• Superposition principle, i.e. the field equations should be linear differential equations.

This implies that the integrand of Sfields has to be no higher than quadratic in the field

components.

• Physically unique, i.e. gauge invariant. This translates to the requirement that the integrand

should be expressed in terms of Fµν and not Aµ.

The simplest ansatz is given by

Sfields = − 1

16πc

∫
d4xFµνFµν.

Let us therefore consider

Sfields+Sinteraction = − 1

16πc

∫
d4xFµν(x)F

µν(x)− 1

c2

∫
d4x jµ(x)Aµ(x).

With Fµν = ∂µAν −∂νAµ we obtain

Sfields +Sinteraction =
∫

d4x

[

− 1

8πc

(
∂µAν

)
(∂µAν)+

1

8πc

(
∂µAν

)
(∂νAµ)− 1

c2
jµ(x)Aµ(x)

]

.

The Lagrange density reads

L = − 1

8π

(
∂µAν

)
(∂µAν)+

1

8π

(
∂µAν

)
(∂νAµ)− 1

c
jµ(x)Aµ(x).

The Euler-Lagrange equations read

∂L

∂Aν
−∂µ

∂L

∂
(
∂µAν

) = 0.

Therefore

−1

c
jν(x)+

1

4π
∂µ (∂

µAν)− 1

4π
∂µ (∂

νAµ) = 0,

1

4π
∂µFµν =

1

c
jν(x),

∂µFµν =
4π

c
jν(x).
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4 Conservation laws

4.1 Noetherian conserved quantities

Consider the functional

I [ψ] =
∫

Σ

d4x L
(
ψ(x),∂µψ(x)

)
.

Let us first consider a transformation of the fields, which leaves L strictly invariant. Assume that

this transformation is given by

ψ(x) → ψ′(x) = hα(ψ(x)),

with

h0(ψ(x)) = ψ(x).

For α close to zero we have

δψ = ψ′−ψ = α
d

dα
hα(ψ(x))

∣
∣
∣
∣
α=0

.

For the variation of the Lagrange density we obtain

δL =
∂L

∂ψ
δψ+

∂L

∂
(
∂µψ

)∂µδψ

=
∂L

∂ψ
δψ+∂µ

(

∂L

∂
(
∂µψ

)δψ

)

−∂µ

(

∂L

∂
(
∂µψ

)

)

δψ

=

[

∂L

∂ψ
−∂µ

∂L

∂
(
∂µψ

)

]

δψ+∂µ

(

∂L

∂
(
∂µψ

)δψ

)

If ψ is a solution of the Euler-Lagrange equations then the first term vanishes. Under the assump-

tion that the Lagrange density is invariant under the transformation hα, i.e. δL= 0, it follows

that then also the second term vanishes, e.g.

∂µJµ(x) = 0,

where the conserved current is given by

Jµ(x) =
∂L

∂
(
∂µψ

)δψ.

We may generalise Noether’s theorem to transformations, which leave the Lagrange density

invariant up to gauge terms, i.e. situations where we have

L
(
A′

µ,∂µA′
ν

)
= L

(
Aµ,∂µAν

)
+

1

c
jµ(x)∂µΛ(x)
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instead of

L
(
A′

µ,∂µA′
ν

)
= L

(
Aµ,∂µAν

)
.

For ∂µ jµ = 0 we may replace jµ(x)∂µΛ(x) by

∂µ ( jµ(x)Λ(x)) .

The additional term is a divergence and gives a surface term in the action integral. Since the

variation of the fields vanishes there, the surface term yields zero and nothing changes.

4.2 Translational invariance and the energy-momentum tensor

Let us consider again the Lagrange density

L
(
ψ(x),∂µψ(x)

)
,

which does not depend explicitly on x. Under translations

xµ′ → xµ +αcµ,

we have

ψ(x) → ψ′(x′) = ψ(x+αc) = ψ(x)+δψ(x),

δψ = ψ′−ψ = α
d

dα
ψ(x+αc)

∣
∣
∣
∣
α=0

= αcµ∂µψ(x).

Furthermore

δL = L
(
ψ′(x′),∂µψ′(x′)

)
−L

(
ψ(x),∂µψ(x)

)
= αcµ∂µ

L(ψ(x),∂νψ(x)) .

Therefore we have

δL = ∂µ

(

∂L

∂
(
∂µψ

)δψ

)

= ∂µ

(

∂L

∂
(
∂µψ

)αcµ∂µψ(x)

)

.

This implies

αcν∂ν
L−∂µ

(

∂L

∂
(
∂µψ

)αcν∂νψ(x)

)

= 0,

αcν

[

gνµ∂µL−∂µ

(

∂L

∂
(
∂µψ

)∂νψ(x)

)]

= 0,

αcν∂µ

[

gνµ
L−

(

∂L

∂
(
∂µψ

)∂νψ(x)

)]

= 0,
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We call the tensor field

T µν =

(

∂L

∂
(
∂µψ

)∂νψ(x)

)

−gµν
L

the canonical energy-momentum tensor. T µν satisfies the four conservation laws

∂µT µν = 0.

Remark: If several fields ψ(i) appear in the Lagrange density, we sum over all fields:

T µν =
N

∑
i=1

(

∂L

∂
(
∂µψ(i)

)∂νψ(i)(x)

)

−gµν
L

Remark: If we add to T µν a term

∂ρBµρν,

where Bµρν is anti-symmetric in µ and ρ,

Bρµν = −Bµρν,

we equally have

∂µ

(
T µν +∂ρBµρν

)
= 0.

This implies that the canonical energy-momentum tensor is not yet a unique conserved quantity.

In order to arrive at a unique conserved quantity, one may consider in addition the angular mo-

mentum.

Preliminary remark: The relativistic generalisation of the angular momentum

~M = ~x×~p

is given by

Mµν =
1

2
(xµ pν − xν pµ) .

We may impose on T µν the additional requirement that with the definition of the angular mo-

mentum density

Mµνρ = T µνxρ −T µρxν

we have

∂µMµνρ = 0.

This implies

∂µMµνρ = ∂µ (T
µνxρ −T µρxν) =

(
∂µT µν

)
xρ +T ρν −

(
∂µT µρ

)
xν −T νρ

= T ρν −T νρ = 0.

Therefore

T µν = T νµ,

i.e. the energy-momentum tensor must be symmetric.
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4.3 The energy-momentum tensor of the electromagnetic field

We consider the Lagrange density of the electromagnetic field without external sources:

L
(
Aµ,∂µAν

)
= − 1

16π
FµνFµν

We obtain
(

∂L

∂
(
∂µAτ

)∂νAτ

)

−gµν
L = − 1

4π
(∂µAτ)(∂νAτ)+

1

4π
(∂τAν)(∂νAτ)+

1

16π
gµνFρσFρσ

=
1

4π

[

Fµτ(x)F ν
τ (x)+

1

4
gµνFρσFρσ

]

− 1

4π
Fµτ∂τAν.

We are considering the case without external sources. This implies

∂µFµν = 0,

and therefore

− 1

4π
Fµτ∂τAν = − 1

4π
∂τ (F

µτAν) .

This term is a surface term. Therefore we find that the symmetric energy-momentum tensor of

the electromagnetic field is given by

T µν =
1

4π

[

Fµτ(x)F ν
τ (x)+

1

4
gµνFρσFρσ

]

.

Explicitly, we find for the individual components

T 00 =
1

8π

(

~E2 +~B2
)

= u(t,~x),

T i0 =
1

4π

(

~E ×~B
)i

=
1

c
Si(t,~x),

T i j = − 1

4π

[

~E i~E j +~Bi~B j − 1

2
δi j
(

~E2 +~B2
)]

.

u(t,~x) denotes the energy density of the electromagnetic field. The vector ~S is called the Poynt-

ing vector and describes the momentum density (or the energy flux density). The purely spatial

components T i j are known as Maxwell’s stress tensor.
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Summary on Noether’s theorem

δL =

[

∂L

∂ψ
−∂µ

∂L

∂
(
∂µψ

)

]

δψ+∂µ

(

∂L

∂
(
∂µψ

)δψ

)

Case 1:

- ψ satisfies the Euler-Lagrange equations.

- L is strictly invariant under symmetry transformations.

Then: The Noether current

Jµ(x) =
∂L

∂
(
∂µψ

)δψ

is conserved:

∂µJµ(x) = 0.

Case 2:

- ψ satisfies the Euler-Lagrange equations.

- L is invariant under symmetry transformations up to gauge terms.

Then: The Noether current is also conserved.

Case 3:

- ψ satisfies the Euler-Lagrange equations.

- L does not depend explicitly on xµ.

Then: The canonical energy-momentum tensor

T µν =

(

∂L

∂
(
∂µψ

)∂νψ(x)

)

−gµν
L

is conserved:

∂µT µν = 0.

T µν is unique up to

T µν → T µν +∂ρBµρν, Bρµν =−Bµρν,

Additional requirement: T µν is symmetric:

T µν = T νµ.

Energy-momentum tensor of the electromagnetic field:

T µν =
1

4π

[

Fµτ(x)F ν
τ (x)+

1

4
gµνFρσFρσ

]

.
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5 Riemannian and semi-Riemannian geometry

5.1 Manifolds

A topological space is a set M together with a family Tof subsets of M satisfying the following

properties:

1. /0 ∈ T, M ∈ T

2. U1,U2 ∈ T⇒U1 ∩U2 ∈ T

3. For any index set A we have Uα ∈ T;α ∈ A ⇒ ⋃
α∈A

Uα ∈ T

The sets U ∈ Tare called open.

A topological space is called Hausdorff if for any two distinct points p1, p2 ∈ M there exists

open sets U1,U2 ∈ Twith

p1 ∈U1, p2 ∈U2, U1 ∩U2 = /0.

A map between topological spaces is called continuous if the pre-image of any open set is again

open.

A bijective map which is continuous in both directions is called a homeomorphism.

An open chart on M is a pair (U,ϕ), where U is an open subset of M and ϕ is a homeomorphism

of U onto an open subset of Rn.

A differentiable manifold of dimension n is a Hausdorff space with a collection of open charts

(Uα,ϕα)α∈A such that

M1:

M =
⋃

α∈A

Uα.

M2: For each pair α,β ∈ A the mapping ϕβ ◦ ϕ−1
α is an infinitely differentiable mapping of

ϕα

(
Uα ∩Uβ

)
onto ϕβ

(
Uα∩Uβ

)
.

A differentiable manifold is also often denoted as a C∞ manifold. As we will only be concerned

with differentiable manifolds, we will often omit the word “differentiable” and just speak about

manifolds.

The collection of open charts (Uα,ϕα)α∈A is called an atlas.
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If p ∈Uα and

ϕα(p) = (x1(p), ...,xn(p)) ,

the set Uα is called the coordinate neighbourhood of p and the numbers xi(p) are called the

local coordinates of p.

Note that in each coordinate neighbourhood M looks like an open subset of Rn. But note that we

do not require that M be Rn globally.

Consider two manifolds M and N with dimensions m and n. Let xi be coordinates on M and

y j be coordinates on N. A mapping f : M → N between two manifolds is called analytic, if for

each point p ∈ M there exits a neighbourhood U of p and n power series Pj, j = 1, ...,n such that

y j( f (q)) = Pj (x1(q)− x1(p), ...,xm(q)− xm(p))

for all q ∈U .

An analytic manifold is a manifold where the mapping ϕβ ◦ϕ−1
α is analytic.

Examples

a) Rn: The space Rn is a manifold. Rn can be covered with a single chart.

b) S1: The circle

S1 = {~x ∈ R
2||~x|2 = 1}

is a manifold. For an atlas we need at least two charts.

c) Sn: The n-sphere, defined by

Sn = {~x ∈ R
n+1||~x|2 = 1}

d) Pn(R): The projective space defined as all lines through the origin in Rn+1:

(x0,x1, ...,xn) = λ(x′0,x
′
1, ...,x

′
n), λ 6= 0.

e) The set of rotation matrices in two dimensions:

(
cosϕ −sinϕ
sinϕ cosϕ

)

,

The set of all these matrices forms a manifold homeomorphic to the circle S1.

f) More generally, all Lie groups are by definition analytic manifolds.

34



Counterexamples

In order to understand better the definition of a manifold, let us give a few examples, which are

not manifolds:

a) The union of a one-dimensional line with a two-dimensional surface. An example is given

by

x3

(
x2

1 + x2
2

)
= 0.

This set is in a neighbourhood of some points homeomorph to R, in the neighbourhood of other

points homeomorph to R2. But the definition of a manifold requires that the set is at all points

homeomorph to Rn for a fixed n.

b) The cone

x2
1 + x2

2 − x2
3 = 0.

The neighbourhood of the point (0,0,0) cannot be mapped homeomorphically to R
2.

c) An individual cone segment

x2
1 + x2

2 − x2
3 = 0, x3 ≥ 0.

Although we may map a neighbourhood of the point (0,0,0) continuously to R2, this cannot be

done in a differentiable way.

d) The line segment

[0,1] .

The endpoints have no open neighbourhoods.

Morphisms

Let us summarise the various morphisms we encountered up to now:

Homeomorphism: A map f : M → N between two manifolds M and N is called a homeo-

morphism if it is bijective and both the mapping f : M → N and the inverse f−1 : N → M are

continuous.

Diffeomorphism: A map f : M → N is called a diffeomorphism if it is a homeomorphism and

both f and f−1 are infinitely differentiable.

Analytic diffeomorphism: The map f : M → N is a diffeomorphism and analytic.
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5.2 Differential forms and integration on manifolds

Preliminary remark: We would like to define integrals on manifolds. The definition should on

the one hand generalise volume integrals like
∫

M

d4x L(x)

on an Euclidean space or on Minkowski space, and on the other hand also include line integrals

as the one occurring for example in

−mc

b∫

a

ds.

Let us first consider one-dimensional integrals, which we may define as the limit
∫

R

dx f (x) = lim∑
j

f (x j)∆x j

In the same way we have for two-dimensional integrals:
∫

R2

dx dy g(x,y) = lim∑
j
∑
k

g(x j,yk)∆x j∆yk

Remark: The sign in the last example depends on the chosen orientation.

Instead of the functions f (x) and g(x,y) we will now introduce new objects

f (x) dx, g(x,y) dx∧dy,

which may be integrated over a domain of the appropriate dimension. The reason for introducing

these new objects are the clearer transformation properties.

Tangent vectors

Let I ⊂ R be an interval and γ : I → M ⊂ Rn a differentiable map. We call

d

dt
γ(t)

∣
∣
∣
∣
t0

∈ R
n

a tangent vector on M at the point γ(t0). The set of all tangent vectors on M at the point p is

called the tangent space TpM at p. The dimension of the tangent space equals the dimension of

the manifold.

We denote by T ∗
p M the dual vector space of TpM, i.e. the set of all linear maps

φ : TpM → R.
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Elements φ ∈ T ∗
p M are called cotangent vectors and T ∗

p M is called the cotangent space. Linear

maps from a vector space to R are also called linear forms.

A vector field is a map

X : M →
⋃
p

TpM

and associates to each point p ∈ M a tangent vector X(p) ∈ TpM.

Differential one-forms

A differential one-form is a map

ω : M →
⋃
p

T ∗
p M

with ω(p) ∈ T ∗
p M. The differential one-form ω assigns to each point p ∈ M a cotangent vector

ω(p) ∈ T ∗
p M. We denote the value of ω(p) applied to the tangent vector v ∈ TpM by

〈ω(p),v〉.
Definition: Let U ⊂ Rn and let f : U → R be a differentiable function. The total differential d f

of f is the differential one-form, which satisfies

〈d f (p),v〉 =
n

∑
i=1

∂ f (p)

∂xi
vi

for all tangent vectors v = viei.

With the help of the coordinate functions

xi : Rn →R,(y1, ...,yn)→ yi

we may define the differentials

dx1, ...,dxn.

We have
〈
dxi,e j

〉
= δi j.

The cotangent vectors dx1(p), ..., dxn(p) form a basis of T ∗
p M.

Coordinate representation: Every differential one-form may be written as

ω =
n

∑
i=1

fi(x)dxi.

Line integrals: Let γ : [a,b]→U be a curve. We define the integral of ω along the curve γ by

∫

γ

ω =

b∫

a

〈ω(γ(t)),γ′(t)〉dt.
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Differential k-forms

We have seen that differential one-forms may be integrated along curves. We now seek a general-

isation, which allows integration over domains of higher dimensions. We start with the definition

of the wedge product for linear maps: Let ω1, ..., ωK ∈V ∗ be linear forms, i.e.

ω j : V → R.

We define the map

ω1 ∧ ...∧ωk : V k → R

by

(ω1 ∧ ...∧ωk)(v1, ...,vk) = det





〈ω1,v1〉 ... 〈ω1,vk〉
... ... ...

〈ωk,v1〉 ... 〈ωk,vk〉





Properties of the wedge product:

• The wedge product is linear in each argument:

ω1 ∧ ...∧
(
aω′

i +bω′′
i

)
∧ ...∧ωk =

a
(
ω1 ∧ ...∧ω′

i ∧ ...∧ωk

)
+b
(
ω1 ∧ ...∧ω′′

i ∧ ...∧ωk

)

• The wedge product is alternating:

ωσ(1)∧ ...∧ωσ(k) = sign(σ) ·ω1∧ ...∧ωk

We denote the set of all alternating multilinear k-forms on V with

∧kV ∗.

Definition: A differential k-form is a map

ω : M →
⋃
p

∧kT ∗
p M

with ω(p) ∈ ∧kT ∗
p M. This definition coincides for k = 1 with the previous definition of a differ-

ential one-form. A differential 0-form is a real-valued function.

Coordinate representation of differential k-forms:

ω =
1

k!
∑

i1,...,ik

fi1...ikdxi1 ∧ ...∧dxik

= ∑
i1<...<ik

fi1...ikdxi1 ∧ ...∧dxik.
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Differentiation of differential forms: Let

ω = ∑
i1<...<ik

fi1...ikdxi1 ∧ ...∧dxik.

be a k-form. We denote by dω the differential (k+1)-form

dω = ∑
i1<...<ik

d fi1...ik ∧dxi1 ∧ ...∧dxik.

Rules: Let ω and ω′ be two differential k-forms and let f be a function. Then f ω and ω+ω′,
defined by

( f ω)(p) = f (p)ω(p),
(
ω+ω′)(p) = ω(p)+ω′(p)

are again differential k-forms. Furthermore, let σ be a differential l-form. We define a differential

(k+ l)-form ω∧σ by

(ω∧σ)(p) = ω(p)∧σ(p).

Remark:

ω∧σ = (−1)klσ∧ω.

We further have:

d
(
aω+bω′) = adω+bdω′,

d (ω∧σ) = (dω)∧σ+(−1)kω∧ (dσ) ,

d (dω) = 0.

Pull-back of differential forms: Let U ⊂ R
n and let

ω =
1

k!
∑ fi1...ikdxi1 ∧ ...∧dxik.

be a k-form on U . Let V ⊂ Rm be an open subset and consider a continuous differentiable map

ϕ = (ϕ1, ...,ϕn) : V →U.

We may define a differential k-form ϕ∗ω on V by

ϕ∗ω =
1

k!
∑( fi1...ik ◦ϕ)dϕi1 ∧ ...∧dϕik.

Remark: Differential k-forms may be integrated over k-dimensional (sub)-manifolds. Let M be

a manifold of dimension n, let K be a submanifold of dimension k, and let A be a compact subset

of K, also of dimension k. Further assume that ω is a differential k-form on M and

ϕ : U → R
n
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a local chart of M such that A ∈U . Then we have

ϕ−1 : Rn →U

and we define ∫

A

ω =
∫

ϕ(A)

(
ϕ−1

)∗
ω

We pull-back the differential form ω by ϕ−1 to an open subset of Rn. This reduces integration

on manifolds to integration on Rn.

Example: Consider the differential 2-form

ω = 3x3dx2 ∧dx3 +(x2
1 + x2

2)dx3 ∧dx1 + x1x3dx1 ∧dx2

on R3. Consider further the two-dimensional sub-manifold

M = {(x1,x2,x3) ∈ R
3 : x3 = x1x2}

and let A be the following compact subset of M:

A = {(x1,x2,x3) ∈ M : 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1}.
We would like to compute ∫

A

ω.

We choose a local chart of M:

ϕ−1 : R
2 → M,

(y1,y2)→ (y1,y2,y1y2).

The individual coordinate maps are
(
ϕ−1

)

1
= y1,

(
ϕ−1

)

2
= y2,

(
ϕ−1

)

3
= y1y2,

and therefore

d
(
ϕ−1

)

1
= dy1, d

(
ϕ−1

)

2
= dy2, d

(
ϕ−1

)

3
= y2dy1 + y1dy2.

Thus∫

A

ω =
∫

ϕ(A)

(
ϕ−1

)∗
ω =

=
∫

ϕ(A)

3y1y2dy2 ∧ (y2dy1 + y1dy2)+
(
y2

1 + y2
2

)
(y2dy1 + y1dy2)∧dy1 + y1 (y1y2)dy1 ∧dy2

=

∫

ϕ(A)

(
y2

1y2 −4y1y2
2 − y3

1

)
dy1 ∧dy2 =

1∫

0

dy1

1∫

0

dy2

(
y2

1y2 −4y1y2
2 − y3

1

)
=−3

4
.
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We conclude the section on differential forms with examples occurring in physics: The gauge

potential of electrodynamics defines a differential one-form

A = i
e

~c
Aµ(x)dxµ.

We further have

dA = d
(

i
e

~c
Aνdxν

)

= i
e

~c
∂µAνdxµ ∧dxν

= i
e

~c

1

2

(
∂µAν−∂νAµ

)
dxµ ∧dxν.

This motivates to define a differential 2-form, related to the field strength by

F = dA = i
e

~c

1

2
Fµνdxµ ∧dxν.

Remark on the prefactors: We consider the following differential operator:

DA = d +A = d + i
e

~c
Aµdxµ =− i

~

(

i~d − q

c
Aµdxµ

)

.

Within quantum mechanics the term i~∂µ corresponds to the momentum operator pµ. We see that

the term in the bracket is the four-dimensional generalisation of

(

~p− q

c
~A
)

.

Finally, let us consider DA ∧DA applied to an arbitrary differential form ω:

(DA ◦DA)ω =
(

d + i
e

~c
Aµdxµ

)

◦
(

d + i
e

~c
Aνdxν

)

ω

= d
(

i
e

~c
Aµdxµ ∧ω

)

+ i
e

~c
Aνdxν ∧dω−

( e

~c

)2

AµAνdxµ ∧dxν ∧ω

= (dA)∧ω

Therefore

DA = d +A,

D2
A = dA+A∧A = dA = F.

DA is called covariant derivative, F is called curvature form.

5.3 Tensors

We already defined tensors within special relativity. Let K and K′ be two coordinate systems,

related by a Lorentz transformation:

x′µ = Λ
µ

νxν.
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We called a quantity T µ1...µr , which transforms as

T ′µ1...µr = Λ
µ1
ν1
...Λ

µ1
ν1

T ν1...νr

a rank r tensor. The contravariant four-vector xµ is a rank 1 tensor.

We now generalise this definition to coordinate systems, which are related by an arbitrary

coordinate transformation, i.e. not necessarily a Lorentz transformation. We consider the trans-

formation from a coordinate system with coordinates x0, x1, x2, x3 to another coordinate system

with coordinates x′0, x′1, x′2, x′3:

x′µ = f µ(x0,x1,x2,x3).

Under a change of coordinates, the differentials of the coordinates transform as

dx′µ =
∂x′µ

∂xν
dxν.

As contravariant four-vector we denote any set of four quantities Aµ (µ ∈ {0,1,2,3}), which

transform as these differentials under a change of coordinates:

A′µ =
∂x′µ

∂xν
Aν.

Our main focus here are four-dimensional manifolds. Of course, there is a straightforward gen-

eralisation to D-dimensional manifolds, simply take µ ∈ {0,1, . . . ,D−1}.

This definition is compatible with the previous definition within special relativity, if the coor-

dinate transformation is a Lorentz transformation: Let

x′µ = f µ(x0,x1,x2,x3) = Λ
µ

νxν.

Then

∂x′µ

∂xν
=

∂ f µ(x0,x1,x2,x3)

∂xν
= Λ

µ
ν

and therefore

x′µ = Λ
µ

νxν =
∂x′µ

∂xν
xν.

Let φ be a scalar function. The derivatives ∂φ/∂xµ transform under a change of coordinates as

∂φ

∂x′µ
=

∂φ

∂xν

∂xν

∂x′µ
.

We call any set of four quantities Aµ (µ ∈ {0,1,2,3}), which transform under a change of coor-

dinates as the derivatives of a scalar function a covariant four-vector:

A′
µ =

∂xν

∂x′µ
Aν

42



We may write a tangent vector at any point as a linear combination of basis vectors eµ:

V = V µeµ.

Sometimes, an alternative notation for the basis vectors of the tangent space is used:

∂µ = eµ.

(It should be clear from the context if ∂µ denotes a partial derivative or a basis vector of the tan-

gent space.)

A vector field assigns to every point of a manifold a vector. The dual of a vector field is a

one-form. A one-form assigns at every point of the manifold to a vector a (real or complex)

number, or phrased differently, a one-form assigns to every point of the manifold a cotangent

vector. A basis for the space of cotangent vectors is given by the differentials dxµ:

ω = ωµdxµ.

Duality between vector fields and one-forms implies

dxµ (∂ν) = δ
µ
ν.

Due to this duality we may re-interpret a vector field as follows: Originally, we defined a vector

field as a map, which assigns to every point of the manifold a tangent vector. With the help of

the duality we may equally well view a vector field as a map, which assigns to every point of the

manifold a linear form, which in turn maps a cotangent vector to R.

A tensor field with r contravariant and s covariant indices maps at the point x ∈ M r r cotan-

gent vectors and s tangent vectors to a real number.

(T r
s )x : (T ∗

x M)r × (TxM)s → R,

ω1, ...,ωr,V1, ...,Vs → (T r
s )x

(
ω1, ...,ωr,V1, ...,Vs

)
.

Coordinate representation:

t
µ1,...,µr
ν1,...,νs

(x) = (T r
s )x (dxµ1 , ...,dxµr ,∂ν1

, ...,∂νs
) .

Basis representation of a tensor field on a D-dimensional manifold (where the coordinates are

indexed from 0 to D−1):

T r
s =

D−1

∑
µ1,...,µr=0

D−1

∑
ν1,...,νs=0

t
µ1,...,µr
ν1,...,νs

(x)
(
∂µ1

⊗ ...⊗∂µr

)
⊗ (dxν1 ⊗ ...⊗dxνs) .

Example: A (0,2)-tensor field is given by

g =
D−1

∑
µ,ν=0

gµν(x)dxµ ⊗dxν.
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Remark: For a general (0,s)-tensor field the tensor product ⊗ appears, not the wedge product ∧.

Differential forms have the additional property of being anti-symmetric and we have

dxµ ∧dxν =
1

2
(dxµ ⊗dxν −dxν ⊗dxµ) ,

and more generally

dxµ1 ∧dxµ2 ∧· · ·∧dxµk =
1

k!
∑

σ∈Sk

sign(σ) dxµσ(1) ⊗dxµσ(2) ⊗·· ·⊗dxµσ(k) .

5.4 Riemannian manifolds

Definition of a Riemannian manifold: Let M be a differentiable manifold. A Riemannian metric

g on M is a (0,2)-tensor field on M, such that for every point x ∈ M we have:

gx(U,V) = gx(V,U)

gx(U,U) ≥ 0, and gx(U,U) = 0 only for U = 0,

where U,V ∈ TxM and gx = g|x.

In short this means that gx is a symmetric positive-definite bilinear form. A manifold with a

Riemannian metric is called a Riemannian manifold.

A (0,2)-tensor field g on M is called semi-Riemannian metric if

gx(U,V ) = gx(V,U),

if gx(U,V ) = 0 for all U ∈ TxM, then V = 0.

A manifold with a semi-Riemannian metric is called a semi-Riemannian manifold.

Let (U,ϕ) be a chart of M and let {xµ} be local coordinates. The metric is written as

gx = gµν(x)dxµ ⊗dxν,

where we used Einstein’s summation convention.

Remark: Since the metric is symmetric, the eigenvalues of gµν are real. For a Riemannian

metric all eigenvalues are positive. For a semi-Riemannian metric the eigenvalues are positive or

negative (and non-zero). A Manifold, where gµν has exactly one positive eigenvalue (and hence

(D−1) negative eigenvalues) is called a Lorentz manifold.

Let us elaborate on the notation: Instead of gµν(x)dxµ ⊗dxν the notation

gµν(x)dxµdxν

44



is frequently used, where the symbol ⊗ for the tensor product has been dropped. Also in

this shortened notation the differentials dxµ denote a basis of the cotangent space and g =
gµν(x)dxµdxν is a (0,2)-tensor field.

A further notation is

g = det
(
gµν

)
,

and

|g| =
∣
∣det

(
gµν

)∣
∣ .

It should be clear from the context, if g denotes the (0,2)-tensor field gµν(x)dxµdxν or the deter-

minant det(gµν).

The inverse of gµν is denoted by gµν:

gµρgρν = gνρgρµ = δν
µ.

The metric induces an isomorphism between TxM and T ∗
x M. This isomorphism is explicitly given

by

TxM → T ∗
x M,

Uµ∂µ →
(
Uµgµν

)
dxν

and

T ∗
x M → TxM,

ωµdxµ →
(
ωµgµν

)
∂ν.

Let us further discuss tensor densities. We recall the definition of the total anti-symmetric tensor

(i.e. the Levi-Civita tensor):

εµ1µ2...µn
= 1 if µ1,µ2, ...,µn is an even permutation of 0,1, ...,(n−1),

εµ1µ2...µn
= −1 if µ1,µ2, ...,µn is an odd permutation of 0,1, ...,(n−1),

εµ1µ2...µn
= 0 otherwise.

In flat Minkowski space the Levi-Civita symbol εµνρσ transforms as a pseudotensor. Let us study,

how the Levi-Civita symbol transforms on arbitrary manifolds. Let M
µ

µ′ be an arbitrary n× n-

matrix and denote |M|= detM
µ

µ′ . We have

εµ′1µ′2...µ
′
n
|M| = εµ1µ2...µn

M
µ1

µ′1
M

µ2

µ′2
...M

µn

µ′n
.

If we now take

M
µ

µ′ =
∂xµ

∂xµ′
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we obtain

εµ′1µ′2...µ
′
n

=

∣
∣
∣
∣
∣

∂xµ′

∂xµ

∣
∣
∣
∣
∣
εµ1µ2...µn

∂xµ1

∂xµ′1

∂xµ2

∂xµ′2
...

∂xµn

∂xµ′n
.

This is almost the transformation law of a rank n tensor. The transformation law is spoiled by

the appearance of the determinant |∂xµ′/∂xµ|.
Let us further consider the transformation law of g = detgµν. One finds

g(x′) =

∣
∣
∣
∣
∣

∂xµ′

∂xµ

∣
∣
∣
∣
∣

−2

g(x).

In general, we call a quantity, which transforms as

∣
∣
∣
∣
∣

∂xµ′

∂xµ

∣
∣
∣
∣
∣

m

×Tensor

a tensor density of weight m. We see that εµ1µ2...µn
is a tensor density of weight 1 and g is a

tensor density of weight (−2). The combination

√

|g| εµ1µ2...µn

transforms as a tensor.

Let us conclude this section by giving a useful formula for the contraction of two Levi-Civita

symbols. We have

|g| εµ1µ2...µrσ1...σn−r
εν1ν2...νrσ1...σn−r = (−1)s (n− r)!δν1ν2...νr

µ1µ2...µr
,

where s denotes the number of negative eigenvalues of the metric and

δν1ν2...νr
µ1µ2...µr

=

∣
∣
∣
∣
∣
∣

δν1
µ1 ... δνr

µ1

... ... ...
δν1

µr ... δνr
µr

∣
∣
∣
∣
∣
∣

.

5.5 Hodge theory

5.5.1 The Hodge ∗-operator

Let M be a m-dimensional manifold. If M is equipped with a metric, there is a natural isomor-

phism between the space of all differential r forms and the space of all differential (m−r) forms,

given by the Hodge ∗-operator (pronounce “Hodge star operator”):

∗ : Ωr(M)→ Ωm−r(M)

∗(dxµ1 ∧ ...∧dxµr) =

√

|g|
(m− r)!

ε
µ1...µr

νr+1...νm
dxνr+1 ∧ ...∧dxνm
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Remark:

∗∗ω = (−1)r(m−r)+sω,

where s denotes the number of negative eigenvalues of the metric. This formula is easily verified

by considering

∗∗ (dxµ1 ∧ ...∧dxµr) =
|g|

r!(m− r)!
ε

µ1...µr
σr+1...σm

ε
σr+1...σm

ν1...νr
(dxν1 ∧ ...∧dxνr)

= (−1)r(m−r) |g|
r!(m− r)!

εµ1...µrσr+1...σmεν1...νrσr+1...σm
(dxν1 ∧ ...∧dxνr)

=
(−1)r(m−r)+s

r!
δ

µ1...µr
ν1...νr

(dxν1 ∧ ...∧dxνr)

= (−1)r(m−r)+s (dxµ1 ∧ ...∧dxµr).

The Hodge ∗-operator allows to define a scalar product between two r forms. Let

ω =
1

r!
ωµ1...µr

dxµ1 ∧ ...∧dxµk ,

η =
1

r!
ηµ1...µr

dxµ1 ∧ ...∧dxµk .

One sets

(ω,η) =

∫

M

ω∧∗η

=
1

r!

∫

M

ωµ1...µr
ηµ1...µr

√

|g|dx1 ∧ ...∧dxm.

This product is symmetric:

(ω,η) = (η,ω)

Example:

∗F = ∗
(

i
e

~c

1

2
Fµνdxµ ∧dxν

)

=
1

4
i

e

~c
Fµνεµνρσdxρ ∧dxσ =

(

i
e

~c

) 1

2
F̃µνdxµ ∧dxν.

We further have

(F,F) =
1

2

(

i
e

~c

)2
∫

d4xFµνFµν

and therefore

∫
d4x L =

1

8π

(
~c

e

)2

(F,F) .
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5.5.2 Self dual and anti-self dual forms

Let us consider the special case, where the manifold M is of even dimension m = 2r. In this case,

the Hodge ∗-operator maps a r form to a r form.

Of particular interest is the case m = 4 and r = 2. Let

ω =
1

2
ωµνdxµ ∧dxν

be a two-form. On a four-dimensional Lorentz manifold we have

∗∗ω = −ω.

Let us now consider complex-valued differential forms. We call a two-form on a four-dimensional

Lorentz manifold self dual if

i∗ω = ω,

and anti-self dual if

i∗ω = −ω.

The factor i is required to satisfy in both cases ∗ ∗ω = −ω. In the case of a four-dimensional

Euclidean manifold the factor i does not appear.

In terms of components we have

∗ω =
1

2
ω̃µνdxµ ∧dxν, ω̃µν =

1

2

√

|g|ωρσε
ρσ

µν.

The conditions for being self dual or anti-self dual translate to

self dual : ωµν =
i

2

√

|g|ωρσε
ρσ

µν,

anti-self dual : ωµν = − i

2

√

|g|ωρσε
ρσ

µν.

An arbitrary two-form can always be decomposed into a self dual part and an anti-self dual part:

ω = ωselfdual +ωantiselfdual,

with

ωselfdual =
1

2
(ω+ i∗ω) ,

ωantiselfdual =
1

2
(ω− i∗ω) .

With

ωselfdual =
1

2
ωselfdual

µν dxµ ∧dxν, ωantiselfdual =
1

2
ωantiselfdual

µν dxµ ∧dxν

we obtain

ωselfdual
µν =

1

2

(
ωµν + iω̃µν

)
=

1

2

(

ωµν +
i

2

√

|g|ωρσε
ρσ

µν

)

,

ωantiselfdual
µν =

1

2

(
ωµν − iω̃µν

)
=

1

2

(

ωµν −
i

2

√

|g|ωρσε
ρσ

µν

)

.
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5.6 The covariant derivative

In a flat space the derivatives of a vector

∂

∂xν
Aµ

form a tensor. However, this is no longer true in a curved space, as one compares a vector at two

different points.

Definition of an affine connection: An affine connection is a map ∇

∇ : Vect(M)×Vect(M)→ Vect(M)

(X ,Y )→ ∇XY,

which satisfies

∇(X+Y )Z = ∇X Z+∇Y Z,

∇( f X)Y = f ∇XY,

∇X(Y +Z) = ∇XY +∇X Z,

∇X( fY ) = X( f )Y + f ∇XY,

where f ∈ F(M) and X ,Y,Z ∈ Vect(M).
Let (U,ϕ) be a chart with coordinates x = ϕ(p). We define D3 functions C

µ

νλ
called connection

coefficients by

∇eµ
eν = eλCλ

µν,

where {eµ}= {∂/∂µ} denotes the coordinate basis of TpM. For functions f ∈ F(M) we define

∇X f = X( f ) = Xµ

(
∂ f

∂xµ

)

.

Then ∇X( fY ) takes the form of the Leibniz rule

∇X( fY ) = (∇X f )Y + f (∇XY ).

We further set for tensors

∇X(T1 ⊗T2) = (∇X T1)⊗T2 +T1 ⊗ (∇X T2).

In the following we will use the notation

∇µ = ∇eµ
.
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Note that

∇XY = Xµ∇µ (Y
νeν) = Xµ

(
∂Y ν

∂xµ
eν +Y ν∇µeν

)

= Xµ

(

∂Y λ

∂xµ
+Y νCλ

µν

)

eλ.

∇XY is independent of the derivative of X . This motivates to consider

∇µ = ∇êµ
.

∇µ is called the covariant derivative. We may re-write the above equation as follows:

∇µ (Y
νeν) =

(

∂µY ν+Cν
µλY λ

)

eν

Within the physics literature the basis vector eν is often dropped and one encounters for the

components the notation:

∇µY ν = ∂µY ν +Cν
µλY λ

We should always interpret this equation as if the missing basis vector is present. In strict math-

ematical terms we have

∇µeν = Cλ
µνeλ,

∇µY ν = ∂µY ν,

∇µ (Y
νeν) =

(

∂µY ν +Cν
µλY λ

)

eν.

Let us also consider the action of the covariant derivative on covariant indices. Let ω = ωµdxµ

and Y = Y νeν. We have

∇µ 〈ω,Y 〉 = ∇µ (ωνY ν) =
(
∂µων

)
Y ν +ων

(
∂µY ν

)
.

On the other hand we must have

∇µ 〈ω,Y 〉 =
〈
∇µω,Y

〉
+
〈
ω,∇µY

〉

=
〈
(∂µων)dxν +ων∇µdxν,Y

〉
+
〈

ω,(∂µY ν +Cν
µλY λ)eν

〉

= (∂µων)Y
ν +
〈

ων∇µdxν,Y λeλ

〉

+ων(∂µY ν +Cν
µλY λ).

Therefore

ων

〈
∇µdxν,eλ

〉
Y λ +ωνCν

µλY λ = 0

and hence

∇µdxν = −Cν
µλdxλ.
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Therefore we have

∇µ (ωνdxν) =
(

∂µων −Cλ
µνωλ

)

dxν.

Also in this case one finds in the physics literature the notation

∇µων = ∂µων −Cλ
µνωλ

As in the case above we have to interpret this equation as if the missing basis vector dxν is present.

Parallel transport: If

∇V X = 0

we say that the vector X is parallel transported along the curve defined by V .

5.7 The Levi-Civita connection

If a manifold is equipped with a metric, we may impose additional requirements on the affine

connection: The first condition that we will impose is that the metric gµν is covariantly constant,

i.e. we require that if two vectors X and Y are parallel transported along a curve the scalar product

between the two vectors does not change. We may express this by the formula

∇V (g(X ,Y )) = 0,

for all X and Y with ∇V X = ∇VY = 0. Since this holds for all curves and all parallel transported

vectors, it follows that

∇κ

(
gµνdxµ ⊗dxν

)
= 0,

or equivalently

(

∂κgµν −Cλ
κµgλν−Cλ

κνgµλ

)

dxµ ⊗dxν = 0.

This has to hold for all components and therefore it follows that

∂κgµν −Cλ
κµgλν −Cλ

κνgµλ = 0.

This is also written as

∇κgµν = 0.

In this case we may write the connection coefficients Cκ
µν as

Cκ
µν = Γκ

µν +Kκ
µν.
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The quantities Γκ
µν are called Christoffel symbols, They are symmetric in µ ↔ ν. The quantities

Kκ
µν are called contorsion coefficients. The explicit expressions for these quantities are

Γκ
µν =

1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)
,

Kκ
µν =

1

2

(
T κ

µν +T κ
µ ν +T κ

ν µ

)
,

T κ
µν = Cκ

µν −Cκ
νµ.

T κ
µν is anti-symmetric in µ ↔ ν. It can be shown that the quantities T κ

µν define a tensor, which is

called the torsion tensor.

An affine connection is called symmetric, if the torsion tensor vanishes. In this case we have

Cκ
µν = Γκ

µν,

Γλ
µν = Γλ

νµ.

This is the second condition which we will impose: We require that the affine connection is sym-

metric, i.e. that the torsion tensor vanishes.

Theorem: On a Riemannian manifold or semi-Riemannian manifold (M,g) there is a unique

symmetric connection, which is compatible with the metric (i.e. the metric is covariantly con-

stant). This connection is called the Levi-Civita connection.

Assuming that the metric is covariantly constant and assuming that the connection coefficients

are symmetric, we may easily derive the formula for the Christoffel symbols, thus proving the

existence and uniqueness. We start by writing down the equation which expresses that the metric

is covariantly constants for three different permutations of indices:

∇ρgµν = ∂ρgµν −Γλ
ρµgλν −Γλ

ρνgµλ = 0,

∇µgνρ = ∂µgνρ−Γλ
µνgλρ −Γλ

µρgνλ = 0,

∇νgρµ = ∂νgρµ −Γλ
νρgλµ −Γλ

νµgρλ = 0.

If we subtract the last two equations from the first one we obtain

∂ρgµν −∂µgνρ −∂νgρµ +Γλ
µνgλρ +Γλ

νµgρλ +Γλ
νρgλµ −Γλ

ρνgµλ +Γλ
µρgνλ−Γλ

ρµgλν = 0.

We now use the symmetry of the metric and of the Christoffel symbols. We obtain

∂ρgµν −∂µgνρ −∂νgρµ +2Γλ
µνgλρ = 0.

Solving for the Christoffel symbol we obtain the formula

Γκ
µν =

1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)
.
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5.8 Stokes’ theorem

Stokes’ theorem may be written elegantly with the help of differential forms on a differentiable

manifold with a boundary as

∫

M

dω =

∫

∂M

ω.

Here, M denotes a n-dimensional manifold, which may have a boundary. The boundary is de-

noted by ∂M and ω denotes a differential (n−1)-form.

If the manifold is endowed with a metric g, we may re-write Stokes’ theorem as follows:

∫

M

dnx
√

|g|∇µV µ =
∫

∂M

dn−1y
√

|γ| nµV µ.

Here we denote by ∇µ the covariant derivative with respect to the Levi-Civita connection, we

denote by γ the metric on ∂M induced by g and we denote by nµ a unit normal vector on ∂M.

The second version of Stokes’ theorem is derived from the first version of Stokes’ theorem

for semi-Riemannian manifolds as follows: Since M is equipped with a metric, we may write

any differential (n−1)-form as the Hodge dual of a differential one-form V =Vµdxµ:

ω = ∗V

With

ω =
1

(n−1)!
ωµ1...µn−1

dxµ1 ∧ ...∧dxµn−1

we have

ωµ1...µn−1
=

√

|g|Vµgµνενµ1...µn−1
=
√

|g|V µεµµ1...µn−1
.

Furthermore

dω =
1

(n−1)!

(
∂µ1

ωµ2...µn

)
dxµ1 ∧dxµ2 ∧ ...∧dxµn

=
1

(n−1)!
∂µ1

(√

|g|V µεµµ2...µn

)

dxµ1 ∧dxµ2 ∧ ...∧dxµn

=
1

n!
∂µ

(√

|g|V µεµ1µ2...µn

)

dxµ1 ∧dxµ2 ∧ ...∧dxµn.

In the second line we must have µ = µ1 due to the presence of εµµ2...µn
and dxµ1 ∧dxµ2 ∧ ...∧dxµn.

We may therefore exchange the two covariant indices µ and µ1. After swapping the two covariant

indices we sum without the restriction µ = µ1 over all pairs of indices (µ,µ1). This overcounts

each term n times, which is compensated by an additional factor 1/n.
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Furthermore we have ∂µεµ1µ2...µn
= 0 and we obtain therefore

dω = ∂µ

(√

|g|V µ
)

dx1 ∧ ...∧dxn.

For the Levi-Civita connection we have

∇µV µ = ∂µV µ +Γ
µ
µνV ν =

1
√

|g|
∂µ

(√

|g|V µ
)

.

Here we used

Γ
µ
µν =

1
√

|g|
∂ν

√

|g|.

We obtain

dω =
(
∇µV µ

)√

|g|dnx

and hence the left-hand side of Stokes’ theorem is equivalent to
∫

M

dω =

∫

M

dnx
√

|g|∇µV µ.

Let us now consider the right-hand side of Stokes’ theorem, which includes the integration over

the boundary of M. The boundary ∂M is a (n−1)-dimensional hypersurface. It is convenient to

use Gaussian normal coordinates (z,y1, ...,yn−1), where the coordinates (y1, ...,yn−1) parametrise

the (n−1)-dimensional hypersurface ∂M and z is a coordinate parametrising the normal direction

given by the normal vector nµ. The induced metric on ∂M is given by

γαβ =
∂xµ

∂yα

∂xν

∂yβ
gµν.

We may express the full metric g on M in terms of the Gaussian normal coordinates:

g = ±dz⊗dz+ γαβdyα ⊗dyβ,

i.e. there are no mixed terms dyα ⊗dz. In these coordinates we have
√

|g| =
√

|γ|.

The volume element on the boundary is
√

|γ|dy1 ∧ ...∧dyn−1.

With the help of the unit normal vector nµ we may write the volume element on the boundary

∂M in a coordinate-independent way:

1

(n−1)!

√

|g|nµ1εµ1µ2...µn
dxµ2 ∧ ...∧dxµn.
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For the right-hand side of Stokes’ theorem we obtain therefore

∫

∂M

ω =
∫

∂M

1

(n−1)!

√

|g|V µεµµ2...µn
dxµ2 ∧ ...dxµn

=
∫

∂M

1

(n−1)!

√

|g|V µnµnµ1εµ1µ2...µn
dxµ2 ∧ ...dxµn

=
∫

∂M

dn−1y
√

|γ|V µnµ.

It remains to discuss the sign of the unit normal vector nµ. From the original formulation of

Stokes’ theorem it follows that the covariant unit normal vector nµ is outward-pointing.

Please note that on a Lorentzian manifold the contravariant unit normal vector nµ points

outwards, if nµ is time-like, but points inwards, if nµ is space-like. On a Riemannian manifold,

the contravariant unit normal vector nµ is always outward-pointing.

5.9 The curvature tensor

Preliminary remark: Let

X = Xµeµ = Xµ ∂

∂xµ

be a vector field. A vector field acts on a functions as a directional derivative:

X( f ) = Xµ ∂

∂xµ
f .

Let

Y = Y ν ∂

∂xν

be a further vector field. We define the Lie bracket [X ,Y ] as

[X ,Y ]( f ) = X (Y ( f ))−Y (X( f )) .

We have

X (Y ( f )) = Xµ∂µ (Y
ν∂ν f ) = Xµ

(
∂µY ν

)
(∂ν f )+XµY ν∂µ∂ν f ,

Y (X( f )) = Y µ∂µ (X
ν∂ν f ) = Y µ

(
∂µXν

)
(∂ν f )+Y µXν∂µ∂ν f ,

and hence

[X ,Y ]( f ) =
(
Xµ∂µY ν −Y µ∂µXν

)
∂ν f .
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The Lie bracket is again a vector field. The components of this vector field are given by

[X ,Y ] =
(
Xµ∂µY ν −Y µ∂µXν

)
eν.

Remark: Neither XY nor Y X are vector fields, since both contain second derivatives. The second

derivatives cancel in the combination [X ,Y ]. Since only first derivatives remain, the combination

[X ,Y ]is again a vector field.

Remark: An important special case is given by

[
eµ,eν

]
= 0.

(This is most easily seen by letting eµ = ∑Xσeσ with Xσ = 0 for µ 6= σ and Xσ = 1 for µ = σ.)

Since the connection coefficients Cλ
µν do not transform as a tensor, they cannot have any in-

trinsic meaning as a measure of the curvature of a manifold. As intrinsic objects we have the

torsion tensor

T : Vect(M)⊗Vect(M)→ Vect(M)

T (X ,Y ) = ∇XY −∇Y X − [X ,Y ]

and Riemann’s curvature tensor

R : Vect(M)⊗Vect(M)⊗Vect(M)→ Vect(M)

R(X ,Y,Z) = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z.

Obviously, R and T are anti-symmetric in X and Y :

T (X ,Y) = −T (Y,X)

R(X ,Y,Z) = −R(Y,X ,Z)

Using the coordinate representation we have

T (eµ,eν) = T λ
µνeλ,

R(eµ,eν,eλ) = Rκ
λµνeκ.

Remark: Note the position of the index λ!

With the help of

∇µeν =Cλ
µνeλ,

[
eµ,eν

]
= 0,
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we determine T λ
µν and Rκ

λµν:

T (eµ,eν) = ∇µeν −∇νeµ −
[
eµ,eν

]

= Cλ
µνeλ −Cλ

νµeλ

=
(

Cλ
µν −Cλ

νµ

)

eλ,

R(eµ,eν,eλ) = ∇µ∇νeλ −∇ν∇µeλ −∇[eµ,eν]eλ

= ∇µCκ
νλeκ −∇νCκ

µλeκ

=
(
∇µCκ

νλ

)
eκ +Cκ

νλ∇µeκ −
(

∇νCκ
µλ

)

eκ −Cκ
µλ∇νeκ

=
(
∂µCκ

νλ

)
eκ +Cκ

νλC
η
µκeη −

(

∂νCκ
µλ

)

eκ −Cκ
µλC

η
νκeη

=
(

∂µCκ
νλ −∂νCκ

µλ +C
η
νλCκ

µη −C
η
µλCκ

νη

)

eκ.

In summary we have

T λ
µν = Cλ

µν −Cλ
νµ,

Rκ
λµν = ∂µCκ

νλ −∂νCκ
µλ +C

η
νλCκ

µη −C
η
µλCκ

νη.

Let us now specialise to the Levi-Civita connection. In this case the torsion tensor vanishes and

the connection coefficients Cκ
µν equal the Christoffel symbols Γκ

µν:

Cκ
µν = Γκ

µν =
1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)
.

In this case we may express Riemann’s curvature tensor through the Christoffel symbols:

Rκ
λµν = ∂µΓκ

νλ −∂νΓκ
µλ +Γ

η
νλΓκ

µη −Γ
η
µλΓκ

νη.

Remark: For Rκλµν = gκρR
ρ
λµν we find

Rκλµν =
1

2

(

∂2gκν

∂xλ∂xµ
− ∂2gλν

∂xκ∂xµ
+

∂2gλµ

∂xκ∂xν
− ∂2gκµ

∂xλ∂xν

)

+gξη

(

Γ
ξ
κνΓ

η
λµ
−Γ

ξ
κµΓ

η
λν

)

.

The tensor Rκλµν has the following symmetries:

Rκλµν = −Rκλνµ,

Rκλµν = −Rλκµν,

Rκλµν = Rµνκλ.

The Ricci tensor is defined as the following contraction of the curvature tensor:

Ricµν = Rλ
µλν
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The Ricci tensor is symmetric:

Ricµν = Ricνµ.

The scalar curvature is defined by

R = gµνRicµν

As Einstein tensor we denote the following combination:

Gµν = Ricµν −
1

2
gµνR

Bianchi identities:

Rκλµν +Rκµνλ +Rκνλµ = 0,

∇ρRκλµν +∇κRλρµν +∇λRρκµν = 0.

Proof of the first Bianchi identity: Let us first note two equivalent formulations of Bianchi’s first

identity:

Rκ
λµν +Rκ

µνλ +Rκ
νλµ = 0,

R(X ,Y,Z)+R(Y,Z,X)+R(Z,X ,Y) = 0.

In order to prove the first Bianchi identity we start from the vanishing of the torsion tensor:

T (X ,Y ) = ∇XY −∇Y X − [X ,Y ] = 0.

Taking the covariant derivative, we obtain

∇Z (∇XY −∇Y X − [X ,Y ]) = 0,

∇Z∇XY −∇Z∇Y X −∇Z [X ,Y ] = 0.

We focus on the term ∇Z[X ,Y ] and use again the condition that the torsion tensor vanishes:

∇Z [X ,Y ]−∇[X ,Y ]Z− [Z, [X ,Y ]] = 0.

Thus we obtain

∇Z∇XY −∇Z∇Y X −∇[X ,Y ]Z− [Z, [X ,Y ]] = 0.

If we now sum over the three cyclic permutations of (X ,Y,Z) and by using the Jacobi identity

[Z, [X ,Y ]]+ [X , [Y,Z]]+ [Y, [Z,X ]] = 0.

we obtain

∇Z∇XY −∇Z∇Y X −∇[X ,Y ]Z

+∇X ∇Y Z−∇X ∇ZY −∇[Y,Z]X

+∇Y ∇ZX −∇Y ∇X Z−∇[Z,X ]Y = 0,
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or written in a slightly different way

R(X ,Y,Z)+R(Y,Z,X)+R(Z,X ,Y) = 0.

Proof of the second Bianchi identity: Equivalent formulations of Bianchi’s second identity are

∇ρRµνκλ +∇κRµνλρ +∇λRµνρκ = 0,

∇ρR
µ

νκλ
+∇κR

µ

νλρ
+∇λR

µ
νρκ = 0,

(∇XR)(Y,Z,V )+(∇Y R)(Z,X ,V)+(∇ZR)(X ,Y,V ) = 0.

In the second line please note that the metric is covariantly constant for the Levi-Civita connec-

tion (∇ρgκµ = 0). Hence we may exchange the covariant derivative with the raising of indices.

In order to prove Bianchi’s second identity we introduce the following notation: Let S be the op-

eration, which sums over the three cyclic permutations of (X ,Y,Z). With this notation we have

to show

S (∇ZR)(X ,Y,V ) = 0.

We start again with the vanishing of the torsion tensor T (X ,Y ) = 0 and obtain

R(T (X ,Y),Z,V ) = R(∇XY,Z,V )−R(∇Y X ,Z,V)−R([X ,Y ] ,Z,V ) = 0.

Summation over the three cyclic permutation of (X ,Y,Z) gives

S (R(∇ZX ,Y,V )−R(∇ZY,X ,V )−R([X ,Y ] ,Z,V )) = 0,

and since Riemann’s curvature tensor is anti-symmetric in the first two arguments:

S (R(∇ZX ,Y,V )+R(X ,∇ZY,V )−R([X ,Y ] ,Z,V )) = 0,

We now consider

∇Z (R(X ,Y,V )) = (∇ZR)(X ,Y,V )+R(∇ZX ,Y,V )+R(X ,∇ZY,V )+R(X ,Y,∇ZV ) .

Using the above relation we obtain after symmetrisation

S (∇Z (R(X ,Y,V))− (∇ZR)(X ,Y,V )−R(X ,Y,∇ZV )−R([X ,Y ] ,Z,V )) = 0.

We are going to prove

S [∇Z (R(X ,Y,V))−R(X ,Y,∇ZV )−R([X ,Y ] ,Z,V )] = 0,

this will then imply Bianchi’s second identity

S (∇ZR)(X ,Y,V ) = 0.
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We have

∇Z (R(X ,Y,V))−R(X ,Y,∇ZV )−R([X ,Y ] ,Z,V ) =

=
(
∇Z∇X ∇Y −∇Z∇Y ∇X −∇Z∇[X ,Y ]

)
V

−
(
∇X ∇Y ∇Z −∇Y ∇X ∇Z −∇[X ,Y ]∇Z

)
V

−
(
∇[X ,Y ]∇Z −∇Z∇[X ,Y ]−∇[[X ,Y ],Z]

)
V

= [∇Z , [∇X ,∇Y ]]V +∇[[X ,Y ],Z]V.

If we now sum over the three cyclic permutations of (X ,Y,Z) we have due to the Jacobi identity

S
(
[∇Z , [∇X ,∇Y ]]V +∇[[X ,Y ],Z]V

)
= 0.

This completes the proof of Bianchi’s second identity.

An important corollary of Bianchi’s second identity is obtained through the following steps:

Contracting the indices κ and µ in Bianchi’s second identity we obtain:

gµκ∇ρRκλµν +∇µRλρµν +gµκ∇λRρκµν = 0.

For the Levi-Civita connection the metric is covariantly constant ∇ρgκµ = 0 and we may ex-

change contraction and covariant derivative:

∇ρRicλν +∇µRλρµν −∇λRicρν = 0.

If we further contract λ and ν, we obtain

∇ρR−∇µRicρµ −∇νRicρν = 0.

∇ρR−2∇µRicρµ = 0,

−2∇µ

(

Ricµρ −
1

2
gµρR

)

= 0.

Expressed differently, we obtain

∇µGµν = 0.

5.10 Symmetries and Killing vectors

Symmetries play an important role in physics. We will now discuss the concept of symmetries

in the context of semi-Riemannian manifolds. For example, the Poincaré group, consisting of

Lorentz transformations and translations, is the symmetry group of flat Minkowski space. Under

a Poincaré transformation the coordinates transform as

x′µ = Λ
µ

νxν +bµ.
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The metric

gµνdxµdxν

is invariant under these transformations. Symmetries which leave the metric invariant are called

isometries.

Let us now define isometries (i.e. symmetries, which leave the metric invariant) for an arbitrary

semi-Riemannian manifold M: Let

f : M → M

be a diffeomorphism. We call f an isometry, if

f ∗g = g.

This means that for X ,Y ∈ TpM we have

g f (p)( f∗X , f∗Y ) = gp(X ,Y ).

The identity map, the composition of isometries and the inverse of an isometry are again isome-

tries. The isometries form a group. Isometries conserve the length of a vector.

Example: For Minkowski space the group of isometries is given by the Poincaré group.

Killing vector fields: Let (M,g) be a semi-Riemannian manifold and X ∈ Vect(M) a vector

field on M. The vector field X is called a Killing vector field if the transformation

x′µ = xµ + εXµ,

where ε is an infinitesimal quantity, is an isometry. In this case we have

∂(xκ + εXκ)

∂xµ

∂(xλ + εXλ)

∂xν
gκλ(x+ εX) = gµν(x).

With

gκλ(x+ εX) = gκλ(x)+ εXσ∂σgκλ(x)+O(ε2)

we obtain

Xσ∂σgµν +gκν∂µXκ+gµλ∂νXλ = 0.

This is Killing’s equation. For the Levi-Civita connection we may re-write this equation as

follows:

∇µXν+∇νXµ = 0.
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A set of Killing vector fields is called linearly dependent, if a vector field from this set can be

written as a linear combination of the other vector fields with constant coefficients.

Remark: The number linearly independent Killing vector fields can be larger than the dimen-

sion of the manifold.

Example: We consider Minkowski space. The connection coefficients of the Levi-Civita con-

nection vanish and Killing’s equation reduces to

∂µXν+∂νXµ = 0.

Obviously, the four constant vector fields

X
µ

(i) = δ
µ
i, 0 ≤ i ≤ 3,

satisfy this equation. But so do in addition the vector fields

Xµ = aµνxν,

where aµν is anti-symmetric and constant. We therefore have 4+ 6 = 10 linearly independent

Killing vector fields, which of course correspond to the translations and the Lorentz transforma-

tions.

In an D-dimensional Euclidean space (or in an D-dimensional Minkowski space) we have

D(D+1)

2

linearly independent Killing vector fields, which correspond to D translations and D(D− 1)/2

rotations (or Lorentz transformations).

In general we call a semi-Riemannian manifold (M,g) of dimension D a maximally symmetric

space, if the number of linearly independent Killing vector fields is

D(D+1)

2
.

In maximally symmetric space the curvature is the same at every point and in every direction,

since the Killing vector fields provide D symmetries with respect to translations and D(D−1)/2

symmetries with respect to rotations. We may therefore try to construct the curvature tensor from

tensors, which are invariant under these transformations. We have the metric and the total anti-

symmetric tensor at our disposal. If we take into account the symmetry properties of Riemann’s

curvature tensor, we are left with a single possibility for the tensor structure:

Rκλµν = c
(
gκµgλν −gκνgλµ

)
.
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The constant of proportionality is determined by contracting with gκµ and gλν:

R = c
(
D2 −D

)
,

and hence

Rκλµν =
R

D(D−1)

(
gκµgλν−gκνgλµ

)
.

The curvature of a maximally symmetric space is fully specified by the scalar curvature R. As

the curvature is the same at any point in a maximally symmetric space, the scalar curvature R is

a constant in a maximally symmetric space. We distinguish the cases R = 0, R > 0 and R < 0.

The maximally symmetric spaces with a metric with Euclidean signature are:

R > 0 sphere Sn,

R = 0 Euclidean space Rn,

R < 0 hyperbolic space Hn.

The maximally symmetric spaces with a metric with Lorentzian signature are:

R > 0 anti-de Sitter space AdSn,

R = 0 Minkowski space Mn,

R < 0 de Sitter space dSn.

We recall that we use the convention that a Lorentzian metric has one positive and (n−1) neg-

ative eigenvalues. One finds in the literature also the opposite convention, where a Lorentzian

metric has one negative and (n−1) positive eigenvalues. We may obtain one case from the other

case through the substitution

gµν → −gµν.

Under this transformation we have

Γκ
µν → Γκ

µν,

Rκ
λµν → Rκ

λµν,

Ricµν → Ricµν,

R → −R.

5.11 The Weyl tensor

The Ricci tensor and the scalar curvature project out the information related to traces of the

Riemann curvature tensor. The trace-free part is lost. The trace-free part is captured by the Weyl

tensor. The Weyl tensor is defined in D dimensions by

Cκλµν = Rκλµν −
2

D−2

(
gκµRicνλ −gκνRicµλ −gλµRicνκ +gλνRicµκ

)

+
2

(D−1)(D−2)

(
gκµgνλ −gκνgµλ

)
R.
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The Weyl tensor is only defined for manifolds of dimension D ≥ 3. For D = 3 the Weyl tensor

vanishes identically. The Weyl tensor has the same symmetries as the Riemann curvature tensor:

Cκλµν = −Cκλνµ,

Cκλµν = −Cλκµν,

Cκλµν = Cµνκλ,

Cκλµν +Cκµνλ +Cκνλµ = 0,

The Weyl tensor is also known as conformal tensor. The reason is as follows: Consider two

metrics gµν and

g′µν = ω2(x)gµν,

where ω(x) is an arbitrary non-vanishing function on the manifold. One finds

Cκ
λµν = C′κ

λµν.
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6 Einstein’s equations

6.1 Relevant scales

Let us first look at the order of magnitude of the gravitational force in comparison to the electro-

magnetic force: The gravitational force between a proton and an anti-proton is given by

FG = −
Gm2

p

r2
r̂,

where G denotes Newton’s constant. The numerical value is

G = (6.67259±0.00085) ·10−11 m3kg−1s−2.

Let’s compare this to the electric force. The Coulomb force is given by

FC = − 1

4πε0

e2

r2
r̂.

For the ratio of the two forces we have
∣
∣
∣
∣

FG

FC

∣
∣
∣
∣

=
4πε0Gm2

p

e2
= 0.81 ·10−36.

The gravitational force is the weakest among the known fundamental forces (gravitational force,

electromagnetic force, weak force, strong force).

Remark: The gravitational force is always attractive, contrary to the electric force, which can

be attractive or repulsive.

Dimensionless quantities:

α =
1

4πε0

e2

~c
= 0.0072973 =

1

137.036
,

αG =
Gm2

p

~c
= 5.9 ·10−39.

Planck mass:

MPl =

√

~c

G
= 1.221 ·1019 GeV = 2.177 ·10−8 kg.

The Planck mass is significantly larger than the masses of the elementary particles known today.

Planck length:

λPl =
2π~c

MPlc
2
= (2π)1.62 ·10−35 m.

The Planck length is significantly smaller than the typical range of sub-atomic forces (≈ 10−18 m).
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6.2 The equivalence principle

The equivalence principle: Let us first consider a particle in a gravitational field within non-

relativistic mechanics. The Lagrange function is given by

L =
1

2
mT v2 −mSφ,

where mT denotes the inertial mass of the particle and mS denotes the gravitational mass of the

particle. The equation of motion reads:

mT
d

dt
~v = −mS

~∇φ.

All experimental data is compatible with mT = mS. This is the weak formulation of the equiva-

lence principle: The gravitational mass equals the inertial mass. Therefore:

d

dt
~v = −~∇φ.

Let us now consider a number of test particles in a homogeneous and time-independent gravita-

tional field. In an inertial system K the equations of motion read

mi
d2

dt2
~x(i) = mi~g+∑

j 6=i

~Fi j.

Let us now change from the inertial system K to a non-inertial system K′, which is obtained from

K by a constant acceleration ~g, i.e.

~y = ~x− 1

2
~gt2.

In the system K′ the equations of motion read

mi
d2

dt2
~y(i) = ∑

j 6=i

~Fi j.

Strong version of the equivalence principle: For each point x of the space-time M there exists

a local inertial system such that in a sufficiently small neighbourhood U ⊂ M of x the equations

of motion take the form as in special relativity. This implies that the existence of a gravitational

field cannot be detected by local experiments alone.

Remark: The weak version of the equivalence principle refers only to the equation of motions

for freely falling bodies, the strong version refers to all physical phenomena.

In the following we will denote by

ηµν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1






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the known metric of flat Minkowski space-time. Within general relativity the metric will be

promoted to a coordinate-dependent object. A mathematical precise formulation of the strong

equivalence principle reads: For each point x0 of space-time there exists a coordinate system

such that

gµν(x0) = ηµν,

∂gµν(x)

∂xα

∣
∣
∣
∣
x0

= 0.

Such coordinates are called Gauß coordinates or normal coordinates.

6.3 Motion of particles in a gravitational field

Let us first consider the motion of a free particle (i.e. no forces are exerted on the particle) on a

given manifold.

We recall that within Newtonian mechanics a free particle moves with constant velocity along

straight lines.

Within special relativity we have the law that the motion of a free particle is a motion with

constant four-velocity:

d

ds
uµ = 0.

This equation of motion can be deduced with the help of the principle of least action from the

action of a free particle

S = −mc

b∫

a

ds.

The action is proportional to the length of the path between the space-time points a and b. A

minimum is obtained for the shortest path between a and b. Paths, which give the shortest path

between two points are called geodesics.

This gives us the proper generalisation to curved manifolds: The motion of a free particle on

an arbitrary semi-Riemannian manifold is given by a geodesic. For semi-Riemannian manifolds

with the Levi-Civita connection there is an alternative definition for a geodesic: A geodesic is a

curve along which the tangent vector is parallel transported.

Let xµ(λ) be a curve and let T
µ1...µk

ν1...νl
be a tensor. The tangent vector of the curve at the

point xµ(0) is given by

V =
dxµ

dλ
eµ.
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By definition, the tensor is parallel transported along the curve if

∇V T
µ1...µk

ν1...νl
=

dxτ

dλ
∇τT

µ1...µk
ν1...νl

= 0.

For a vector field (i.e. a (1,0)-tensor field) this equation simplifies to

dxτ

dλ
∇τV

µ =
dxτ

dλ

(
∂τV

µ +Γ
µ
τσV σ

)
= 0.

If we plug in for V µ the expression for the tangent vector V µ = dxµ/dλ, we find

dxτ

dλ

(

∂τ
dxµ

dλ
+Γ

µ
τσ

dxσ

dλ

)

=
d2xµ

dλ2
+Γ

µ
τσ

dxτ

dλ

dxσ

dλ
= 0.

The equation

d2xµ

dλ2
+Γ

µ
τσ

dxτ

dλ

dxσ

dλ
= 0

is called the geodesic equation. If all connection coefficients vanish (as for example in the case

of an Euclidean space or Minkowski space), the geodesic equation reduces to

d2xµ

dλ2
= 0,

which corresponds to the motion of a particle with constant velocity along straight lines.

In order to derive the geodesic equation we started from the definition of a geodesic which

refers to the parallel transport of the tangent vector along the geodesic curve. Let us return to

the first definition, which defines geodesics as paths of shortest length between two points. We

consider the functional

s =
∫ √

gµν
dxµ

dλ

dxν

dλ
dλ.

We set

f = gµν
dxµ

dλ

dxν

dλ
.

For the variation of the functional one obtains

δs =
∫

δ
√

f dλ =
1

2

∫
1√

f
δ f dλ.

Let us choose for the curve parameter λ the proper time (more precisely s = cτ). We then find

f = gµν
dxµ

ds

dxν

ds
= gµνuµuν = 1.
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It is therefore sufficient to consider the extrema of the simpler functional

I =
1

2

∫
f ds =

1

2

∫
gµν

dxµ

ds

dxν

ds
ds.

Let us now consider

xµ → xµ +δxµ,

gµν → gµν +
(
∂σgµν

)
δxσ.

Plugging this in, we obtain

δI =
1

2

∫ [
∂σgµν

dxµ

ds

dxν

ds
δxσ +gµν

d (δxµ)

ds

dxν

ds
+gµν

dxµ

ds

d (δxν)

ds

]

ds.

For the last two terms we use partial integration, as for example

1

2

∫
gµν

dxµ

ds

d (δxν)

ds
ds = −1

2

∫ [
gµν

d2xµ

ds2
+

dgµν

ds

dxµ

ds

]

δxνds

= −1

2

∫ [
gµν

d2xµ

ds2
+∂σgµν

dxσ

ds

dxµ

ds

]

δxνds.

After partial integration we obtain

δI = −
∫ [

gµσ
d2xµ

ds2
+

1

2

(
∂µgνσ +∂νgσµ −∂σgµν

) dxµ

ds

dxν

ds

]

δxσds.

The vanishing of the variation implies

gµσ
d2xµ

ds2
+

1

2

(
∂µgνσ +∂νgσµ −∂σgµν

) dxµ

ds

dxν

ds
= 0.

Finally, we multiply by the inverse metric. We obtain

d2xρ

ds2
+

1

2
gρσ
(
∂µgνσ +∂νgσµ −∂σgµν

) dxµ

ds

dxν

ds
= 0.

This is exactly the geodesic equation with the Christoffel symbols as connection coefficients.

This shows that the two definitions of a geodesic are equivalent for the Levi-Civita connection.

Finally, let us give a third derivation of the geodesic equation. We generalise the known re-

lation in flat Minkowski space in a covariant way. We start from the equation of motion for a free

particle in Minkowski space:

d

ds
uµ = 0,
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We may re-write this as

duµ = 0.

The generalisation to curved space reads

∇uµ = 0.

With the definition of the covariant derivative one obtains

duµ +Γ
µ
νρuνdxρ = 0.

If we now divide again by ds, we obtain

d2xµ

ds2
+Γ

µ
νρ

dxν

ds

dxρ

ds
= 0.

This is the sought-after equation of motion. The motion of the particle is determined by the quan-

tities Γ
µ
νρ. Since d2xµ

ds2 gives the four-acceleration of the particle, we may interpret the quantity

−mΓ
µ
νρuνuρ

as the four-force acting on particles due to the gravitational field.

6.4 Einstein’s equations

In this section we will heuristically motivate Einstein’s equations. In the last section we saw that

the geodesic equation can be obtained from the equation of motion in flat space duµ/ds = 0 by

replacing partial derivatives with covariant derivatives. In this section we will use these “rules”

to obtain the field equations for gravitation. In a subsequent section we will adopt a stricter

approach and derive the field equations from an action. The rules for “minimal substitution” are:

• Replace partial derivatives by covariant derivatives.

• Replace the flat metric ηµν by gµν.

Let us consider an example. In flat Minkowski space we have

∂µT µν = 0.

The generalisation to curved manifolds reads

∇µT µν = 0.

Once we obtained Einstein’s equations, we would also show that in the Newtonian limit they

reduce to the well-known equations of classical mechanics:

d2~x

dt2
=−~∇Φ, ∆Φ =

4πGρ

c2
.

The Newtonian limit is defined by
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• All particle velocities are small compared to the speed of light.

• The gravitational field is weak, such that it can be treated as a perturbation of flat space-

time.

• The gravitational field is static (i.e. time-independent).

Let us now consider a weak static gravitational field. In general, the equation of motion for a

free particle reads

d2xµ

ds2
+Γ

µ
νρ

dxν

ds

dxρ

ds
= 0.

The four-velocity is given by

uµ =
dxµ

ds
=




1

√

1− v2

c2

,
~v
c

√

1− v2

c2



 .

For a slow motion (i.e. |~v| ≪ c) we have

∣
∣
∣
∣

d~x

ds

∣
∣
∣
∣
≪
∣
∣
∣
∣

dx0

ds

∣
∣
∣
∣
.

In this limit the equation of motion simplifies to

d2xµ

ds2
+Γ

µ
00

dx0

ds

dx0

ds
= 0.

For a static gravitational field the Christoffel symbols reduce to

Γ
µ
00 =

1

2
gµλ (∂0g0λ +∂0g0λ −∂λg00) =−1

2
gµλ∂λg00.

Let us now set

gµν = ηµν +hµν,

with |hµν| ≪ 1. We obtain for the inverse metric gµν to first order

gµν = ηµν −hµν,

with

hµν = ηµσηντhστ.

For Γ
µ
00 one finds

Γ
µ
00 = −1

2
ηµλ∂λh00,
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We substitute this result into the equation of motion

d2xµ

ds2
=

1

2
ηµλ (∂λh00)

(
dx0

ds

)2

.

With ds = cdτ we obtain for the spatial components of the equation of motion

d2xi

dτ2
=

1

2
c2
(
∂ih00

)
(

dt

dτ

)2

.

We divide both sides by (dt/dτ)2 and obtain

d2xi

dt2
=

1

2
c2∂ih00,

With ~∇ = (∂1,∂2,∂3) =−(∂1,∂2,∂3) we have

d2~x

dt2
= −1

2
c2~∇h00.

Let us compare this equation with

d2~x

dt2
= −~∇Φ.

We deduce that the gravitational potential is given by

Φ =
1

2
c2h00.

Thus

g00 = η00 +h00 = 1+
2

c2
Φ.

We see that a metric of the form g00 = 1+ 2
c2 Φ corresponds in the Newtonian limit to Newton’s

law d2~x/dt2 =−~∇Φ.

Let us now seek a generalisation of Poisson’s law: ∆Φ = 4πGρ/c2. (We use the convention

that the mass density ρ is given in units of energy per volume, therefore an extra factor of 1/c2

appears.) As starting point we will assume that the mass is the source of the gravitational field.

In natural units (c = 1) we have

mass = rest energy

= 0-component of a four-vector.

mass density = energy density

= 00-component of a rank 2 four-tensor.
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We therefore expect that the energy-momentum tensor T µν describes the source of the gravita-

tional field. In Minkowski space energy-momentum conservation implies:

∂µT µν = 0.

In general coordinates this equation reads

∇µT µν = 0.

We therefore seek an equation involving rank 2 tensors and containing T µν.

We further know that Newton’s gravitational potential satisfies the Poisson equation

∆Φ =
4πGρ

c2
,

and that the mass density ρ is the 00-component of the energy-momentum tensor:

ρ = T 00.

We further have

Φ ≈ 1

2
c2h00,

g00 = 1+h00.

Therefore we find

∆g00 =
8πG

c4
T00.

Thus we seek an equation of the form

G̃µν =
8πG

c4
Tµν,

where the tensor G̃µν contains the metric and its first and second derivatives.

Let us summarise: We look for a quantity G̃µν with the following properties:

1. G̃µν is a tensor;

2. G̃µν contains derivatives of the metric up to second order, second derivatives of the metric

occur linearly, first derivatives of the metric are allowed to occur quadratically;

3. G̃µν is symmetric, since Tµν is symmetric;

4. ∇µG̃µν = 0, since Tµν is conserved (∇µTµν = 0);
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5. For weak static gravitational fields we have

G̃00 → ∆g00.

The first two points imply, that G̃µν must be a linear combination of Ricµν and gµνR, other tensors

are not available. Hence

G̃µν = c1Ricµν + c2gµνR.

This ansatz also satisfies condition 3. We already know that the Einstein tensor satisfies

∇µGµκ = 0.

Since Gµν = Ricµν − 1
2
gµνR we conclude

c2 = −1

2
c1.

Condition 5 implies that the constant of proportionality is given by

c1 = 1.

Hence

G̃µν = Gµν

and Einstein’s field equations read

Gµν =
8πG

c4
Tµν,

Ricµν −
1

2
gµνR =

8πG

c4
Tµν.

Uniqueness of Einstein’s equations: Assumptions 1-4 are indispensable, but it could be possible

that small deviations from Newton’s law remained undetected up to today. It can be shown that

Einstein’s equations are unique up to an additional term

Λgµν.

Λ is called the cosmological constant. The cosmological constant was introduced by Einstein

in 1917 and later discarded (“größte Eselei ...”). Today there is strong evidence that Λ 6= 0.

Einstein’s equations with a cosmological constant read:

Ricµν −
1

2
gµνR−Λgµν =

8πG

c4
Tµν,

Remark concerning the sign of the term Λgµν: If one uses the signature (−,+,+,+) instead

of the signature (+,−,−,−) adopted in these lectures, the terms Ricµν and gµνR won’t change
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sign, however the metric gµν will change the sign. In order to have with both conventions the

same numerical value for the cosmological constant one finds in the literature which uses the

convention (−,+,+,+) the expression Ricµν −1/2gµνR+Λgµν.

In the presence of a cosmological constant we obtain in the Newtonian limit

∆Φ =
4πGρ

c2
+

1

2
c2Λ.

We see that a non-vanishing cosmological constant Λ implies a homogeneous static energy den-

sity in the universe given by

ρvac =
c4

8πG
Λ.

Remarks:

- Einstein’s equations are non-linear differential equations. They contain second derivatives of

gµν, but also products of first derivatives and gµν. The non-linearity implies that the superposition

principle does not apply to gravity.

- We may contract Einstein’s equations with gµν. This yields

R−2R−4Λ =
8πG

c4
T,

where we set T = gµνTνµ. This equation can be solved for R:

R = −8πG

c4
T −4Λ.

We may now substitute this expression for the scalar curvature into Einstein’s field equations and

obtain

Ricµν =
8πG

c4

(

Tµν −
1

2
gµνgρσTσρ

)

−Λgµν.

- In empty space we have Tµν = 0. If in addition the cosmological constant is vanishing as

well, one has Ricµν = 0. However, this does in general not imply that Rµνρσ = 0, i.e. that the cur-

vature tensor is vanishing. Remark: In dimensions D = 2 or D = 3 one can show that Ricµν = 0

implies Rµνρσ = 0.

6.5 The action of general relativity

Let us first consider the gravitational field alone, i.e. without additional matter fields. The

Einstein-Hilbert action with a cosmological constant reads:

SEH = − c3

16πG

∫
d4x

√−g (R+2Λ)
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Here we used the notation

g = det gµν.

We now derive the equations of motion through the variation of the metric. It is technically

simpler to work out the variation with respect to the inverse metric gµν instead of the variation

with respect to the metric δgµν. Since

gµρgρν = δ
µ
ν

we have

(δgµρ)gρν +gµρ
(
δgρν

)
= 0,

δgµν = −gµρgνσδgρσ.

With R = gµνRicµν we obtain three terms for the variation of the action:

δSEH =− c3

16πG
δ

∫
d4x

√−g
(
gµνRicµν +2Λ

)

= − c3

16πG








∫
d4x

√−ggµνδRicµν

︸ ︷︷ ︸

(δS)1

+

∫
d4x

√−gRicµνδgµν

︸ ︷︷ ︸

(δS)2

+

∫
d4x

(
gµνRicµν +2Λ

)
δ
√−g

︸ ︷︷ ︸

(δS)3







.

The second term is already in the desired form of an expression multiplied by δgµν.

Let us start with the first term. We recall that the Ricci tensor is given as a contraction of

Riemann’s curvature tensor. The curvature tensor is expressed in turn in terms of the Christoffel

symbols:

Rκ
λµν = ∂µΓκ

νλ −∂νΓκ
µλ +Γ

η
νλ

Γκ
µη −Γ

η
µλ

Γκ
νη.

Therefore we consider first the variation of Riemann’s curvature tensor with respect to the

Christoffel symbol.

Γ′κ
µν = Γκ

µν +δΓκ
µν.

At this point it is important to recall that the Christoffel symbol is not a (1,2)-tensor! In order

to find the transformation law for the Christoffel symbol under a coordinate transformation we

consider

∇µ′V
ν′ =

∂xµ

∂xµ′
∂xν′

∂xν
∇µV ν.
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The left-hand side may be expressed as

∇µ′V
ν′ = ∂µ′V

ν′ +Γν′
µ′λ′V

λ′

=
∂xµ

∂xµ′ ∂µ

(

∂xν′

∂xν
V ν

)

+Γν′
µ′λ′

∂xλ′

∂xλ
V λ

=
∂xµ

∂xµ′
∂xν′

∂xν
∂µV ν +Γν′

µ′λ′
∂xλ′

∂xλ
V λ +

∂xµ

∂xµ′ V
ν ∂2xν′

∂xµ∂xν
.

For the right-hand side we obtain

∂xµ

∂xµ′
∂xν′

∂xν
∇µV ν =

∂xµ

∂xµ′
∂xν′

∂xν
∂µV ν +

∂xµ

∂xµ′
∂xν′

∂xν
Γν

µλV λ.

Therefore

Γν′
µ′λ′

∂xλ′

∂xλ
V λ +

∂xµ

∂xµ′ V
λ ∂2xν′

∂xµ∂xλ
=

∂xµ

∂xµ′
∂xν′

∂xν
Γν

µλV λ.

Here we replaced in the second term on the left-hand side the summation index ν by λ. Since

this has to hold for arbitrary V λ one obtains after multiplication with ∂xλ/∂xλ′

Γν′
µ′λ′ =

∂xµ

∂xµ′
∂xν′

∂xν

∂xλ

∂xλ′ Γ
ν
µλ −

∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν′

∂xµ∂xλ
.

Let Cν
µλ

and C̃ν
µλ

be two connections. The difference transforms as

Cν′
µ′λ′ −C̃ν′

µ′λ′ =
∂xµ

∂xµ′
∂xν′

∂xν

∂xλ

∂xλ′

(

Cν
µλ −C̃ν

µλ

)

,

since all terms with second derivatives cancel out. Therefore, the difference Cν
µλ − C̃ν

µλ is a

(1,2)-tensor. In particular this implies that the variation of the Christoffel symbol

δΓκ
µν = Γ′κ

µν −Γκ
µν

transforms as a tensor. Hence

∇µ

(
δΓκ

νλ

)
= ∂µ

(
δΓκ

νλ

)
+Γκ

µρδΓ
ρ
νλ
−Γ

ρ
µνδΓκ

ρλ −Γ
ρ
µλ

δΓκ
νρ.

The variation of Riemann’s curvature tensor with respect to the Christoffel symbol yields

δRκ
λµν = ∂µδΓκ

νλ −∂νδΓκ
µλ +δΓ

η
νλΓκ

µη +Γ
η
νλδΓκ

µη −δΓ
η
µλΓκ

νη −Γ
η
µλδΓκ

νη

= ∇µ

(
δΓκ

νλ

)
−∇ν

(

δΓκ
µλ

)

.

We then express the variation δΓκ
µν in terms of the variation δgµν:

δΓκ
µν = −1

2

[

gλµ∇νδgλκ +gλν∇µδgλκ −gµαgνβ∇κδgαβ
]

.
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Combining all ingredients, we obtain for the first term

(δS)1 =

∫
d4x

√−g∇σ

[

gµν∇σ (δgµν)−∇λ

(

δgσλ
)]

.

This integral is a covariant divergence of a vector and can be re-written as a boundary integral at

infinity. This term does not contribute to the variation.

Let us now consider (δS)3: We have to calculate the variation of the determinant of g. In this re-

spect, the following formula is useful: For any quadratic matrix with non-vanishing determinant

we have

ln(det M) = Tr (lnM) .

The logarithm of a matrix is defined by

exp(lnM) = M,

and the exponential function is defined by the series expansion. If M = diag(λ1, ...,λn) is diago-

nal, the above formula is immediately clear:

ln(λ1 ·λ2 · ... ·λn) = lnλ1 + lnλ2 + ...+ lnλn.

For an arbitrary invertible matrix the above formula is then proved by first diagonalising the ma-

trix.

Variation of this formula yields

1

det M
δ(det M) = Tr

(
M−1δM

)
.

Let us now specialise and take the metric gµν for the matrix M. This yields

δg = g
(
gµνδgµν

)
=−g

(
gµνδgµν

)
.

Hence

δ
√−g = − 1

2
√−g

δg =
1

2

g√−g
gµνδgµν =−1

2

√−ggµνδgµν.

Putting everything together, we obtain the variation of the Einstein-Hilbert action

δSEH = − c3

16πG

∫
d4x

√−g

[

Ricµν −
1

2
gµνR−Λgµν

]

δgµν.

Requiring that the variation of the action vanishes for arbitrary variations δgµν implies

Ricµν −
1

2
gµνR−Λgµν = 0.

These are Einstein’s equations in the case that no additional matter fields are present.
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6.6 The energy-momentum tensor of general relativity

In the presence of additional fields and matter, the total action is given by

S = SEH +Sparticle +Sfields + ...

with

Sparticle = −mc

b∫

a

ds,

Sfields = − 1

16πc

∫
d4x

√−gFµνFµν, .

Einstein’s equations contain the energy-momentum tensor. In our review of classical field the-

ory we have already seen a general method to compute the energy-momentum tensor from a

Lagrange density L(φ,∂µφ):

T µν =

(

∂L

∂
(
∂µφ
)∂νφ(x)

)

−gµν
L+∂ρBµρν.

In this formula Bµρν is anti-symmetric in µ and ρ and determined such that T µν is symmetric.

Example: Consider a scalar field with Lagrange density

L =
~2c

2

[

gµν
(
∂µφ(x)

)
(∂νφ(x))− m2c2

~2
(φ(x))2

]

.

One finds (∂ρBµρν is vanishing in this case):

T µν =

(

∂L

∂
(
∂µφ
)∂νφ(x)

)

−gµν
L

=
~2c

2

[

2(∂µφ(x))(∂νφ(x))−gµν (∂λφ(x))
(

∂λφ(x)
)

+
m2c2

~2
gµν (φ(x))2

]

.

Let us now consider an alternative method to compute the energy-momentum tensor. This

method has the advantage, that it gives directly the correct and symmetric result. We consider

the action

S =
1

c

∫
d4x

√−gL.

Variation with respect to gµν yields

δS =
1

c

∫
d4x

[

∂
√−gL

∂gµν
δgµν +

∂
√−gL

∂∂gµν

∂xλ

δ
gµν

∂xλ

]

=
1

c

∫
d4x

[

∂
√−gL

∂gµν
− ∂

∂xλ

∂
√−gL

∂∂gµν

∂xλ

]

δgµν.
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We set

1

2

√−gTµν =
∂
√−gL

∂gµν
− ∂

∂xλ

∂
√−gL

∂∂gµν

∂xλ

.

This yields

δS =
1

2c

∫
d4x

√−gTµνδgµν.

It can be shown that

Tµν =
2√−g

[

∂
√−gL

∂gµν
− ∂

∂xλ

∂
√−gL

∂∂gµν

∂xλ

]

agrees with the first definition of the energy-momentum tensor. Let us verify this for the example

of a scalar field discussed above:

L =
~2c

2

[

gµν
(
∂µφ(x)

)
(∂νφ(x))− m2c2

~2
(φ(x))2

]

.

We find

Tµν =
2√−g

∂
√−gL

∂gµν
= 2

∂L

∂gµν
+

2√−g
L

∂
√−g

∂gµν

= 2
∂L

∂gµν
−Lgµν

=
~2c

2

[

2
(
∂µφ(x)

)
(∂νφ(x))−gµν (∂λφ(x))

(

∂λφ(x)
)

+
m2c2

~2
gµν (φ(x))

2

]

.

Let us return to the general case. We obtain for the variation of

S = − c3

16πG

∫
d4x

√−g(R+2Λ)+
1

c

∫
d4x

√−gL

the expression

δS = − c3

16πG

∫
d4x

√−g

[

Ricµν −
1

2
gµνR−Λgµν

]

δgµν +
1

2c

∫
d4x

√−gTµνδgµν.

Hence

− c3

16πG

[

Ricµν −
1

2
gµνR−Λgµν

]

+
1

2c
Tµν = 0,

or

Ricµν −
1

2
gµνR−Λgµν =

8πG

c4
Tµν.
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Let us now discuss conservation laws associated to the energy-momentum tensor. The

energy-momentum tensor satisfies

∇µT µν = 0.

In our heuristic motivation for Einstein’s equations we used this as an input. However, if we

accept the Einstein-Hilbert action as a starting point, this equation follows from Einstein’s equa-

tions and ∇µGµν = 0, the latter is due to the Bianchi identity. Let us first consider a vector jµ,

which satisfies

∇µ jµ = 0

and vanishes at spatial infinity. Stoke’s theorem reads

∫

M

d4x
√

|g|∇µV µ =
∫

∂M

d3y
√

|γ| nµV µ,

and setting V µ = jµ yields

0 =
∫

∂M

d3y
√

|γ| nµ jµ.

Taking M as the region bounded by the time coordinates ti and t f and extending to spatial infinity

one finds the conservation law
∫

t=t f

d3y
√

|γ| j0 −
∫

t=ti

d3y
√

|γ| j0 = 0.

Note that Stoke’s theorem requires a vector V µ, we cannot plug in a tensor T µν or some fixed

components of a tensor like T µ0. However, the contraction of the rank 2 tensor T µν with a vector

ξν transforms as a vector. Let us now investigate under which conditions we have ∇µ(T
µνξν)= 0:

∇µ (T
µνξν) =

1

2
∇µ (T

µνξν)+
1

2
∇ν

(
T µνξµ

)

=
1

2

(
∇µT µν

)
ξν +

1

2
T µν∇µξν +

1

2
(∇νT µν)ξµ +

1

2
T µν∇νξµ

=
1

2
T µν

(
∇µξν +∇νξµ

)
.

Thus ∇µ(T
µνξν) = 0 if ∇µξν +∇νξµ = 0 or in other words if ξν is a Killing vector field. If we

now assume that ξν is a Killing vector field and T µνξν vanishes at spatial infinity we obtain with

the same reasoning as above the conservation law

∫

t=t f

d3y
√

|γ| T 0νξν −
∫

t=ti

d3y
√

|γ| T 0νξν = 0.
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If ξν = (1,~0) is a Killing vector field, we have energy conservation in the usual form

∫

t=t f

d3y
√

|γ| T 00 −
∫

t=ti

d3y
√

|γ| T 00 = 0.

saying that the integral over the energy density over spatial space is conserved. Note that ∇µT µν

alone is not enough to obtain this result, we need in addition that ξν = (1,~0) is a Killing vector

field. This is of course in accordance with Noether’s theorem: A Killing vector field generates a

symmetry (in this case time translation) and only if the system is invariant under time translations

energy conservation follows.

6.7 The Palatini formalism

Preliminary remark: Let us consider within classical mechanics the action

S =

∫ tb

ta

L(q, q̇)dt, L(q, q̇) =
1

2
q̇2 −V (q).

Variation with respect to the generalised coordinate q(t) and keeping the end-points fixed δq(ta)=
δq(tb) = 0 yields the Euler-Lagrange equation

δL

δq
− d

dt

δL

δq̇
= 0, q̈ =−δV

δq
.

This is the formulation of classical mechanics according to Lagrange. Equally well we may

consider the Hamiltonian formulation of classical mechanics:

S =

∫ tb

ta

(pq̇−H(q, p))dt, H(q, p) =
1

2
p2 +V (q)

We now consider q(t) and p(t) as independent (i.e. we do not set from the beginning p(t)= q̇(t))
and vary with respect to q(t) and p(t). Variation with respect to p(t) yields the relation

q̇ =
δH(q, p)

δp
= p.

Variation with respect to q(t) yields the equation of motion

ṗ = −δH(q, p)

δq
=−δV

δq
.

Let us now transfer this to general relativity. For the derivation of Einstein’s equations from the

Einstein-Hilbert action

SEH = − c3

16πG

∫
d4x

√−g
(
gµνRicµν +2Λ

)
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we considered the variation with respect to the inverse metric gµν. The Ricci tensor

Ricµν = ∂κΓκ
νµ −∂νΓκ

κµ +Γ
η
νµΓκ

κη −Γ
η
κµΓκ

νη

depends on the Christoffel symbols, which in turn depend on the metric

Γκ
µν =

1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)
.

Within the Palatini formalism we consider the (inverse) metric gµν and the (symmetric) connec-

tion coefficients as independent quantities. Variation with respect to the inverse metric yields

Einstein’s equations

Ricµν −
1

2
gµνR−Λgµν = 0.

(Here only the terms (δS)2 and (δS)3 contribute, which give the variation of gµν and
√−g with

respect to the inverse metric gµν.) Within the Palatini formalism the Ricci tensor Ricµν depends

only on the connection coefficients. The variation of

Ricµν = ∂κCκ
νµ −∂νCκ

κµ +C
η
νµCκ

κη −C
η
κµCκ

νη

with respect to the connection coefficients Cκ
µν yields

δRicµν = ∇κδCκ
νµ −∇νδCκ

κµ.

Therefore we obtain for the variation of the action with respect to the connection coefficients:

δSEH = − c3

16πG

∫
d4x

√−ggµνδRicµν =− c3

16πG

∫
d4x

√−ggµν
(
∇κδCκ

νµ −∇νδCκ
κµ

)

=
c3

16πG

∫
d4x

(

∇κ
√−ggµν −δν

κ∇λ

√−ggµλ
)

δCκ
νµ.

This has to hold for arbitrary variations, hence the expression in the bracket has to vanish. This

implies that the symmetric combination has to vanish as well:

∇κ
√−ggµν − 1

2
δν

κ∇λ

√−ggµλ − 1

2
δ

µ
κ∇λ

√−ggνλ = 0.

This is a system of 40 equations for the 40 covariant derivatives ∇κ
√−ggµν. The unique solution

is

∇κ
√−ggµν = 0.

One then shows

∇κ
√−g = 0,
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this implies immediately

∇κgµν = 0.

With the help of

0 = ∇κ
√−gδ

ρ
ν = ∇κ

√−ggρµgµν =
√−ggρµ∇κgµν

it follows that

∇κgµν = 0.

We recognise this equation as the condition that the metric is covariantly constant with respect to

the connection. Together with the assumption that the connection is torsion free (symmetric), this

uniquely defines the Levi-Civita connection. In this case the connection coefficients are given by

the Christoffel symbols.

Remark: In the case where one considers only the metric as an independent field, the Einstein-

Hilbert action contains second derivatives of the metric. The advantage of the Palatini formalism

is given by the fact, that the action contains in this formalism only first derivatives of the connec-

tion coefficients.

6.8 The vielbein formalism

The vielbein formalism is required to describe the interaction of fermions with gravitation.

We start with a manifold of dimension n. Up to now we used as basis vectors for the tangent

space at the point p the derivatives in the direction of the coordinate axes:

eµ = ∂µ.

As standard basis for the cotangent space at the point p we used up to now the corresponding

dual vectors:

θµ = dxµ.

Let us look at an example: The (two-dimensional) surface of a sphere with coordinates given by

a polar angle ϑ and an azimuthal angle ϕ. The metric in these coordinates reads

g = dϑ⊗dϑ+ sin2 ϑdϕ⊗dϕ.

At the point (ϑ,ϕ) = (π/3,0) we find

g(eϕ,eϕ) =
3

4
,
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whereas at the point (ϑ,ϕ) = (π/2,0) we obtain

g(eϕ,eϕ) = 1.

More generally there can be the case, that two basis vectors are orthogonal at point A, but not at

point B. This happens for example if we consider a metric containing a term c(x)ei ⊗ e j, where

the coefficient c(x) is vanishing at point A, but not at point B. We see that the derivatives in

the direction of the coordinate axes generally do not form an orthonormal basis. For the tangent

space we may define a new basis ea, which by definition satisfies

g(ea,eb) = ηab.

(This is the appropriate definition for a Lorentzian manifold, for a manifold with Euclidean

signature one replaces ηab by δab.) In general, this basis is no longer given by the derivatives in

the direction of the coordinate axes, but we may express the new basis as a linear combination of

the old basis eµ:

ea = e µ
a eµ,

where e
µ

a is an invertible n×n-matrix. In order to preserve the orientation we require in addition

dete
µ

a > 0. The new basis ea is called the non-coordinate basis. A widely adopted convention

uses greek indices for the coordinate basis eµ and latin indices for the non-coordinate basis ea.

Furthermore, one sometimes refers to eµ as a holonomic basis, and to ea as an anholonomic

basis. The n×n-matrix e
µ

a is called generally the vielbein, on a manifold of dimension four the

vierbein (and on a manifold of dimension three the dreibein etc.). We denote by ea
µ the inverse

matrix of e
µ

a :

e µ
a ea

ν = δ
µ
ν, e µ

a eb
µ = δb

a.

With the help of ea
µ we obtain

eµ = ea
µea

and

gµν = ea
µeb

νηab.

In addition we may define a new basis θa for the cotangent space as the dual basis to the non-

coordinate basis ea:

〈θa,eb〉 = δa
b.

One finds

θa = ea
µθµ, θµ = e µ

a θa.
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Previously we introduced the Lie bracket for vector fields, which yields again a vector field:

[X ,Y ] =
(
Xµ∂µY ν −Y µ∂µXν

)
eν

For the coordinate basis we have

[
eµ,eν

]
= 0.

However, for the non-coordinate basis we obtain

[ea,eb] =
[
e µ

a eµ,e
ν

b eν

]
=
(
e µ

a ∂µe ν
b − e

µ
b ∂µe ν

a

)
eν = c c

ab ec,

with

c c
ab =

(
e µ

a ∂µe ν
b − e

µ
b ∂µe ν

a

)
ec

ν,

i.e. the non-coordinate basis has a non-vanishing Lie bracket:

[ea,eb] = c c
ab ec.

With the help of ea
µ and e

µ
a we may convert tensors from the coordinate basis to the non-

coordinate basis and vice versa. For example, a (1,2)-tensor in the non-coordinate basis is

converted to the coordinate basis by

T κ
µν = e κ

c ea
µeb

νT c
ab.

The connection coefficients do not form a tensor and we write

∇aeb = ωc
abec.

We have

∇aeb = ∇e
µ

a eµ
(e ν

b eν) = e µ
a ∇µ (e

ν
b eν) = e µ

a

[(
∂µe ν

b

)
eν +Cκ

µνe ν
b eκ

]

= e µ
a

[(
∂µe ν

b

)
ec

ν +Cκ
µνe ν

b ec
κ

]
ec = e µ

a ec
ν

[

∂µe ν
b +Cν

µρe
ρ

b

]

ec,

and therefore

ωc
ab = e µ

a ec
ν

[

∂µe ν
b +Cν

µρe
ρ

b

]

.

We define the connection one-form ωa
b by

ωa
b = ωa

cbθc = ea
ν

(

∂µe ν
b +Cν

µρe
ρ

b

)

dxµ.

The one-form ωa
b is also known as the spin connection one-form.

Let us now consider the torsion tensor and the curvature tensor in the non-coordinate basis:

T (ea,eb) = T c
abec,

R(ea,eb,ec) = Rd
cabed.
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We determine T c
ab from the definition of the torsion tensor:

T (ea,eb) = ∇aeb −∇bea − [ea,eb] = (ωc
ab −ωc

ba − c c
ab )ec,

hence

T c
ab = ωc

ab −ωc
ba − c c

ab .

In the same way we obtain from

R(ea,eb,ec) = ∇a∇bec −∇b∇a −∇[ea,ab]ec

=
(

∂aωd
bc −∂bωd

ac +ωe
bcωd

ae −ωe
acωd

be − c e
ab ωd

ec

)

ed

the coefficients

Rd
cab = ∂aωd

bc −∂bωd
ac +ωe

bcωd
ae −ωe

acωd
be − c e

ab ωd
ec.

This allows us to define a torsion two-form T a and a curvature two-form Ra
b:

T a =
1

2
T a

bcθb ∧θc,

Ra
b =

1

2
Ra

bcdθc ∧θd .

With the help of these definitions we may now state the structure equations of Cartan:

T a = dθa +ωa
b ∧θb,

Ra
b = dωa

b +ωa
c ∧ωc

b.

Let us also consider the Bianchi identities in the non-coordinate basis:

dT a +ωa
b ∧T b = Ra

b ∧ eb,

dRa
b +ωa

c ∧Rc
b −Ra

c ∧ωc
b = 0.

Remark: Previously we proved the Bianchi identities in the coordinate basis for the case that the

torsion tensor is vanishing. The form of the Bianchi identities stated above holds in general (and

in particular also for T a 6= 0).

The vielbein formalism allows for an elegant formulation of general relativity. In addition, the

vielbein formalism has the advantage that spinor fields can be included. Instead of the metric gµν

one uses within the vielbein formalism the vielbein e
µ

a and the spin connection ωc
ab as funda-

mental fields. Similar to the Palatini formalism (which uses the inverse metric and the symmetric

connection coefficients as fundamental fields) one may show that within the vielbein formalism

the spin connection one-form may be expressed in terms of the vielbein fields. Within the viel-

bein formalism and within the Palatini formalism we obtain instead of second order differential
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equations a system of coupled first order differential equations.

The starting point for the formulation of general relativity within the vielbein formalism are

two one-forms. We consider the vielbein field

θa = ea
µdxµ

and the spin connection one-form

ωa
b = ωa

µbdxµ.

We require that the transformation from the coordinate basis to the non-coordinate basis is in-

vertible and orientation-preserving. This translates to the requirement

det
(
ea

µ

)
> 0.

The spin connection defines the covariant derivative:

∇µea = ωb
µaeb.

Torsion and curvature are given by

T a = dθa +ωa
b ∧θb,

Ra
b = dωa

b +ωa
c ∧ωc

b.

Explicitly, we find for the curvature

Ra
b =

1

2
Ra

bµνdxµ ∧dxν,

Ra
bµν = ∂µωa

νb −∂νωa
µb +ωa

µcωc
νb −ωa

νcωc
µb.

The metric is given by

gµν = ea
µeb

νηab.

The vielbein defines a unique torsion-free and metric-compatible spin connection. This is most

easily seen as follows: The relation between the connection coefficients ωa
µb in the non-coordinate

basis and the connection coefficients Cκ
µν in the coordinate basis is given by

ωa
µb = ea

ν

[

∂µe ν
b +Cν

µρe
ρ

b

]

.

The connection in the coordinate basis should be torsion-free and metric-compatible, hence it

must be the Levi-Civita connection. The Levi-Civita connection is given in terms of derivatives

of the metric as

Cκ
µν = Γκ

µν =
1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)

=
1

2
e κ

a eaλ
[

ebλ

(

∂µeb
ν +∂νeb

µ

)

+ ebν

(

∂µeb
λ −∂λeb

µ

)

+ ebµ

(

∂νeb
λ −∂λeb

ν

)]

.
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We therefore obtain

ωa
µb =

1

2
e ν

b eaλ
[
ecµ

(
∂νec

λ −∂λec
ν

)
+ ecν

(
∂µec

λ −∂λec
µ

)
− ecλ

(
∂µec

ν −∂νec
µ

)]
.

For the action we find

SEH = − c3

16πG

∫
d4x

√−g(R+2Λ)

= − c3

16πG

∫
εabcd

(
1

2
θa ∧θb ∧Rcd +

Λ

12
θa ∧θb ∧θc ∧θd

)

.

For the derivation of the last line let us first consider the term with the cosmological constant.

Here we used

Λ

12
εabcdθa ∧θb ∧θc ∧θd =

Λ

12
εabcdea

µeb
νec

ρed
σdxµ ∧dxν ∧dxρ ∧dxσ

= − Λ

12
εabcdεµνρσea

µeb
νec

ρed
σdx0 ∧dx1 ∧dx2 ∧dx3

= 2Λ det
(
ea

µ

)
dx0 ∧dx1 ∧dx2 ∧dx3,

with

dxµ ∧dxν ∧dxρ ∧dxσ = −εµνρσdx0 ∧dx1 ∧dx2 ∧dx3.

The minus sign is due to our convention ε0123 = 1 which implies ε0123 = −1 On the other hand

we also have

√−g =
√

−detgµν =
√

−det
(
ea

µeb
νηab

)
=
√

−detea
µ deteb

ν detηab = det
(
ea

µ

)
,

which shows the equality of the two terms proportional to the cosmological constant.

In order to derive the term involving the curvature form we need the Schouten identity:

εabcde
µ

f + εbcd f e µ
a + εcd f ae

µ
b + εd f abe µ

c + ε f abce
µ

d = 0.

Let us now take the action

SEH = − c3

16πG

∫
εabcd

(
1

2
θa ∧θb ∧Rcd +

Λ

12
θa ∧θb ∧θc ∧θd

)

together with the constraints

det
(
ea

µ

)
> 0, ωa b

µ =−ωb a
µ

as starting point. The anti-symmetry of the spin connection ωa b
µ = −ωb a

µ implies ∇κgµν = 0.

This is easily shown as follows:

0 = ∇µ

(
gρσdxρ ⊗dxσ

)
= ∇µ

(

ηabθa ⊗θb
)

=−
(
ωaµb +ωbµa

)
θa ⊗θb

= −
(

ωa b
µ +ωb a

µ

)

ηacηbdθc ⊗ηd.
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Variation of the action with respect to the spin connection yields

δSEH = − c3

16πG

∫
dxµ ∧dxν ∧dxρ ∧dxσεcde f η f gηbh

[
1

2

(

∂νec
ρ

)

ed
σδe

aδh
g

+
1

2
ec

ρ

(

∂νed
σ

)

δe
aδh

g −
1

2
ec

ρed
σωe

νaδh
g +

1

2
ec

ρed
σωh

νgδe
a

]

δωa b
µ .

Using the anti-symmetry of the spin connection ωa b
µ = −ωb a

µ this implies that the following

expression, anti-symmetric in a and b, has to vanish:

0 = −1

4
εµνρσεcde f

{(

δe
aδ

f
b −δe

bδ f
a

)[(

∂νec
ρ

)

ed
σ + ec

ρ

(

∂νed
σ

)]

−ec
ρed

σ

[

ωe
νaδ

f
b +ω

f
νbδe

a −ωe
νbδ f

a −ω
f
νaδe

b

]}

= −1

2
εµνρσεcde f

{

δe
aδ

f
b

[(

∂νec
ρ

)

ed
σ + ec

ρ

(

∂νed
σ

)]

− ec
ρed

σ

[

ωe
νaδ

f
b −ωe

νbδ f
a

]}

= −1

2
εµνρσεcde f

{

δe
aδ

f
b

(

∂νec
ρ −∂ρec

ν

)

− ee
ρ

(

δ f
aδ

g
b −δg

aδ
f
b

)

ωc
νg

}

ed
σ.

We have

δ f
aδ

g
b −δg

aδ
f
b = −1

2
εabi jε

f gi j

and

εcde f

(

δ f
aδ

g
b −δg

aδ
f
b

)

=
1

2
εabi jε

gi j f εcde f

= −1

2
εabi j

(

δg
cδi

dδ j
e +δi

cδ
j
dδg

e +δ j
cδ

g
dδi

e −δ j
cδi

dδg
e −δi

cδ
g
dδ j

e −δg
cδ

j
dδi

e

)

= −εabi j

(

δg
cδi

dδ j
e +δi

cδ
j
dδg

e +δ j
cδ

g
dδi

e

)

.

Therefore we obtain

0 = −1

2
εµνρσ

{

εabcd

(

∂νec
ρ −∂ρec

ν

)

+ ee
ρεabi j

(

δg
cδi

dδ j
e +δi

cδ
j
dδg

e +δ j
cδ

g
dδi

e

)

ωc
νg

}

ed
σ

= −1

2
εµνρσ

{

εabcd

(

∂νec
ρ −∂ρec

ν

)

+ εabcdωc
νge

g
ρ + ee

ρεabecωc
νd

}

ed
σ

= −1

2
εµνρσεabcd

{

∂νec
ρ −∂ρec

ν +ωc
νge

g
ρ −ωc

ρge
g
ν

}

ed
σ

This is nothing else than the condition that the torsion vanishes:

∂νec
ρ −∂ρec

ν +ωc
νge

g
ρ −ωc

ρge
g
ν = 0.

Variation of the action with respect to the vielbein field yields

δSEH = − c3

16πG

∫
dxµ ∧dxν ∧dxρ ∧dxσεabcd

[
1

2
eb

νRcd
ρσ +

1

3
Λeb

νec
ρed

σ

]

δea
µ.
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This implies

0 = −εµρστεabcd

[
1

2
eb

ρRcd
στ +

1

3
Λeb

ρec
σed

τ

]

.

Multiplication with ea
κgκν yields

0 = −εµρστεabcd

[
1

2
eb

ρRcd
στ +

1

3
Λeb

ρec
σed

τ

]

ea
κgκν.

After a slightly lengthy calculation and by repeated use of the Schouten identity one finds

0 = −2det
(

ea
ρ

)(

Ricµν − 1

2
gµνR−Λgµν

)

.

These are Einstein’s field equations.

6.9 The Plebanski formalism

It is sometimes advantageous to work over the complex numbers instead of working over the

real numbers. This is the main motivation for the Plebanski formalism. Within the Plebanski

formalism we consider as within the vielbein formalism the vielbein and the spin connection as

fundamental fields. In addition, we complexify the tangent space and the cotangent space. We

then decompose all two-forms into a self dual and an anti-self dual part. We further postulate

that gravity is only determined by the self dual part, i.e. we postulate that the anti-self dual part

is vanishing.

Within the framework of the vielbein formalism we introduced at each point of space-time

an anholonomic basis ea of the tangent space. We are in particular interested in four-dimensional

space-times. In this case the tangent space at a given point is a four-dimensional vector space.

Within the Plebanski formalism we extend the vector space spanned by the vectors ea from a real

vector space to a complex vector space. In the same way we extend the cotangent space spanned

by the cotangent basis vectors θa from a real vector space to a complex vector space.

The action of general relativity within the vielbein formalism is given by

SEH = − c3

16πG

∫
εabcd

(
1

2
θa ∧θb ∧Rcd +

Λ

12
θa ∧θb ∧θc ∧θd

)

.

We may re-write this action in terms of two two-forms

Bab = θa ∧θb = ea
µeb

νdxµ ∧dxν =
1

2

(

ea
µeb

ν − eb
µea

ν

)

dxµ ∧dxν,

Rab =
1

2
Ra

cµνηbcdxµ ∧dxν.

We obtain

SEH = − c3

32πG

∫
εabcd

(

Bab ∧Rcd +
Λ

6
Bab ∧Bcd

)

.
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We decompose the two-forms Bab and Rab into a self dual part and an anti-self dual part:

Bab = Bab
selfdual +Bab

antiselfdual, Rab = Rab
selfdual +Rab

antiselfdual,

with

Bab
selfdual =

1

2

(

Bab +
i

2
εab

cdBcd

)

, Bab
antiselfdual =

1

2

(

Bab − i

2
εab

cdBcd

)

,

Rab
selfdual =

1

2

(

Rab +
i

2
εab

cdRcd

)

, Rab
antiselfdual =

1

2

(

Rab − i

2
εab

cdRcd

)

.

For arbitrary tensors Aab and Ccd and the corresponding decomposition into self dual / anti-self

dual parts we have

εabcdAab
selfdualC

cd
antiselfdual = εabcdAab

antiselfdualC
cd
selfdual = 0,

which is easily verified by a short calculation. Therefore we may write the action as

SEH = − c3

32πG

∫
εabcd

[(

Bab
selfdual ∧Rcd

selfdual +
Λ

6
Bab

selfdual ∧Bcd
selfdual

)

+

(

Bab
antiselfdual ∧Rcd

antiselfdual +
Λ

6
Bab

antiselfdual ∧Bcd
antiselfdual

)]

.

Within the Plebanski formalism we now postulate that gravitation is determined by the self dual

forms alone or equivalently that the anti-self dual forms are vanishing

Bab
antiselfdual = 0, Rab

antiselfdual = 0.

With this assumption the action simplifies to

SEH = − c3

32πG

∫
εabcd

(

Bab
selfdual ∧Rcd

selfdual +
Λ

6
Bab

selfdual ∧Bcd
selfdual

)

.

Remark: Within the Plebanski formalism we complexified the tangent space and the cotangent

space. The conditions Bab
antiselfdual = Rab

antiselfdual = 0 basically define how we continue the differ-

ential forms from the real subspace to the complex space.

Remark: Up to now we considered within the Plebanski formalism the vielbein and the spin

connection as the fundamental fields. Bab
selfdual is constructed out of the vielbein, Rab

antiselfdual is

constructed out of the spin connection. It is possible to change the field variables from the

vielbein e
µ

a to Bab
selfdual. However, we have to take care of the correct degrees of freedom. A real

vielbein has 16 degrees of freedom, a complex vielbein has 32 degrees of freedom and a complex

vielbein with 16 constraints originating from Bab
antiselfdual = 0 has again 16 degrees of freedom.

On the other hand, if we consider a complex two-form

Bab = Bab
µνdxµ ∧dxν
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with Bab
µν anti-symmetric in a,b and µ,ν, we have 2 · 6 · 6 = 72 degrees of freedom, the self-

duality condition reduces this number to 36 degrees of freedom. Thus we have to eliminate

36− 16 = 20 degrees of freedoms. The constraints eliminating these degrees of freedom are

called simplicity constraints and can be implemented by adding a term

− c3

32πG

∫
ψabcdBab

selfdual ∧Bcd
selfdual

with a Lagrange multiplier field ψabcd satisfying

ψabcd = −ψbacd = −ψabdc = ψcdab

and

εabcdψabcd = 0.

The auxiliary Lagrange multiplier field ψabcd has the same symmetries as the Riemann curvature

tensor and therefore 20 independent components in four space-time dimensions. Variation with

respect to ψabcd gives the twenty simplicity constraints.

93



7 Special solutions of Einstein’s equations

7.1 The Schwarzschild solution

We consider a static spherically symmetric mass distribution, as for example given to a good

approximation by the earth or the sun. We are interested in a solution of Einstein’s equations

outside the mass distribution. Thus we seek solutions of

Ricµν = 0

Remark: Einstein’s equations (without a cosmological constant) can be written as

Ricµν =
8πG

c4

(

Tµν −
1

2
gµνgρσTρσ

)

.

In vacuum we have Tµν = 0, hence Einstein’s equations reduce to Ricµν = 0.

Remark: The exact definition of “static” and “spherically symmetric” requires some care, as

we have to keep coordinate independence. We postpone a detailed discussion. For the moment,

let us note that “static” implies that all metric components are time independent and that no

mixed terms

cdt ⊗dxi +dxi ⊗ cdt

appear in the metric. The last condition can be understood, if we assume that “static” also implies

invariance under time reversal t →−t. Under this transformation the terms c2dt2 or dxidx j don’t

change their sign, however the mixed terms cdtdxi do change sign.

Spherical symmetry implies that the infinitesimal solid angle element dΩ2 does not change its

form: The coefficient of the term dϕ2 should always be sin2 ϑ times the coefficient of the term

dϑ2. Furthermore it implies that there are except for the terms dϕ2 and dϑ2 no further terms (i.e.

mixed terms) containing dϕ or dϑ.

We make the following ansatz:

ds2 = e2a(r)c2dt2− e2b(r)dr2 − e2c(r)r2dΩ2

We may slightly simplify the ansatz as follows: If we change to a new radial variable defined by

r′ = ec(r)r

we obtain

ds2 = e2a(r)c2dt2−
(

1+ r
dc(r)

dr

)−2

e2b(r)−2c(r)dr2 − r2dΩ2.
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Thus we see that by a redefinition of the function b(r) it is sufficient to consider the ansatz

ds2 = e2a(r)c2dt2− e2b(r)dr2 − r2dΩ2.

a(r) and b(r) are two functions, which we have to determine. We first compute the Christoffel

symbols (and set within the calculation for simplicity c = 1):

Γt
tr = ∂ra, Γr

tt = e2(a−b)∂ra, Γr
rr = ∂rb,

Γθ
rθ =

1
r
, Γr

θθ =−re−2b, Γ
ϕ
rϕ = 1

r
,

Γr
ϕϕ =−re−2b sin2 θ, Γθ

ϕϕ =−sinθcosθ, Γ
ϕ
θϕ = cosθ

sinθ .

All other components are either related to the ones above by symmetry or are zero. In the next

step we compute the components of Riemann’s curvature tensor:

Rt
rtr = a′b′−a′′− (a′)2, Rt

θtθ =−re−2ba′, Rt
ϕtϕ =−re−2b sin2 θ a′,

Rr
θrθ = re−2bb′, Rr

ϕrϕ = re−2b sin2 θ b′, Rθ
ϕθϕ =

(
1− e−2b

)
sin2 θ,

where we used the notation a′ = ∂ra and b′ = ∂rb. We therefore obtain for the components of the

Ricci tensor

Rictt = e2(a−b)

[

a′′+(a′)2 −a′b′+
2

r
a′
]

,

Ricrr = −a′′− (a′)2 +a′b′+
2

r
b′,

Ricθθ = e−2b
[
r
(
b′−a′

)
−1
]
+1,

Ricϕϕ = sin2 θ Rθθ.

The scalar curvature is given by

R = −2e−2b

[

a′′+(a′)2 −a′b′+
2

r

(
a′−b′

)
+

1

r2

(

1− e2b
)]

.

Outside the mass distribution we have

Ricµν = 0.

Since Rictt and Ricrr have to vanish independently we also have

0 = e2(b−a)Rtt +Rrr =
2

r

(
a′+b′

)

and therefore a′+b′ = 0. Integration of this equation leads to

b(r) = −a(r)+ c.
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We may eliminate the integration constant c by a rescaling of the time coordinate

t → e−ct.

Hence, we may assume without loss of generality that

b(r) = −a(r).

We now consider Rθθ = 0. Substituting the expression for b(r) one obtains

e2a
(
2ra′+1

)
= 1.

We may re-write this equation as

d

dr

(

re2a(r)
)

= 1.

This equation is solved by

e2a(r) = 1− rs

r
,

as one easily verifies by differentiation. rs is a yet to be determined integration constant. If we

re-insert all factors of the speed of light c, we obtain for the metric the result

ds2 =
(

1− rs

r

)

c2dt2 − dr2

1− rs

r

− r2
(
dθ2 + sin2 θdφ2

)
.

This solution was found by K. Schwarzschild in 1916. In order to determine the integration

constant rs we study at the tt-component of the metric. For a point mass m we obtain in the

Newtonian limit

gtt = c2

(

1+
2

c2
Φ

)

= c2

(

1− 2Gm

rc2

)

and therefore rs is given by

rs =
2Gm

c2
.

The quantity rs is known as the Schwarzschild radius of the mass m.

Examples for the Schwarzschild radius:

Sun : m ≈ 2 ·1030 kg → rs = 2.95 km,

Earth : m ≈ 6 ·1024 kg → rs = 0.9 cm.

A theorem by Birkhoff states that the Schwarzschild solution is the unique spherically symmetric

solution of Einstein’s equations in the vacuum. This theorem implies in particular that there
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are no time-dependent solutions. We sketch a proof of Birkhoff’s theorem: We start with the

exact definition of “spherical symmetry”: In a flat three-dimensional space spherical symmetry

corresponds to invariance under the rotation group SO(3). On an arbitrary semi-Riemannian

manifold symmetries are characterised by Killing vector fields. The Killing vector fields of the

surface of the sphere S2 are given by

R = ∂ϕ,

S = cosϕ ∂θ − cotθsinϕ ∂ϕ,

T = −sinϕ ∂θ − cotθcosϕ ∂ϕ.

These vector fields satisfy the commutation relations

[R,S] = T, [S,T ] = R, [T,R] = S.

This is nothing else than the Lie algebra of the group SO(3). We are now in a position to define

the concept of “spherical symmetry” for an arbitrary four-dimensional space-time: We require

the existence of three Killing vector fields, which satisfy the commutation relations stated above.

By a suitable choice of coordinates this implies that the metric can be brought into the form

ds2 = e2a(t,r)c2dt2− e2b(t,r)dr2 − r2dΩ2.

Remark: The functions a(t,r) and b(t,r), which appear in this expression, are a priori functions

of t and r. From the form above we may (analogously to what we did before) calculate the

Christoffel symbols, the curvature tensor and the Ricci tensor. For example, we find

Rictr =
2

r
∂tb

and hence

b = b(r).

With the help of a suitable coordinate re-definition of the time coordinate we may in addition

ensure that a(t,r) does not depend on t. This leads to the ansatz

ds2 = e2a(r)c2dt2− e2b(r)dr2 − r2dΩ2,

which was used for the derivation of the Schwarzschild solution.

Remark: All components of the metric are time-independent. This implies that every spherically

symmetric solution of Einstein’s equation in the vacuum possesses a time-like Killing vector

field.

We call a metric which possesses a Killing vector field that is time-like at infinity a station-

ary metric. The general form of a stationary metric is is given by

ds2 = g00(~x)dt2+g0i(~x)
(
dtdxi +dxidt

)
+gi j(~x)dxidx j.
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We call a metric which possesses a Killing vector field that is time-like and orthogonal to a family

of hypersurfaces a static metric. The general form of a static metric is is given by

ds2 = g00(~x)dt2+gi j(~x)dxidx j.

Let us now consider the singularities of the Schwarzschild metric:

• The metric is singular at r = rs. However this is just a coordinate singularity, physical

quantities like the Einstein tensor or the curvature tensor are finite at r = rs. The physical

interpretation of r = rs is given as the event horizon of a black hole.

Remark: A trivial example for a coordinate singularity is given at the origin of a two-

dimensional plane, if one uses polar coordinates:

ds2 = dr2 + r2dϕ2.

gµν =

(
1 0

0 r2

)

, gµν =

(
1 0

0 1
r2

)

.

In particular we have

gϕϕ =
1

r2
.

Obviously this is an artefact of the chosen coordinate system, since in a flat plane there are

no distinguished points.

• The point r = 0 is a proper singularity. In order to distinguish proper singularities from

coordinate singularities we consider scalar quantities, like for example

R = gµνRicµν, RicµνRicµν, RµνρσRµνρσ.

For example, one finds for the Schwarzschild metric

RµνρσRµνρσ =
12r2

s

r6
.

7.2 The perihelion precession of Mercury

We first consider geodesics for the Schwarzschild metric:

d2xµ

dλ2
+Γ

µ
τσ

dxτ

dλ

dxσ

dλ
= 0.

The Christoffel symbols for the Schwarzschild metric read (we set again c = 1):

Γt
tr =

rs

2r(r−rs)
, Γr

tt =
rs

2r3 (r− rs), Γr
rr =− rs

2r(r−rs)
,

Γθ
rθ =

1
r
, Γr

θθ =−(r− rs), Γ
ϕ
rϕ = 1

r
,

Γr
ϕϕ =−(r− rs)sin2 θ, Γθ

ϕϕ =−sinθcosθ, Γ
ϕ
θϕ = cosθ

sinθ .
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The geodesic equation gives four coupled second-order differential equations, which are rather

difficult to solve directly. A simpler way to the solution proceeds as follows: We already know

that the Schwarzschild metric possesses four Killing vector fields: One vector field corresponds

to the invariance under time translations, three further vector fields correspond to the spherical

symmetry. For a Killing vector field Kµ we have

Kµ
dxµ

dλ
= const.

In addition there is one further conserved quantity:

ε = gµν
dxµ

dλ

dxν

dλ
.

For the choice λ = s we obtain ε = 1.

The time-like Killing vector field corresponds to energy conservation and is given in the co-

ordinates (t,r,θ,ϕ) by

Kµ = (∂t)
µ = (1,0,0,0).

Lowering the index yields

Kµ =
((

1− rs

r

)

,0,0,0
)

.

The three Killing vector fields associated to the spherical symmetry correspond to the conser-

vation of angular momentum. One vector field corresponds to the magnitude of the angular

momentum, two vector fields to the direction of the angular momentum. Conservation of the

direction of the angular momentum implies that the particle moves in a plane. We may therefore

choose a coordinate system such that the motion of the particle is within the plane defined by

θ =
π

2
.

The Killing vector field corresponding to the magnitude of the angular momentum is given by

Rµ =
(
∂ϕ

)µ
= (0,0,0,1).

Lowering the index yields

Rµ =
(
0,0,0,−r2 sin2 θ

)
.

With sinθ = 1 we have for the conserved quantities

E = Kµ
dxµ

dλ
=
(

1− rs

r

) dt

dλ
,

L = −Rµ
dxµ

dλ
= r2 dϕ

dλ
.
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Let us now consider

ε = gµν
dxµ

dλ

dxν

dλ
.

Explicitly, we have

ε =
(

1− rs

r

)( dt

dλ

)2

−
(

1− rs

r

)−1
(

dr

dλ

)2

− r2

(
dϕ

dλ

)2

.

We substitute the expressions for the conserved quantities E and L and obtain

(
dr

dλ

)2

+
(

1− rs

r

)(

ε+
L2

r2

)

= E2.

This equation may be written as

1

2

(
dr

dλ

)2

+V (r) = E,

with

E =
1

2
E2,

V (r) =
1

2
ε− εrs

2r
+

L2

2r2
− rsL

2

2r3
.

Remark: Within the Newtonian theory we would find an effective potential which does not in-

clude the 1/r3-term, but is otherwise identical. The first term of the effective potential is a

constant, the second term corresponds to the Newtonian gravitational potential, the third term

gives a contribution due to the angular momentum. The form of this term is identical within

Newtonian mechanics and general relativity. The last term appears only within general relativity.

The planets move along ellipses around the sun. The point of closest distance to the sun is

called the perihelion. Let us now consider the perihelion precession of Mercury. To this aim

we determine an equation, which gives the radial coordinate r as a function of the angle ϕ, i.e.

r = r(ϕ). We multiply the equation of motion with

(
dϕ

dλ

)−2

=
r4

L2

and obtain
(

dr

dϕ

)2

+
ε

L2
r4 − εrs

L2
r3 + r2 − rsr =

E2

L2
r4.

We set

x =
2L2

rsr
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and obtain

(
dx

dϕ

)2

+4
L2

r2
s

(
ε−E2

)
−2εx+ x2 =

1

2

r2
s

L2
x3.

Let us now differentiate with respect to ϕ:

2
dx

dϕ

d2x

dϕ2
−2ε

dx

dϕ
+2x

dx

dϕ
=

3

2

r2
s

L2
x2 dx

dϕ
.

We obtain the following equation:

d2x

dϕ2
− ε+ x =

3

4

r2
s

L2
x2.

We recall that the parameter ε was defined by

ε = gµν
dxµ

dλ

dxν

dλ
.

If we choose as curve parameter λ the proper time s, i.e. λ = s, we have

gµν
dxµ

ds

dxν

ds
= 1.

With ε = 1 our equation reads

d2x

dϕ2
−1+ x =

3

4

r2
s

L2
x2.

Within Newtonian mechanics the term on the right-hand side is absent and the equation

d2x

dϕ2
−1+ x = 0.

may be solved exactly:

xNewton(ϕ) = 1+ ecosϕ.

This is the solution of Kepler and Newton and describes a perfect ellipse. The quantity e gives

the eccentricity of the ellipse. Within general relativity we treat the term

3

4

r2
s

L2
x2

as a small perturbation and seek a solution of the form

x(ϕ) = xNewton(ϕ)+ x̃(ϕ).
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Within perturbation theory we obtain for x̃ the differential equation

d2x̃

dϕ2
+ x̃ =

3

4

r2
s

L2
x2

Newton

=
3

4

r2
s

L2
(1+ ecosϕ)2

=
3

4

r2
s

L2

[(

1+
e2

2

)

+2ecosϕ+
e2

2
cos2ϕ

]

.

We have

d2

dϕ2
(ϕsinϕ)+ϕsinϕ = 2cosϕ,

d2

dϕ2
(cos2ϕ)+ cos2ϕ = −3cos2ϕ.

It follows that

x̃ =
3

4

r2
s

L2

[(

1+
e2

2

)

+ eϕsinϕ− e2

6
cos2ϕ

]

is a solution. The first term 1+ e2/2 corresponds to a constant displacement of x (respectively

r), the third term −e2/6cos2ϕ represents an oscillation, which averages to zero. Of particular

interest is the second term eϕsinϕ, which accumulates over successive orbits. We neglect the

first and the third term and obtain

x(ϕ) = 1+ ecosϕ+
3

4

r2
s

L2
eϕsinϕ.

Approximatively we have

cos((1−α)ϕ) ≈ cosϕ+α
d

dα
cos((1−α)ϕ)|α=0 = cosϕ+αϕsinϕ

and therefore

x(ϕ) = 1+ ecos((1−α)ϕ) ,

with

α =
3

4

r2
s

L2
.

We see that the perihelion advances per orbit by an angle

∆ϕ = 2πα =
3πr2

s

2L2
.
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Let us determine L2: For a perfect ellipse we have

r =
(1− e2)a

1+ ecosϕ
,

where a denotes the semi-major axis. On the other hand we have with x = 1+ ecosϕ

r =
2L2

rs

1

1+ ecosϕ

and hence

L2 =
rs

2
(1− e2)a.

With rs = 2Gm/c2 we finally obtain

∆ϕ =
6πGm

(1− e2)a
.

For the sun we have

Gm

c2
= 1.48 ·103m.

The orbit of Mercury is specified by

a = 5.79 ·1010m, e = 0.2056.

We therefore find

∆ϕ = 0.103′′/orbit.

The precession is usually quoted per century. The time for one orbit for Mercury is 88 days. We

therefore find

∆ϕ = 43.0′′/(100 y).

We may now compare this number to the observed value:

5601′′/(100 y) measured

−5025′′/(100 y) precession of equinoxes

−532′′/(100 y) perturbation due to other planets

44′′/(100 y)

The primary data are optical positions of Mercury on the sky as measured from the earth. We

have to take into account an apparent perihelion shift caused by the precession of the Earth’s

rotational axis. This is called the precession of the equinoxes and is related to the angle of 23.5◦

of the Earth’s equatorial plane against the Earth’s ecliptic plane (defined by the Earth’s motion

around the sun).
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7.3 Black holes, Kruskal coordinates and Penrose diagrams

In our previous discussion of the Schwarzschild solution we focussed on the exterior region

(r > rs). Let us now see what happens as we approach the Schwarzschild radius rs. We start by

studying the causal structure. We consider light rays for constant θ and ϕ:

ds2 = 0 =
(

1− rs

r

)

c2dt2− dr2

1− rs

r

.

Therefore

cdt

dr
= ± 1

1− rs

r

.

For large r the right-hand side approaches ±1, however for r → rs we find

lim
r→rs

cdt

dr
= ±∞.

In this coordinate system the light cones become narrower as we approach the Schwarzschild

radius. This does not mean that it is impossible to cross the Schwarzschild radius. An object

has no problems moving towards the black hole. If the object emits in regular intervals (with

respect to the object’s proper time) light signals, an observer on Earth will receive these light

signals with increasing gaps in-between. The observer on Earth will only receive the signals,

which were emitted before the crossing of the Schwarzschild radius.

In order to understand better the event horizon at rs we try to find better coordinate systems

which do not possess a coordinate singularity at r = rs. We will do this in several steps. Let us

define for r > rs

r∗ = r+ rs ln

(
r

rs
−1

)

.

The metric reads now

ds2 =
(

1− rs

r

)(
c2dt2−dr∗2

)
− r2dΩ2,

where r should now be understood as a function of r∗. We now have

cdt

dr∗
= ±1,

however the event horizon r = rs corresponds now to r∗ =−∞. If we define

v = ct + r∗,

u = ct − r∗,
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we see that infalling radial light-like geodesics are characterised by v = const, while outgoing

radial light-like geodesics are characterised by u = const.

If we now go back to the original radial coordinate r, but replace the time coordinate by

v = ct + r∗ = ct + r+ rs ln

(
r

rs
−1

)

,

we obtain coordinates known as Eddington-Finkelstein coordinates. The metric reads in these

coordinates

ds2 =
(

1− rs

r

)

dv2 − (dvdr+drdv)− r2dΩ2.

The determinant of the metric is given in these coordinates by

∣
∣
∣
∣
∣
∣
∣
∣

1− rs

r
−1 0 0

−1 0 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

∣
∣
∣
∣
∣
∣
∣
∣

= −r4 sin2 θ.

The determinant does not have a singularity for r = rs. For radial light-like curves we have

dv

dr
=

{

0, always infalling
2

1− rs
r

, outgoing for r > rs, infalling for r < rs,

At r = rs a radially outgoing ray turns into an infalling ray. We see that r = rs is a point of no

return: If a particle crosses r = rs it will never return. We define the event horizon as the surface

beyond which particles can never return to spatial infinity. The region bound by the event horizon

is called a black hole.

Up to now we found for the Schwarzschild space-time two regions: the exterior region r > rs and

the region of the black hole, which can be reached from the exterior region on future-directed

curves. Let us note that it is impossible to reach the black hole on past-directed curves.

The Schwarzschild solution is static and therefore invariant under time reversal. Therefore the

two regions found up to now cannot constitute the complete space-time. A further region is

obtained if we use in the redefinition of the time coordinate instead of v the variable u:

u = ct − r∗ = ct − r− rs ln

(
r

rs
−1

)

,

The metric reads now

ds2 =
(

1− rs

r

)

du2 − (dudr+drdu)− r2dΩ2.
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In this coordinate system the region r < rs is a region which can be reached from the exterior

region on past-directed curves, but never on future-directed curves. Signals from this region may

reach the exterior region. However, it is impossible for particles to reach this region. This region

is called a white hole.

In order to cover all regions of the Schwarzschild space-time with a single coordinate system,

we introduce a new coordinate system through

T =

√
r

rs
−1 e

r
2rs sinh

(
ct

2rs

)

,

R =

√
r

rs
−1 e

r
2rs cosh

(
ct

2rs

)

.

The metric reads in these coordinates

ds2 =
4r3

s

r
e

r
rs

(
dT 2 −dR2

)
− r2dΩ2,

where now r is implicitly defined through

T 2 −R2 =

(

1− r

rs

)

e
r
rs .

The coordinates (T,R,θ,ϕ) are known as Kruskal coordinates. In Kruskal coordinates we have

for radial light-like curves

T = ±R+ const.

The event horizon r = rs is given by

T = ±R.

More generally, we have for surfaces defined by r = const:

T 2 −R2 = const.

The allowed regions of (T,R) are therefore given by

−∞ ≤ R ≤ ∞, T 2 < R2 +1.

Surfaces defined by t = const are given by

T

R
= tanh

(
ct

2rs

)

.
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The essential properties of a space-time can represented with the help of a Penrose diagram.

Penrose diagrams have the following properties:

• Penrose diagrams display the time coordinate and the radial coordinate.

• Light rays in radial direction are in Penrose diagrams lines at angles of 45◦.

• Penrose diagrams represent the entire space-time in a finite region.

Let us first consider the construction of the Penrose diagram for the flat Minkowski space-time.

We start with the metric in spherical coordinates (and for simplicity we set c = 1):

ds2 = dt2−dr2 − r2dΩ2.

We then define light-cone coordinates

u = t − r, v = t + r.

The regions of u and v are:

−∞ < u < ∞, −∞ < v < ∞, u ≤ v.

The metric reads now

ds2 =
1

2
(dudv+dvdu)− 1

4
(v−u)2

dΩ2.

Let us set

u′ = arctanu,

v′ = arctanv.

The allowed region transforms to

−π

2
< u′ <

π

2
, −π

2
< v′ <

π

2
, u′ ≤ v′.

The metric is now given by

ds2 =
1

4cos2 u′ cos2 v′
[
2
(
du′dv′+dv′du′

)
− sin2(v′−u′)dΩ2

]
.

Finally we set

t ′ = v′+u′,

r′ = v′−u′.

This gives the region

0 ≤ r′ < π,
∣
∣t ′
∣
∣+ r′ < π,

and the metric

ds2 =
1

(cost ′+ cosr′)2

(
dt ′2−dr′2 − sin2 r′dΩ2

]
.
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The Penrose diagram of Minkowski space-time:

i+

I +

i0

I −

i−

Within a Penrose diagram one denotes by

i+ infinity for all future-directed time-like curves,

i0 infinity for all space-like curves,

i− infinity for all past-directed time-like curves,

I + infinity for future-directed light-like curves,

I − infinity for all past-directed light-like curves.

All time-like geodesics start at i− and end at i+. All space-like geodesics start and end at i0.

All light-like geodesics start at I − and end at I +. (Light rays, which start at I − are first

radially incoming until r = 0. Afterwards they are radially outgoing. If we draw such a light ray

in a Penrose diagram, it is effectively reflected at r = 0. This light ray ends at I
+.)

We call a space-time (or a region of a space-time) asymptotically flat, if in the associated Pen-

rose diagram I +, i0 and I − are as in the Penrose diagram of Minkowski space-time.

The Penrose diagram of the Scharzschild space-time is obtained in along the same lines. We

start with the Kruskal coordinates and define

U = T −R, V = T +R.

We then set

U ′ = arctan
U√
rs
, V ′ = arctan

V√
rs
,

and finally

T ′ =V ′+U ′, R′ =V ′−U ′.

The region is given by

−π

2
<U ′ <

π

2
, −π

2
<V ′ <

π

2
, −π

2
<U ′+V ′ <

π

2
.
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The Penrose diagram of the Schwarzschild space-time:

i+

I +

i0

I −

i−

i+

I +

i0

I −

i−

rs

rs

7.4 Charged black holes: The Reissner-Nordström solution

There is a theorem which states that within general relativity coupled to electrodynamics sta-

tionary, asymptotically flat black hole solutions, which are non-singular outside an event horizon

are completely characterised by the three quantities mass, charge and angular momentum. This

theorem is known as the no-hair theorem.

The Schwarzschild solution corresponds to the case, where the charge and the angular momen-

tum are zero. Let us now generalise this solution to the case, where we allow a non-zero charge

(but still take the angular momentum to be zero). The Reissner-Nordström solution describes

an electrically charged black hole. The charge of the black hole is denoted by Q. The metric is

given by

ds2 =
∆

r2
c2dt2− r2

∆
dr2 − r2dΩ2,

where

∆ = r2 − 2Gmr

c2
+

GQ2

c4
.

We set c = 1. We then obtain

∆ = r2 −2Gmr+GQ2.

This solution was worked out in the years 1916-1918 by Reissner and Nordström. The event

horizon is obtained from the equation

∆ = 0,

r± = Gm±
√

G2m2 −GQ2.

We consider the following cases:

Case 1: Gm2 < Q2.

In this case there is no real solution for r±.. The quantity ∆ is always positive and the metric is
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regular for all points r 6= 0. There is no event horizon separating the singularity at r = 0 from

the asymptotically flat region. A singularity from which signals can reach I + is called a naked

singularity.

The Penrose diagram of the Reissner-Nordström solution for Gm2 < Q2:

i+

I +

i0

I
−

i−

Case 2: Gm2 > Q2. In this case we have event horizons at

r± = Gm±
√

G2m2 −GQ2.

The singularity at r = 0 is time-like.

The Penrose diagram of the Reissner-Nordström solution for Gm2 > Q2:

I +

i0

I −

I +

i0

I −

I
+

i0

I −

I
+

i0

I −

r+

r+

r+

r+

r−

r−
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Case 3: Gm2 = Q2. This case is called the extreme Reissner-Nordström solution. In this case the

values r+ and r− coincide:

r = Gm.

The singularity at r = 0 is time-like, if one crosses the event horizon it is possible to avoid the

singularity and to enter another asymptotically flat region.

The Penrose diagram of the Reissner-Nordström solution for Gm2 = Q2:

I +

i0

I −

I +

i0

I −

r

r

7.5 Rotating black holes: The Kerr solution

The Kerr solution describes a rotating black hole (with zero electric charge). The angular mo-

mentum of the black hole is denoted by J. The metric reads

ds2 =

(

1− 2Gmr

c2Σ

)

c2dt2+
2Gmr j sin2 θ

c2Σ
(cdtdϕ+dϕcdt)

−Σ

∆
dr2 −Σdθ2 −

(
(r2 + j2)2 −∆ j2 sin2 θ

Σ

)

sin2 θdϕ2,

where

∆ = r2 − 2Gmr

c2
+ j2, Σ = r2 + j2 cos2 θ, j =

J

mc
.

This solution was found by Kerr in 1953.

Let us also consider the most general case: A rotating and electrically charged black hole of

mass m, charge Q and angular momentum J. The metric reads

ds2 =

(
∆− j2 sin2 θ

Σ

)

c2dt2+
j sin2 θ

(
r2 + j2 −∆

)

Σ
(cdtdϕ+dϕcdt)

−Σ

∆
dr2 −Σdθ2 −

(
(r2 + j2)2 − j2∆sin2 θ

Σ

)

sin2 θdϕ2,
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where

∆ = r2 − 2Gmr

c2
+

GQ2

c4
+ j2, Σ = r2 + j2 cos2 θ, j =

J

mc
.

This metric is known as the Kerr-Newman metric.

The coordinates (t,r,θ,ϕ) are also known as Boyer-Lindquist coordinates. For Q = J = 0 the

Kerr-Newman metric reduces to the Schwarzschild metric.

We discuss a few peculiarities related to the non-zero angular momentum. For simplicity we

consider the original Kerr solution (Q = 0). If we keep j constant and then consider the limit

m → 0 we obtain

ds2 = c2dt2 − (r2 + j2 cos2 θ)

r2 + j2
dr2 − (r2 + j2 cos2 θ)dθ2− (r2 + j2)sin2 θdϕ2.

This is the Minkowski metric in ellipsoidal coordinates

x =
√

r2 + j2 sinθcosϕ,

y =
√

r2 + j2 sinθsinϕ,

z = r cosθ.

In particular, r = 0 corresponds to a two-dimensional disc.

The Kerr metric is not static, but stationary. The metric contains mixed terms (cdtdϕ+dϕcdt).

The event horizon is again given by the solution of the equation (we set again c = 1)

∆ = r2 −2Gmr+ j2 = 0.

As in the case of the Reissner-Nordström solution we distinguish also for the Kerr solution three

cases: Gm < j, Gm = j and Gm > j. We limit ourselves to discuss the last case in more detail.

In the case Gm > j we find

r± = Gm±
√

G2m2 − j2.

Previously we defined the event horizon as a hypersurface beyond which particles can never

return to spatial infinity. The event horizon is a light-like hypersurface. We say that a light-like

hypersurface Σ is a Killing horizon of a Killing vector field K, if K is light-like on Σ. For the

Schwarzschild metric and the Reissner-Nordström metric we may consider the Killing vector

field K = ∂t . In this case the Killing horizon coincides with the event horizon.

However, this is no longer true for the Kerr metric: The Killing horizon of the vector field K = ∂t

is not identical to the event horizon. The reason is, that the Kerr solution is stationary, but not

static. We obtain the Killing horizon of the vector field K = ∂t by solving the equation KµKµ = 0.

This leads to

(r−Gm)2 = G2m2 − j2 cos2 θ.

Let us compare this equation to the equation satisfied by the outer event horizon r+:

(r+−Gm)2 = G2m2 − j2.

The region between these two hypersurfaces is known as ergosphere.
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8 A brief review of statistical physics

Before we start to discuss cosmology, it is worth to review a few key ingredients of thermody-

namics and statistical physics.

The entropy of a system consisting of a single particle species is given by

S =
E

T
+

p ·V
T

− µN

T
,

where E denotes the internal energy (usually denoted by U within statistical physics), T the

temperature, p the pressure, V the volume, µ the chemical potential and N the particle number.

For a system of bosons, the average occupation number of a state with energy Ei is given by

the Bose-Einstein distribution

n̄i =
1

e
(Ei−µ)

kBT −1

,

while for fermions the average occupation number is given by the Fermi-Dirac distribution

n̄i =
1

e
(Ei−µ)

kBT +1

.

The thermal wavelength λ and the average particle distance l are given by

λ =
h√

2πmkBT
, l =

(
V

N

) 1
3

.

In the limit where the thermal wavelength is much smaller than the average particle distance (λ≪
l) both the Bose-Einstein distribution and the Fermi-Dirac distribution reduce to the Maxwell-

Boltzmann distribution

n̄i = e
− (Ei−µ)

kBT .

It can be shown that the limit λ ≪ l is equivalent to z ≪ 1, where

z = e
µ

kBT

denotes the fugacity.

The number of occupied states in d3p is

gn̄iV
d3 p

(2π~)3
,

where g denotes the degeneracy factor (the number of spin states). Let us now consider massless

particles. With d3 p = 4πp2dp and p = ~ω/c we obtain for the number of occupied states in dω

gn̄i
V

2π2c3
ω2dω.
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The spectral energy density u(ω) is defined as energy per volume and unit frequency. We obtain

the spectral energy density by multiplying the expression above by ~ω/V/dω:

u(ω,T ) =
g~ω3

2π2c3
n̄(ω) .

For photons (g = 2, µ = 0) we recover Planck’s radiation law:

u(ω,T ) =
~ω3

π2c3

1

e
~ω
kBT −1

.
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9 Friedmann-Robertson-Walker cosmology

9.1 Summary on Einstein’s equations

A typical problem in electrodynamics is the following: Given a current density jµ, solve the

differential equation

∂µFµν =
4π

c
jν

for Aµ (or ~E and ~B). The analogue problem in general relativity is the following: Given an

energy-momentum tensor Tµν, solve the differential equation

Ricµν −
1

2
gµνR−Λgµν =

8πG

c4
Tµν,

for gµν. Within cosmology we will assume that Tµν is given.

Let us briefly recall, how the left-hand side of Einstein’s equations depends on the metric

gµν. We consider a semi-Riemannian manifold (space-time) with the Levi-Civita connection.

The connection coefficients are given by the Christoffel symbols

Γκ
µν =

1

2
gκλ
(
∂µgνλ +∂νgµλ −∂λgµν

)
.

From the Christoffel symbols we obtain Riemann’s curvature tensor as

Rκ
λµν = ∂µΓκ

νλ −∂νΓκ
µλ +Γ

η
νλ

Γκ
µη −Γ

η
µλ

Γκ
νη.

The Ricci tensor Ricµν and the scalar curvature R are defined by

Ricµν = Rλ
µλν,

R = gµνRicµν.

Thus we see that the left-hand side of Einstein’s equations depends on the metric and the first

and second derivatives thereof.

Let xµ(λ) be a curve describing the world-line of a free particle. Free particles move in curved

space along geodesics, thus

d2xµ

dλ2
+Γ

µ
τσ

dxτ

dλ

dxσ

dλ
= 0

As curve parameter it is convenient to choose for massive particles λ = s/(mc) = τ/m, where τ
is the proper time of the particle and s = cτ. We then have

pµ =
dxµ

dλ
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and the geodesic equation reads

d

dλ
pµ +Γ

µ
τσ pτ pσ = 0.

For massless particles we may still normalise the curve parameter such that pµ = dxµ/dλ, yield-

ing the same geodesic equation in terms of momenta.

We further have

gµν pµ pν = m2c2.

9.2 The perfect fluid

A fluid often gives a good approximation for a system with many particles. Instead of specifying

the individual coordinates and velocities of each particle, it is often sufficient to specify just the

four-velocity field uµ(x) of the fluid.

A special role is played by the concept of a perfect fluid: By definition, a perfect fluid is de-

scribed in the rest frame of the fluid by two parameters: the energy density ρ and the pressure

density p.

We are in particular interested in the energy-momentum tensor of the perfect fluid. We may

motivate the expression for energy-momentum tensor of the perfect fluid as follows: We start in

flat space-time and in the rest frame of the fluid. By definition, Tµν depends only on ρ and p:

Tµν =







ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p






.

We now seek a generalisation to coordinate systems related to the rest frame by a Lorentz trans-

formation (recall that we are still in flat space-time). Taking into account that in the rest frame

we have

uµuν =







1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0






, gµν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1






,

we easily derive the sought-after generalisation:

Tµν = (p+ρ)uµuν − pgµν.

In the final step we will assume that this expression is also valid in curved space-time.
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The concept of a perfect fluid is rather general and allows to describe a variety of physical situa-

tions. In order to specialise to a specific physical situation we impose in addition an equation of

state

p = p(ρ),

which gives a relation between the pressure density and the energy density. Examples are

• Dust: For dust we have the equation of state

p = 0.

In this case the energy-momentum tensor is given by

Tµν = ρuµuν.

For example, non-interacting galaxies can be modelled by dust.

• Photon gas: For an isotropic photon gas we have the equation of state

p =
1

3
ρ

and the energy-momentum tensor reduces to

Tµν =
4

3
ρuµuν −

1

3
ρgµν.

• Vacuum energy: Here we have the equation of state

p = −ρ

and the energy-momentum tensor reduces to

Tµν = ρgµν.

Remark: If we start from Einstein’s equations without a cosmological constant

Ricµν −
1

2
gµνR =

8πG

c4
Tµν

and by decomposing the energy-momentum tensor into a part corresponding to the vacuum

energy and a remaining part corresponding to all other matter

Tµν = T
(M)

µν +ρvacgµν

we obtain

Ricµν −
1

2
gµνR− 8πG

c4
ρvacgµν =

8πG

c4
T
(M)

µν .
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This is equivalent to a cosmological constant

Λ =
8πG

c4
ρvac.

Modern cosmology views a term proportional to gµν in Einstein’s equations as a vacuum

energy and part of the energy-momentum tensor. Thus Λ is set to zero on the left-hand

side and Einstein’s equations read

Ricµν −
1

2
gµνR =

8πG

c4
Tµν,

where Tµν includes a vacuum energy. We will adopt this convention from now on.

9.3 Energy conditions

Instead of using specific models for the energy-momentum tensor, it is sometimes useful to

discuss in full generality characteristics of solutions of Einstein’s equations, which derive from

certain properties of the energy-momentum tensor. These properties of the energy-momentum

tensor are formulated as energy conditions:

• The weak energy condition:

Tµνtµtν ≥ 0 for all time-like vectors tµ.

Applied to the perfect fluid this translates to ρ ≥ 0 and ρ+ p ≥ 0. These two conditions are

obtained as follows: Let us first consider the limit, where the time like vector tµ approaches

a light-like vector lµ. In this limit we have

Tµνlµlν = (p+ρ)(l ·u)2 ,

and hence p+ρ ≥ 0. Let us then consider the case where tµ = uµ. In this case we have

Tµνuµuν = ρ,

and hence ρ ≥ 0. It remains to show that for an arbitrary time-like vector tµ no other

constraints arise. We have

Tµνtµtν = (p+ρ)(t ·u)2 − pt2 = p
[

(t ·u)2 − t2
]

+ρ(t ·u)2

= p
[

(t ·u)2 − t2u2
]

+ρ(t ·u)2 .

The Schwarz inequality in Lorentzian signature for two time-like four-vectors reads

(t ·u)2 − t2u2 ≥ 0.

Using p ≥−ρ we obtain

Tµνtµtν ≥ −ρ
[

(t ·u)2 − t2u2
]

+ρ(t ·u)2 = ρt2u2.
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Using ρ ≥ 0 it follows

Tµνtµtν ≥ 0,

i.e. no other constraints arise.

• The null energy condition:

Tµνlµlν ≥ 0 for all light-like vectors lµ.

Applied to the perfect fluid this translates to ρ+ p ≥ 0.

• The dominant energy condition:

Tµνtµtν ≥ 0 for all time-like vectors tµ;

gµν Tµρtρ Tνσtσ ≥ 0, i.e. Tµρtρ is not space-like.

Applied to the perfect fluid this translates to ρ ≥ |p|

• The null dominant energy condition:

Tµνlµlν ≥ 0 for all light-like vectors lµ;

gµν Tµρlρ Tνσlσ ≥ 0, i.e. Tµρlρ is not space-like.

Applied to the perfect fluid this translates to ρ ≥ |p| or ρ =−p.

• The strong energy condition:

Tµνtµtν ≥ 1

2
T

ρ
ρ tσtσ for all time-like vectors tµ.

Applied to the perfect fluid this translates to ρ+ p ≥ 0 and ρ+3p ≥ 0.

We may summarise the energy conditions for a perfect fluid as follows: Assuming an equation

of state of the form

p = wρ,

where w denotes the parameter of the equation of state, and assuming ρ ≥ 0, each of the energy

conditions above implies

w ≥ −1.
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9.4 The Robertson-Walker metric

Let us recall the concepts of isotropy and homogeneity of a space: Isotropy is the statement that

there is no preferred direction in the space, homogeneity is the statement that there is no pre-

ferred point in the space. Remark: Isotropy and homogeneity are a priori independent concepts,

there are manifolds which are homogeneous but nowhere isotropic. An example is the space

R×S2.

On the other hand we have: If a space is isotropic everywhere, then it is homogeneous. Fur-

thermore we have: If a space is isotropic at one point and in addition homogeneous, then it is

isotropic at all points.

From the observation of the cosmic microwave background we may conclude, that the universe

as observed from the earth is spatially isotropic at the observation point. As we do not believe

that the position of the earth is a preferred point in space, we may assume spatial isotropy of the

universe and hence spatial homogeneity of the universe follows.

Remark: We made no implications about the time component. Indeed, we will assume that

the universe evolves in time. We will therefore consider a space-time, where the spatial sub-

space is homogeneous and isotropic at all times, and the full space-time evolves in time. We may

assume (at least locally) that space-time can be written as

R×Σ,

where R represents the time sub-space and Σ a three-dimensional manifold, representing the

spatial sub-space. Since the spatial sub-space is homogeneous and isotropic, it follows that Σ
must be a maximally symmetric space. By a suitable choice of the time coordinate we may

achieve that the metric has the form

ds2 = c2dt2−R(t)2dσ2.

R(t) is called the scale factor, dσ2 denotes the metric on the manifold Σ. We will use the

convention that the scale factor R(t) has the dimension of a length, while dσ2 is dimensionless.

For a maximally symmetric space we have

Rσλµν = κ
(
gσµgλν −gσνgλµ

)
.

We now apply this equation to the three-dimensional space Σ with metric

dσ2 = γi jduidu j.

We find

R
(3)
i jkl = κ

(
γikγ jl − γilγ jk

)
,
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where the superscript 3 indicates, that we consider the restriction of the curvature tensor to the

three-dimensional manifold Σ. The constant κ is given by

κ =
R(3)

6
.

One obtains for the Ricci tensor

Ric
(3)
i j = 2κγi j.

Similar to the case of the Schwarzschild solution, we may put the metric dσ2 into the form

dσ2 = γi jduidu j = e2b(r)dr2 + r2dΩ2.

As we did for the Schwarzschild solution, we compute from this form the Ricci tensor. In the

coordinates (r,θ,ϕ) we find

Ric
(3)
11 =

2

r
∂rb,

Ric
(3)
22 = e−2b (r∂rb−1)+1,

Ric
(3)
33 =

[

e−2b (r∂rb−1)+1
]

sin2 θ.

Equating the above equations to Ric
(3)
i j = 2κγi j, we may solve for b(r). We first consider Ric

(3)
11 :

2

r
∂rb = 2κe2b,

e−2bdb = κrdr,

−1

2
e−2b =

1

2
κr2 − 1

2
c0,

b(r) = −1

2
ln(c0 −κr) ,

with some yet unknown integration constant c0. In order to fix c0, we consider Ric
(3)
22 :

e−2b (r∂rb−1)+1 = (c0 −κr)

[
κr2

(c0 −κr)
−1

]

+1 = 2κr2 − c0 +1.

This should be equal to 2κr2 and it follows that c0 = 1. We therefore have

b(r) = −1

2
ln
(
1−κr2

)

and hence

dσ2 =
dr2

1−κr2
+ r2dΩ2.
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Combining all results, we obtain for the metric of four-dimensional space-time

ds2 = c2dt2 −R(t)2

[
dr2

1−κr2
+ r2

(
dθ2 + sin2 θdφ2

)
]

.

A metric of this form is called Robertson-Walker metric. We recall that we use the convention

that R(t) has dimension of a length. Then the coordinates (r,θ,φ) and the parameter κ are di-

mensionless. In particular r is dimensionless. The Robertson-Walker metric is invariant under a

rescaling

R → λ−1R, r → λr, κ → λ−2κ.

We may use this rescaling to convert to the convention, where r has the dimension of a length, R

is dimensionless and κ has the dimension length−2.

If we stick to our original convention, where r and κ are dimensionless, we may use the

rescaling to rescale κ to {−1,0,1}.

We still have to determine the scale factor R(t). The possible geometries can be divided into

three classes according to the parameter κ:

κ = 1 (or more general κ > 0) closed geometry

κ = 0 spatially flat

κ =−1 (or more general κ < 0) open geometry

This is most easily seen by introducing a new radial coordinate through

dχ =
dr√

1−κr2
.

Upon integration of this equation we obtain

r =







sinχ, κ = 1,
χ, κ = 0,
sinhχ, κ =−1.

and hence

dσ2 =







dχ2 + sin2 χdΩ2, κ = 1,
dχ2 +χ2dΩ2, κ = 0,

dχ2 + sinh2 χdΩ2, κ =−1.

For κ = 1 we obtain for dσ2 the metric of the sphere S3, for κ = 0 we obtain the flat Euclidean

metric and for κ =−1 we obtain a hyperbolic metric.
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9.5 Friedmann equations and the Hubble parameter

In order to determine the function R(t) we now use Einstein’s equations and the model of a

perfect fluid for the energy-momentum tensor

Tµν = (p+ρ)uµuν − pgµν.

together with the equation of state

p = wρ.

In the rest frame of the fluid we have uµ = (1,0,0,0). We use the Robertson-Walker metric to

lower the index and we obtain (as in flat space) uµ = (1,0,0,0). Hence

Tµν =







ρ 0 0 0

0

0 −pgi j

0







For the trace we have

T = T µ
µ = gµνTµν = (p+ρ)uµuµ − pgµνgµν = (p+ρ)−4p = ρ−3p.

We recall that Einstein’s equations may be written as

Ricµν =
8πG

c4

(

Tµν −
1

2
gµνT

)

.

For the (µ,ν) = (0,0)-component one finds

−3
1

c2

R̈

R
=

4πG

c4
(ρ+3p)

and for the (µ,ν) = (i, j)-components one obtains

1

c2

R̈

R
+2

1

c2

(
Ṙ

R

)2

+2
κ

R2
=

4πG

c4
(ρ− p) .

(A dot over a function denotes the time derivative d/dt.) We may eliminate the second time

derivative from the last equation. This gives us Friedmann’s equations:

(
Ṙ

R

)2

=
8πGρ

3c2
− κc2

R2
,

R̈

R
= −4πG

3c2
(ρ+3p) .
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We call the quantity

H(t) =
Ṙ(t)

R(t)

the Hubble parameter. The value of the Hubble parameter at our current time is called the

Hubble constant H0. The value of the Hubble constant is

H0 = 67.8±0.9 km s−1Mpc−1 (Planck satellite).

One Megaparsec equals 1Mpc = 3.09 · 1022m. The Hubble parameter is a measure for the ex-

pansion of the universe.

The rate, by which the expansion of the universe slows down, is described by the parameter

q = −RR̈

Ṙ2
=−

R̈
R

(
Ṙ
R

)2
.

From Friedmann’s equations we have

q =
4πG

3c2

(ρ+3p)

H(t)2
=

ρ+3p

2ρ− 3c4κ
4πGR2

.

For the time variation of the Hubble parameter we have

Ḣ(t) =
d

dt

Ṙ(t)

R(t)
=

R̈

R
−
(

Ṙ

R

)2

=− [1+q(t)]H(t)2.

In terms of the Hubble parameter Friedmann’s equations read

H(t)2 =
8πGρ

3c2
− κc2

R2
,

Ḣ(t) = − [1+q(t)]H(t)2.

The critical density is defined by κ = 0, hence

ρc =
3c2H2

8πG

As the Hubble parameter is time-dependent, so is the critical density. We also define a density

parameter Ω by

Ω =
ρ

ρc

=
8πG

3c2H2
ρ.
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With these definitions the first Friedmann equation may be written as

Ω = 1+κ
c2

H2R2
.

We therefore have:

ρ < ρc ↔ Ω < 1 ↔ κ < 0 ↔ open,

ρ = ρc ↔ Ω = 1 ↔ κ = 0 ↔ flat,

ρ > ρc ↔ Ω > 1 ↔ κ > 0 ↔ closed.

9.6 Evolution of the universe

We start from energy conservation, or more concretely from

∇µT
µ
ν = 0.

For the ν = 0 component we have

0 = ∂µT
µ
0 +Γ

µ

µλT λ
0 −Γλ

µ0T
µ

λ = ∂0ρ−3
Ṙ

R
(ρ+ p) .

With the equation of state p = wρ we obtain

ρ̇

ρ
= −3(1+w)

Ṙ

R
,

or

d lnρ(t)

dt
= −3(1+w)

d lnR(t)

dt
.

We may integrate this equation and obtain

ρ(t) = ρ(t0)

(
R(t)

R(t0)

)−3(1+w)

.

We consider a few special cases: Let us first assume that the universe consists of non-interacting

galaxies (dust). We have w = 0 and

ρM(t) ∼ R(t)−3.

A universe where the energy density decreases as R(t)−3 is called a matter dominated universe.

As a second example let us consider a universe consisting solely of photons. We now have

w = 1/3 and

ρR(t) ∼ R(t)−4.
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A universe where the energy density decreases as R(t)−4 is called a radiation dominated uni-

verse.

As a final example we consider a universe, which consists solely of vacuum energy. In this case

we have w =−1 and

ρΛ(t) ∼ R(t)0.

A universe where the energy density is constant as a function of time is called a vacuum domi-

nated universe.

In all cases we find a power law

ρ(t) = ρ0

(
R(t)

R0

)−n

,

with n = 3(1+w). Let us return to the first Friedmann equation:

H(t)2 =
8πG

3c2
ρ(t)− κc2

R(t)2

We may interpret the term proportional to the spatial curvature κ as an effective energy density

ρcurv(t) = −3c4κ

8πG
R(t)−2.

With n = 3(1+w) we have in this case w =−1/3. We further set

Ωcurv =
ρcurv

ρc
=− c2κ

R(t)2H(t)2
=−c2κ

Ṙ2
.

With these conventions we have

H(t)2 =
8πG

3c2

(

ρcurv(t)+∑
j

ρ j(t)

)

.

Dividing both sides by H(t)2 one obtains

1 = Ωcurv +∑
j

Ω j.

Remark: The total energy density of the universe is of course just

Ω = ∑
j

Ω j,

i.e. without Ωcurv. We therefore have

Ωcurv = 1−Ω.
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The introduction of ρcurv and Ωcurv only serves to unify the discussion of the various contribu-

tions to H(t).
Let us now consider for simplicity an energy density with the time-dependence

ρ(t) = ρ0

(
R(t)

R0

)−n

.

For n > 0 we obtain from

H(t)2 =
8πG

3c2
ρ(t)

Ṙ(t) =

√

8πG

3c2
ρ0Rn

0 R(t)1− n
2

and hence

R(t) = R0

[
2

3c2
n2πGρ0 (t − t0)

2

] 1
n

.

At time t = t0 we have R(t0) = 0. This space-time has a true singularity at t = t0. This can be

seen by considering for example the energy density ρ(t)∼ R(t)−n, which diverges for n > 0 at

t = t0. The singularity at t = t0 is called the big bang. The associated Penrose diagram is given

by

i+

I +

i0
i−

Finally, let us consider the special case n = 0, corresponding to a universe consisting of vacuum

energy. In this case the energy density is constant

ρ(t) = ρ0

and we find

R(t) = R0 exp

(√

8

3c2
πGρ0 (t − t0)

)

.

Let us summarise the essential features of the various contributions to the right-hand side of the

first Friedmann equation:

radiation : n = 4, w = 1
3
, ρ ∼ R−4, R ∼ t

1
2 ,

matter : n = 3, w = 0, ρ ∼ R−3, R ∼ t
2
3 ,

curvature : n = 2, w =−1
3
, ρ ∼ R−2, R ∼ t,

vacuum energy : n = 0, w =−1, ρ ∼ R0, R ∼ et .

The relevant equations are p = wρ, n = 3(1+w), ρ ∼ R−n and (for n > 0) R ∼ t2/n.
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9.7 The red shift

For simplicity we consider a spatially flat universe (κ = 0) with the Robertson-Walker metric

ds2 = c2dt2−R(t)2
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
.

Let us for the moment further assume that the time-dependence of the scale factor is given by a

power law:

R(t) = R0

(
t

t0

)q

, 0 < q < 1,

where R0 is a quantity with the dimension of a length and t0 is a quantity with the dimension of

a time interval. The power q is given for a perfect fluid with equation of state p = wρ by

q =
2

n
=

2

3(1+w)
.

For example, for a radiation dominated universe we have q = 1/2, while for a matter dominated

universe we have q = 2/3. Light cones in a curved space-time are defined by null paths, i.e.

ds2 = 0. For the light propagation we obtain

dx

dt
= ±c

(
t

t0

)−q

.

Here we have introduced x = R0r. Recall that with our convention r is a dimensionless quantity.

x has dimension of a length. The equation above can be integrated and one obtains

t =

[
(1−q)

c t
q
0

(±x− x0)

] 1
1−q

.

Let us discuss the most important properties of this solution: The light cones at t = 0 are tangen-

tial to the singularity at t = 0:

dt

dx
= ±1

c

(
t

t0

)q

= 0 for t = 0 and q > 0.

A second important property of this geometry is given by the fact, that the past light cones of

two distinct points are not required to intersect. If there is no intersection, the two points are not

in causal contact. This is in contrast to flat Minkowski space, where the past light cones always

intersect.

Let us now consider light propagation in curved space-time without assuming a power law for

the scale factor. We will however again assume a spatially flat space-time. We start from the

Robertson-Walker metric

ds2 = c2dt2−R(t)2
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
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and consider the geodesic equation

d2xµ

dλ2
+Γ

µ
τσ

dxτ

dλ

dxσ

dλ
= 0

For a massless particle (photon) we have

dxµ

dλ

dxµ

dλ
= 0.

It will be convenient to normalise the curve parameter λ such that

pµ =
dxµ

dλ
.

An observer with four-velocity uµ measures a photon energy given by

E = cpµuµ.

We obtain for the 0-component of the geodesic equation

c
d2t

dλ2
+

1

c
RṘ

(
dr

dλ

)2

= 0.

With

dr

dλ
=

c

R

dt

dλ

one obtains

d2t

dλ2
+

Ṙ

R

(
dt

dλ

)2

= 0.

A solution is given by

dt

dλ
=

c0

R(t)
,

where c0 is a constant. Let us verify this solution:

d2t

dλ2
+

Ṙ

R

(
dt

dλ

)2

=
d

dλ

c0

R
+

Ṙ

R

c2
0

R2
=

(
d

dt

c0

R

)
dt

dλ
+

c2
0Ṙ

R3

=

(−c0Ṙ

R2

)
c0

R
+

c2
0Ṙ

R3
= 0.

We will see in a second that c0 = E0R(t0)/c2, where E0 is the energy of the photon at some initial

time t0 and R(t0) is the scale factor at this time. An observer with constant spatial coordinates

(and hence four-velocity uµ = (1,0,0,0)) measures a photon with energy

E = cuµ dxµ

dλ
= c2 c0

R(t)
.
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This implies the cosmological red shift: A photon emitted with energy E1 at a time t1 with scale

factor R(t1) and measured with energy E2 at a time t2 with scale factor R(t2) satisfies the relation

E2

E1
=

R(t1)

R(t2)
.

The name “red shift” derives from the fact that in an expanding universe we have R(t2) > R(t1)
for t2 > t1. This implies E2 < E1. Usually the red shift is denoted as

z =
E1 −E2

E2
=

λ2 −λ1

λ1
=

R(t2)

R(t1)
−1.

Thus

R(t1)

R(t2)
=

1

1+ z
.

Given the red shift and the scale factor at the time of the observation, we may deduce the scale

factor at the time of the emission of the photon.

Remark: The red shift and the Doppler effect are conceptually different: The Doppler effect

requires a flat space, such that the relative velocity between two objects is well defined. On a

curved manifold, we may only compare tangent vectors at the same space-time point, a relative

velocity between two distant points is not well-defined. The cosmological red shift is entirely

due to the change in the metric.

With this warning, we are now nevertheless going to associate a velocity to the red shift. We

first introduce the instantaneous physical distance dp(t) between two objects (e.g. galaxies). If

the first object is located at the spatial origin and the second object has the radial coordinate r,

we define

dp(t) = R(t)r.

The rate of change of the instantaneous physical distance defines a velocity

v = ḋp(t) = Ṙ(t)r =
Ṙ(t)

R(t)
dp(t) = H(t)dp(t).

This is Hubble’s law.

The instantaneous physical distance is not an observable, as observations always refer to our

past light-cone. In practice, the luminosity distance dL is used. Suppose we know the lumi-

nosity of some object (e.g. stars or galaxies) and measure the photon flux, then we can infer the

distance. In an Euclidean space we have

d2
L =

L

4πF
,
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where L is the luminosity of the source (i.e. emitted energy per unit time) and F the observed

flux (i.e. energy per unit time per unit area). The formula just says that the energy emitted by the

source per unit time is the same as the energy through a sphere with radius dL per unit time.

Let us now adapt this formula to the Robertson-Walker metric. It will be convenient to use χ
instead of r as radial variable. The metric reads

ds2 = c2dt2−R(t)2

[
dr2

1−κr2
+ r2

(
dθ2 + sin2 θdφ2

)
]

= c2dt2−R(t)2
[

dχ2 +Sκ (χ)
2
(
dθ2 + sin2 θdφ2

)]

,

with

Sκ (χ) =







sinχ, κ = 1,
χ, κ = 0,
sinhχ, κ =−1.

The relation between r and χ is r = Sκ(χ).

Conservation of the photon number tells us, that all photons emitted from the source will even-

tually pass through the sphere with radius χ. However, we have to take two effects into account:

First of all, photons emitted with an energy E are red-shifted to the energy E/(1+ z). Secondly,

the photons arrive less frequently at the sphere: Photons emitted a time ∆t apart will hit the

sphere a time (1+ z)∆t apart. Thus

L = (1+ z)2
AF,

where A is the area of the sphere, given by

A = 4πR2
0Sκ(χ)

2.

R0 is the scale factor at the observation time t0. Thus

dL = (1+ z)R0Sκ(χ).

The radial variable χ is not an observable and we would like to eliminate this variable in favour

of measurable quantities. We can do this as follows: Consider a radial null geodesic:

0 = ds2 = c2dt2−R(t)2dχ2.

We have

dχ

dt
=

c

R(t)

and therefore

χ = c

t0∫

t

dt ′

R(t ′)
= c

R0∫

R

dR′

R′2H (R′)
=

c

R0

z∫

0

dz′

H (z′)
,
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where we first changed variables from t to the scale factor R, and then from the scale factor R to

the red shift z with R = R0/(1+ z). Let us define

E (z) =
H (z)

H0
.

E(z) is a dimensionless quantity and given by

E (z) =
1

H0

(

8πG

3c2 ∑
i

ρi (z)

) 1
2

.

The sum over i includes the curvature component. If all energy densities evolve with power laws

ρi (z) = ρi,0

(
R(z)

R0

)−ni

= ρi,0 (1+ z)ni ,

we have

E (z) =
1

H0

(

8πG

3c2 ∑
i

ρi,0 (1+ z)ni

) 1
2

=

(

∑
i

Ωi,0 (1+ z)ni

) 1
2

Putting everything together we obtain

dL = (1+ z)R0Sκ(χ) = (1+ z)R0Sκ




c

R0H0

z∫

0

dz′

E (z′)



 .

If κ = 0 we have Sκ(χ) = χ and R0 drops out. We obtain in this case

dL =
c(1+ z)

H0

z∫

0

dz′

E (z′)
.

For κ ∈ {1,−1} we eliminate R0 in favour of Ωcurv,0:

Ωcurv,0 = − c2κ

R2
0H2

0

⇒ R0 =
c

H0

√
|Ωcurv,0|

.

This gives

dL =
c(1+ z)

H0

√
|Ωcurv,0|

Sκ





√

|Ωcurv,0|
z∫

0

dz′

E (z′)



 .

This formula is of central importance in cosmology. Given H0 and Ωi,0 we may calculate the

luminosity distance as a function of z. If we measure both the red shift z and the luminosity
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distance for a number of objects, we may extract information on H0 and Ωi,0.

We may also ask at what time t a photon was emitted, which is observed today at time t0 with

red shift z. t is called the look-back time. We have

t0− t =

t0∫

t

dt ′ =

R0∫

R

dR′

R′H (R′)
=

z∫

0

dz′

(1+ z′)H (z′)
=

1

H0

z∫

0

dz′

(1+ z′)E (z′)

As a simple example consider a flat matter-dominated universe. Then

E (z) = (1+ z)
3
2

and

t0 − t =
1

H0

z∫

0

dz′
(
1+ z′

)− 5
2 = − 2

3H0

[

(1+ z)−
3
2 −1

]

In the limit z → ∞ we find

lim
z→∞

(t0− t) =
2

3H0
,

which gives the total age of a flat matter-dominated universe. A value of H0 = 70 km s−1 Mpc−1

gives the age 9.3 ·109 yr, which is not too far off from the actual age 13.8 ·109 yr.

Let us define the particle horizon and the event horizon: Using the coordinates (ct,χ,θ,φ)
we consider an observer and an emitter

observer : χ = 0, θ = 0, φ = 0,

emitter : χ = χp, θ = 0, φ = 0.

We may ask, what is the value of the radial variable χp, such that signals emitted by the emitter

at an initial time ti (very often we will take ti = 0) can no longer reach the observer at time t0
(usually the time of today). This defines the particle horizon. χp is given by

χp = c

t0∫

ti

dt

R(t)
= c

R0∫

Ri

dR

R2H (R)
.

χp is a dimensionless quantity. In order to get the value of the particle horizon today in units of

length, one multiplies with R0:

dp = R0χp.
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If we take ti = 0 this means: Points, which are more than dp away from us today, cannot have

affected us up to today (however they may affect us in the future).

If the scale factor grows as R ∼ t2/n (n = 3 for matter, n = 4 for photons), the particle horizon

grows as

χp ∼ t1− 2
n .

The second question which we may ask is the following: What is the value of the radial variable

χe, such that signals emitted by the emitter at time t0 (usually the time of today) will not reach us

until a final time tF (very often we will take t f = ∞). This defines the event horizon. χe is given

by

χe = c

t f∫

t0

dt

R(t)
= c

R f∫

R0

dR

R2H (R)
.

In order to get the value of the event horizon today in units of length, one multiplies with R0:

de = R0χe.

If we take t f = ∞ this means: Points, which are more than de away from us today, cannot affect

us in the future.

9.8 The cosmic microwave background

Consider a universe consisting of photons, electrons and protons. The photons scatter off the

charged electrons and protons through Thomson scattering. They are in thermal equilibrium and

their spectral energy density (i.e. energy per volume and per unit frequency) is described by

Planck’s law for black-body radiation:

u(ω,T ) =
~

π2c3

ω3

e
~ω
kBT −1

.

Integration over the frequency ω gives the Stefan-Boltzmann law:

ρ =
4σ

c
T 4,

with the Stefan-Boltzmann constant

σ =
π2k4

B

60~3c2
.

The universe appears opaque with respect to electromagnetic radiation: Photons do not propagate

freely, but scatter frequently. Assume now that the universe is cooling down and electrons and

protons combine to (neutral) hydrogen atoms. This is called the recombination epoch. Being
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neutral, the (low-energy) photons do not scatter on the hydrogen atoms. After sufficient many

charged particles combine to form neutral particles, the photons decouple: There are simply no

charged interaction partners left. The photons now propagate freely and the universe becomes

transparent to electromagnetic radiation. As the universe further expands, the photons are red-

shifted to lower energies and observed as the cosmic microwave background.

Given an initial spectral energy density u(ω1,T1) at time t1 (at decoupling time) we would like

to derive the spectral energy density u(ω2,T2) at time t2 (today). Consider a photon with energy

E1 = ~ω

at decoupling. With a red shift z the observed energy (or frequency) today is

E2 =
E1

1+ z
, ω2 =

ω1

1+ z
.

As the photons do not interact, the number of photons stays constant. However, the universe

expands. A comoving volume changes from V1 to

V2 =

(
R(t2)

R(t1)

)3

V1 = (1+ z)3
V1.

Combining everything we find (please note that “energy per unit frequency” is invariant under a

simultaneous rescaling of the energy and the frequency)

u(ω2,T2) = (1+ z)−3
u(ω1,T1) = (1+ z)−3

u((1+ z)ω2,T1) =
~

π2c3

ω3
2

e
(1+z)~ω2

kBT1 −1

= u

(

ω2,
T1

1+ z

)

.

Thus the spectrum of the black-body radiation is conserved, however the corresponding temper-

ature is lowered:

T2 =
T1

1+ z
.

The temperature T2 is very well measured (T2 = 2.73K). In addition, the typical energy scale

where decoupling occurs is known: ∼ 1 eV. We may therefore deduce the red shift and the ratio

of the scale parameters R(t1)/R(t2).
To a first approximation the observed cosmic microwave background is isotropic. However,

precise measurements reveal an anisotropy at the order of 10−5.

9.9 The current paradigm for our universe

The measured density parameters are

Ωγ = (5.4±0.1) ·10−5,

ΩM = 0.31±0.01,

Ωvac = 0.69±0.01.
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The matter density parameter is the sum of the baryonic matter density parameter (ordinary

matter) and the dark matter density parameter

ΩM = ΩB +ΩDM,

with the values

ΩB = 0.048±0.001,

ΩDM = 0.26±0.01.

This gives a value of

Ωcurv = 1−Ωvac −ΩM −Ωγ

compatible with κ = 0, i.e. a spatially flat universe.

The age of the universe is

τ = (13.80±0.04) ·109yr.

The large scale structure of the universe: Stars assemble in galaxies, galaxies form clusters

and clusters form super-clusters.

Cornerstones of the universe:

Event Time Energy Temperature Red shift

Big bang 0 s

Planck era < 10−43 s > 1018 GeV > 1031 K

Inflation & 10−34 s . 1015 GeV . 1028 K

Baryogenesis < 10−10 s > 1 TeV > 1016 K

Electroweak symmetry breaking 10−10 s 1 TeV 1016 K

Quark-hadron transition 10−4 s 100 MeV 1012 K

Nucleon freeze-out 10−2 s 10 MeV 1011 K

Neutrino decoupling 1 s 1 MeV 1010 K

Big bang nucleosynthesis 3 min 100 keV 109 K

Matter-radiation equality 104 yr 1 eV 104 K 104

Recombination 105 yr 0.3 eV 3 ·103 K 1100

Dark Ages 105 −108 yr > 6 meV > 70 K > 25

Reionisation 108 yr 1.5−6 meV 20−70 K 6−25

Galaxy formation ∼ 6 ·108 yr ∼ 2.6 meV ∼ 30 K ∼ 10

Dark energy dominates ∼ 109 yr ∼ 0.7 meV ∼ 8 K ∼ 2

Solar system 8 ·109 yr 0.35 meV 4 K 0.5
Today 14 ·109 yr 0.24 meV 2.73 K 0
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Please note that energy, temperature and red shift are related: If E0 and T0 denote the energy and

the temperature of the universe today, the corresponding values at red shift z are given by

E = (1+ z)E0, T = (1+ z)T0.

The relation between E and T is E = kBT .

During the “dark ages” epoch, galaxies and stars gradually form through gravitational inter-

actions. As there are no visible stars yet at the beginning of this era, the epoch is called “dark

ages”. At the end of this epoch, high energy photons from the first stars can ionise hydrogen in

the inter-galactic medium. This is called “reionisation”.
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10 Dark matter and thermal relics

10.1 Basic facts about dark matter

1. Dark matter has attractive gravitational interactions, hence the name “matter”. Evidence

for dark matter is provided by:

- On galactic scales: Observation of flat rotation curves of disk galaxies.

- On cluster scales: Observation of the velocity dispersion of galaxies in the Coma Cluster.

- On cosmological scales: Measurement of the matter density parameter: ΩM = ΩB +
ΩDM with ΩB ≈ 0.05 and ΩDM ≈ 0.26.

There is no evidence that dark matter has any other interaction but gravity.

2. Dark matter is either stable or has a lifetime larger than the age of the universe. Otherwise

it wouldn’t be here today.

3. Dark matter is not observed to interact with light, hence the name “dark”. This implies

that the coupling to the electromagnetic field is either small and/or the dark matter particles

are heavy.

4. The major part of dark matter must be dissipationless. “Dissipationless” means that dark

matter particles cannot cool down by emitting particles like photons. If dark matter would

be dissipative, the dark halos would not exist.

Galaxy formation starts from a mixture of ordinary and dark matter. The visible matter dis-

sipates energy by emitting photons and falls into the potential well of the object. Because

the emission is isotropic, the angular momentum of the visible matter is preserved. Thus

as the visible matter collapses to the centre, it increases its angular speed until it becomes

unstable towards the formation of a disk, which thus rotates much faster than the dark halo.

5. The mass m of the major component of dark matter is bounded by

m < 2 ·1048 GeV.

This is a very weak constraint. This bound comes from the non-observation of massive

astrophysical compact halo objects (MACHOS). in the dark halo of our galaxy.

6. Dark matter is usually assumed to be collisionless, however the limit on dark matter self-

interactions is very large:

σself

m
≤ 2 barn GeV−1.

The limit comes from two colliding galaxies in the bullet cluster.

138



7. The bulk of dark matter is either cold or warm. Dark matter is classified as hot, warm

or cold according to how relativistic it was when the temperature of the universe was of

the order of ≃ keV. Hot dark matter is relativistic at that time, cold dark matter is non-

relativistic at that time and warm dark matter just turns from relativistic to non-relativistic

at that time. Simulations of the formation of the large scale structure of our universe shows

that cold dark matter models are compatible with the observed large scale structure, while

hot dark matter models are not.

Baryonic matter can only cluster after recombination, before recombination the photon

pressure in the plasma prevents it. However, shortly after recombination baryonic mat-

ter must be attracted by already existing inhomogeneities of dark matter, otherwise there

would be not enough time to form the structures we observe now.

Stars and galaxies should form first, while clusters and super-clusters should form second.

This requires galaxy-size dark matter inhomogeneities to survive the horizon crossing (i.e.

when χgalaxy = χp, which corresponds to the temperature being ≃ keV). After horizon

crossing, the inhomogeneities could potentially be washed out. This happens for hot dark

matter. However this does not happen, if dark matter is cold or warm.

Simulations of hot dark matter show, that in these models super-clusters and clusters form

fist and later fragment into galaxies.

8. Most dark matter candidates are relics from pre-big bang nucleosynthesis. This implies

that the calculation of the dark matter relic abundance or the primordial dark matter ve-

locity distribution depends on assumptions on the thermal history of the universe. With

different viable assumptions, the relic density and velocity distribution may change con-

siderably.

10.2 Thermal freeze-out

Let us discuss a dark matter particle X together with its anti-particle X̄ . The dark matter particle

and the anti-particle may annihilate, let us assume that the reaction is

X + X̄ → Y + Ȳ ,

where Y and Ȳ are two Standard Model particles. The inverse reaction is the production process

Y + Ȳ → X + X̄ .

We say that the particles are in chemical equilibrium, if the production and annihilation pro-

cesses occur at the same rate, i.e. on the average the particle numbers are conserved. Let us also

consider an elastic scattering process like

X +Y → X +Y,

If elastic scattering processes occur frequently enough, the particles are in kinetic equilibrium.

Please note that it is possible that particles are no longer in chemical equilibrium, but maintain
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kinetic equilibrium.

If mX ≫ mY we would expect that at low temperatures most dark matter particles would have

annihilated into Standard Model particles. We have to find a mechanism, which explains the dark

matter energy density.

Let us first discuss the mechanisms for baryons and photons:

1. Baryon-anti-baryon asymmetry: It is generally believed, that initially there has been

roughly the same number of baryons as anti-baryons with a tiny asymmetry, making the

number of baryons slightly higher than the number of anti-baryons, i.e. at times t ≤ 10−6s

nq −nq̄

nq

≃ 3 ·10−8.

All anti-baryons annihilate with a baryon, such that the tiny surplus of baryons survives

and constitutes the matter we observe today.

2. Photon decoupling: Before photon decoupling, photons are in thermal equilibrium through

elastic scattering processes like

γ+ e− → γ+ e− or γ+ p → γ+ p.

At recombination, the electrons and protons form neutral hydrogen atoms and the scatter-

ing partners disappear.

A third possibility is thermal freeze-out. It is similar to photon decoupling. Instead of γ+ e− →
γ+e− or (γ+ p→ γ+ p) we now consider X+X̄ →Y +Ȳ . While in the case of photon decoupling

the basic reason was that the scattering partners fade away, the mechanism for thermal freeze-out

is a little bit more subtle: In an expanding universe it becomes more and more unlikely for two

particles X and X̄ to find each other and to annihilate. This happens, when the annihilation rate

ΓX ,eq = nX ,eq 〈σXX̄→YȲ vMøller〉 ,

where nX ,eq is the number density of particle X in equilibrium and 〈σXX̄→YȲ vMøller〉 the ther-

mal average of the annihilation cross section times velocity, becomes smaller than the Hubble

parameter. Thus the condition for thermal freeze-out is

ΓX ,eq = H.

Note that both sides have units s−1.

10.2.1 The Boltzmann equation

Let us denote by fX(~x,~p, t) the phase space density of particle X .

fX(~x,~p, t)
d3x d3 p

(2π~)3
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gives the probability of finding a particle X at time t in a small volume d3x d3 p of phase space at

the point (~x,~p) in phase space.

The number density nX(~x, t) is the integral of the phase space density over all momenta times

a factor g
spin
X , taking degenerate states (e.g. spin states) into account:

nX (~x, t) = g
spin
X

∫
d3p

(2π~)3
fX(~x,~p, t).

The energy density is given by

ρX (~x, t) = g
spin
X

∫
d3p

(2π~)3

√

c2~p2 + c4m2 fX(~x,~p, t).

The Boltzmann equation in classical statistical mechanics reads

d

dt
fX = Ĉ fX .

d fX/dt is called the flow term, Ĉ fX is called the collision term. For the flow term we have

d

dt
fX =

∂

∂t
fX +

∂~x

∂t
~∇x fX +

∂~p

∂t
~∇p fX .

Let us define an operator L̂ by

L̂ =
∂

∂t
+

∂~x

∂t
~∇x +

∂~p

∂t
~∇p,

such that the left-hand side of the Boltzmann equation is L̂ fX . We call L̂ the Liouville operator.

Warning: In statistical mechanics the Liouville operator is usually defined slightly differently:

Without the partial time derivative and for a N-particle system:

L̂statistical mechanic =
N

∑
i=1

∂~xi

∂t
~∇xi

+
∂~pi

∂t
~∇pi

.

Let us seek a generalisation of the Liouville operator to curved space. First of all, we write

fX(~x,~p, t) as fX(x
µ, pµ). Please note that both versions depend on seven independent variables,

pµ is constrained by

pµpµ = m2c2.

Instead of the total time derivative (which would not respect general covariance) we consider the

derivative with respect to an affine parameter λ:

d

dλ
fX =

dxµ

dλ

∂ fX

∂xµ
+

dpµ

dλ

∂ fX

∂pµ
.
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From the geodesic equation we have

dpµ

dλ
= −Γ

µ
τσ pτ pσ

and hence

d

dλ
fX =

[

pµ ∂

∂xµ
−Γ

µ
τσ pτ pσ ∂

∂pµ

]

fX .

Thus the generalisation of the Liouville operator is given by

L̂ = pµ ∂

∂xµ
−Γ

µ
τσ pτ pσ ∂

∂pµ
.

Let us now specialise to the Robertson-Walker metric. In a homogeneous and isotropic universe

the phase space density fX(~x,~p, t) depends only on E =
√

c2~p2 + c4m2 and t. Thus we consider

fX(E, t). We obtain

L̂ fX =
E

c2

∂

∂t
fX −H~p2 ∂

∂E
fX ,

or

c2

E
L̂ fX =

∂

∂t
fX − Hc2~p2

E

∂

∂E
fX .

Our basic interest is the number density nX(t). We integrate the above equation over ~p. We have

g
spin
X

∫
d3 p

(2π~)3

c2

E
L̂ fX(E, t) =

∂

∂t
nX −g

spin
X

∫
d3 p

(2π~)3

Hc2~p2

E

∂

∂E
fX(E, t).

We simplify the second term with the help of integration-by-parts:

−g
spin
X

∫
d3p

(2π~)3

Hc2~p2

E

∂

∂E
fX(E, t) = −g

spin
X Hc2

∫
dpdΩ

(2π~)3

p4

E

∂

∂E
fX(E, t)

= −g
spin
X H

∫
dEdΩ

(2π~)3

(
E2

c2
− c2m2

) 3
2 ∂

∂E
fX(E, t)

= 3g
spin
X H

∫
dEdΩ

(2π~)3

E p

c2
fX(E, t)

= 3g
spin
X H

∫
dpdΩ

(2π~)3
p2 fX(E, t)

= 3g
spin
X H

∫
d3p

(2π~)3
fX(E, t) = 3HnX(t).
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Thus

g
spin
X

∫
d3p

(2π~)3

c2

E
L̂ fX(E, t) =

∂

∂t
nX +3HnX .

Let us now consider the collision term. We consider the processes X + X̄ → Y + Ȳ and Y + Ȳ →
X + X̄ . Integrated over the momenta the collision term is given by

g
spin
X

∫
d3 pX

(2π~)3

c2

EX

Ĉ fX(EX , t) =

= −c ∑
spins

∫
c d3 pX

(2π~)3
2EX

c d3pX̄

(2π~)3
2EX̄

c d3 pY

(2π~)3
2EY

c d3pȲ

(2π~)3
2EȲ

(2π~)4 δ4 (pX + pX̄ − pY − pȲ )

×
[

fX fX̄ (1± fY )(1± fȲ ) |AXX̄→YȲ |2 − fY fȲ (1± fX)(1± fX̄) |AYȲ→XX̄ |2
]

.

AXX̄→YȲ is the scattering amplitude for X + X̄ → Y + Ȳ . If we normalise the creation and anni-

hilation operators by

[

â~p, â
†
~q

]

= (2π~)3 δ3 (~p−~q) ,

the one-particle states by

|p〉 =

√

2
E~p

c
â

†
~p |0〉 ,

define the transition operator T̂ by

Ŝ = 1+ i(2π~)4δ4

(
n

∑
i=1

pi

)

T̂ ,

and the n-particle scattering amplitude An(p1, . . . , pn) by

〈
0
∣
∣iT̂
∣
∣ p1 . . . pn

〉
= iAn (p1, . . . , pn)

and demand that the S-matrix operator Ŝ is dimensionless, we find that

dim An = [dim p]4−n [dim ~]
3
2 n−4 =

[

dim
p

~

]4−n

[dim ~]
n
2 .

The factors (1± fi) are of statistical origin and incorporate Bose enhancement (1+ fi) for bosons

and Pauli blocking (1− fi) for fermions.

We will make a few simplifying assumptions: We will assume that for all particles we have

E−µ ≫ kBT . In this limit the Bose-Einstein distribution and the Fermi-Dirac distribution reduce

to the Maxwell-Boltzmann distribution:

lim
E−µ≫kBT

1

e
1

kBT
(E−µ)∓1

= e
− 1

kBT
(E−µ)

.
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In this limit we may also neglect the statistical factors (1± fi).
Secondly, we assume that the fundamental interactions entering the amplitude are T-invariant.

This implies

∑
spins

|AXX̄→YȲ |2 = ∑
spins

|AYȲ→XX̄ |2 .

Thirdly, we assume that particles Y and Ȳ go quickly into thermal equilibrium. This allows us to

replace fY and fȲ by the equilibrium distributions

fY,eq = e
− 1

kBT
(EY−µY ), fȲ ,eq = e

− 1
kBT

(EȲ−µȲ ).

Fourthly, we neglect the chemical potentials. Due to the presence of the delta distribution δ(Ex+
EX̄ −EY −EȲ ) we have

fX ,eq fX̄ ,eq = e
− 1

kBT
(EX+EX̄ ) = e

− 1
kBT

(EY+EȲ ) = fY,eq fȲ ,eq.

Putting all this together, the collision term simplifies to

g
spin
X

∫
d3 pX

(2π~)3

c2

EX
Ĉ fX(EX , t) =

= −c ∑
spins

∫
c d3 pX

(2π~)3
2EX

c d3pX̄

(2π~)3
2EX̄

c d3 pY

(2π~)3
2EY

c d3pȲ

(2π~)3
2EȲ

(2π~)4 δ4 (pX + pX̄ − pY − pȲ )

×|AXX̄→YȲ |2
(

fX fX̄ − fX ,eq fX̄ ,eq

)
.

We introduce the cross section

σXX̄→YȲ =
1

4

√

(pX · pX̄)
2 − c4m2

X m2
X̄

g
spin
X g

spin

X̄

∑
spins

∫
c d3 pY

(2π~)3 2EY

c d3 pȲ

(2π~)3 2EȲ

×(2π~)4 δ4 (pX + pX̄ − pY − pȲ ) |AXX̄→YȲ |2 .

Thus

g
spin
X

∫
d3 pX

(2π~)3

c2

EX

Ĉ fX(EX , t) =

−g
spin
X g

spin

X̄

∫
d3 pX

(2π~)3

d3pX̄

(2π~)3
σXX̄→YȲ vMøller

(
fX fX̄ − fX ,eq fX̄ ,eq

)
,

where vMøller is defined by

vMøller =
c3
√

(pX · pX̄)
2 − c4m2

X m2
X̄

EXEX̄

.
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Let us introduce the thermal average of the annihilation cross section times the velocity

〈σXX̄→YȲ vMøller〉 =
g

spin
X g

spin

X̄

nX ,eqnX̄ ,eq

∫
d3 pX

(2π~)3

d3pX̄

(2π~)3
σXX̄→YȲ vMøllere

− 1
kBT (EX+EX̄ )

with

nX ,eq = g
spin
X

∫
d3pX

(2π~)3
e
− EX

kBT ,

and a similar definition applies to nX̄ ,eq. We would like to express the collision term in terms

of the thermal average of the annihilation cross section times the velocity. This is possible, if

the phase space densities fX and fX̄ are proportional to their thermal equilibrium densities fX ,eq

and fX̄ ,eq with a momentum-independent constant of proportionality. It can be shown that this

is the case if the particles X and X̄ stay after decoupling (when they are no longer in chemical

equilibrium) in kinetic equilibrium. With this assumption one obtains for the collision term

g
spin
X

∫
d3 pX

(2π~)3

c2

EX
Ĉ fX(EX , t) = −〈σXX̄→YȲ vMøller〉

(
nX nX̄ −nX ,eqnX̄ ,eq

)
.

With nX̄ = nX and nX̄ ,eq = nX ,eq we finally obtain the Boltzmann equation in a form most useful

for cosmology:

∂

∂t
nX = −3HnX −〈σXX̄→YȲ vMøller〉

(
n2

X −n2
X ,eq

)
.

We define the equilibrium annihilation rate as

ΓX ,eq = nX ,eq 〈σXX̄→YȲ vMøller〉 .

10.2.2 The thermal average of the cross section times velocity

Let us work out in more detail neq and 〈σ vMøller〉. We continue to work with Maxwell-Boltzmann

distributions (and thus neglect differences between bosons and fermions). However, we allow for

non-zero particle masses.

We start with neq. We have (gspin denotes the degeneracy factor, i.e. the number of spin

states) with E =
√

c2~p2 + c4m2

neq = gspin
∫

d3 p

(2π~)3
e
− E

kBT =
4πgspin

(2π~)3

∞∫

0

dpp2e
− E

kBT =
4πgspin

c3 (2π~)3

∞∫

mc2

dEE
√

E2 − c4m2e
− E

kBT

=
4πgspin

3c3 (2π~)3

∞∫

mc2

dE

[
d

dE

(
E2 − c4m2

) 3
2

]

e
− E

kBT

=
4πgspin

3c3 (2π~)3
kBT

∞∫

mc2

dE
(
E2 − c4m2

) 3
2 e

− E
kBT .
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Let us now substitute

x =
mc2

kBT
, z =

E

mc2
.

We obtain

neq =
4πgspin

(
mc2

)4

3c3 (2π~)3
kBT

∞∫

1

dz
(
z2 −1

) 3
2 e−xz.

The modified Bessel function Kν(x) is defined by

Kν (x) =

√
π

Γ
(
ν+ 1

2

)

(x

2

)ν
∞∫

1

dz
(
z2 −1

)ν− 1
2 e−xz,

and in particular

K2 (x) =
x2

3

∞∫

1

dz
(
z2 −1

) 3
2 e−xz.

Therefore

neq =
4πgspin

(
mc2
)2
(kBT )

c3 (2π~)3
K2

(
mc2

kBT

)

.

In the limit mc2 ≪ kBT (i.e. for relativistic particles) we have x → 0. The modified Bessel

function behaves as

K2 (x) ∼ 2

x2
,

and we obtain

neq =
8πgspin (kBT )3

c3 (2π~)3
= gspin (kBT )3

π2 (~c)3

In the limit mc2 ≫ kBT (i.e. for non-relativistic particles) we have x → ∞. The modified Bessel

function behaves as

K2 (x) ∼
√

π

2x
e−x

and we obtain

neq =
4π

3
2 gspin

(
mc2

) 3
2 (kBT )

3
2

√
2c3 (2π~)3

e
−mc2

kBT = gspin

(
mkBT

2π~2

) 3
2

e
−mc2

kBT .
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Let us now consider the thermal average of the cross section times velocity 〈σ vMøller〉. We recall

〈σ vMøller〉 =
g

spin
X g

spin

X̄

nX ,eqnX̄ ,eq

∫
d3pX

(2π~)3

d3pX̄

(2π~)3
σvMøllere

− 1
kBT (EX+EX̄).

The Mandelstam variable s is given by

s = (pX + pX̄)
2 = p2

X + p2
X̄
+2pX · pX̄ = c2m2

X + c2m2
X̄
+

2

c2
EX EX̄ −2 |~pX | · |~pX̄ |cosθ.

The cross section σ is a function of s. We examine the integral

I =
∫

d3pX

(2π~)3

d3pX̄

(2π~)3
σvMøllere

− 1
kBT

(EX+EX̄)

=
8π2

(2π~)6

∞∫

0

dpX

∞∫

0

dpX̄

π∫

0

dθsinθp2
X p2

X̄
σvMøllere

− 1
kBT (EX+EX̄ )

=
8π2

(2π~)6
c4

∞∫

mX c2

dEX

∞∫

mX̄ c2

dEX̄

π∫

0

dθsinθpX EX pX̄ EX̄ σvMøllere
− 1

kBT
(EX+EX̄ ).

Let us now substitute the variable θ by the Mandelstam variable s. We have

ds

dθ
= 2pX pX̄ sinθ.

We define

s± = c2m2
X + c2m2

X̄
+

2

c2
EX EX̄ ±2pX pX̄ .

Thus

I =
4π2

(2π~)6
c4

∞∫

mX c2

dEX

∞∫

mX̄ c2

dEX̄

s+∫

s−

dsEXEX̄ σvMøllere
− 1

kBT (EX+EX̄ ).

We introduce

E+ = EX +EX̄ , E− = EX −EX̄ .

We change variables from (EX ,EX̄) to (E+,E−). In addition, we change the order of integration

to (s,E+,E−). Let us work out the region of integration. From the Schwartz inequality we have

2pX · pX̄ ≥ 2mX mX̄ c2

and therefore

s ≥ (mX +mX̄)
2

c2.
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The original constraints are

EX ≥ mXc2,

EX̄ ≥ mX̄c2,
(

s− c2m2
X − c2m2

X̄
− 2

c2
EX EX̄

)2

≤ 4

c4

(
E2

X − c4m2
X

)(
E2

X̄
− c4m2

X̄

)
.

The first two constraints give

E+ ≥ (mX +mX̄)c2, 2mX c2 −E+ ≤ E− ≤ E+−2mX̄ c2.

We write the last constraint as a quadratic equation in E−. For real solutions E− the discriminant

should be positive, this gives the constraint

E+ ≥ c
√

s.

Since s ≥ (mX +mX̄)
2c2 the constraint E+ ≥ (mX +mX̄)c2 is automatically satisfied. The solu-

tions for E− are

E
max/min
− =

c

s



E+

(
m2

X −m2
X̄

)
c±
√
[

s− c2 (mX +mX̄)
2
][

s− c2 (mX −mX̄)
2
][E2

+

c2
− s

]


 .

One checks that Emax
− ≤ E+− 2mX̄ c2 and Emin

− ≥ 2mXc2 −E+. The requirement Emax
− ≤ E+−

2mX̄ c2 is equivalent to

(
2mX̄E+− s+m2

X −m2
X̄

)2 ≥ 0,

which for real values is always satisfied. The requirement Emin
− ≥ 2mXc2 −E+ leads to a similar

condition, where mX and mX are exchanged. Thus

I =

π2

(2π~)6
c

∞∫

(mX+mX̄ )
2
c2

ds

∞∫

c
√

s

dE+

Emax
−∫

Emin
−

dE−

√
[

s− c2 (mX +mX̄)
2
][

s− c2 (mX −mX̄)
2
]

σe
− E+

kBT .

The integration over E− is trivial. One obtains

I =
2π2

(2π~)6

∞∫

(mX+mX̄ )
2c2

ds

s

[

s− c2 (mX +mX̄)
2
][

s− c2 (mX −mX̄)
2
]

σ

×
∞∫

c
√

s

dE+

(
E2
+

c2
− s

) 1
2

e
− E+

kBT .
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The integration over E+ yields a modified Bessel function K1. We obtain

I =
2π2kBT

(2π~)6

∞∫

(mX+mX̄ )
2
c2

ds√
s

[

s− c2 (mX +mX̄)
2
][

s− c2 (mX −mX̄)
2
]

K1

(
c
√

s

kBT

)

σ,

and therefore

〈σ vMøller〉=
2π2g

spin
X g

spin

X̄
kBT

(2π~)6
nX ,eqnX̄ ,eq

∞∫

(mX+mX̄ )
2
c2

ds√
s

[

s− c2 (mX +mX̄)
2
][

s− c2 (mX −mX̄)
2
]

K1

(
c
√

s

kBT

)

σ.

In the case where X and X̄ are particle and anti-particle, we have mX = mX̄ and g
spin
X = g

spin

X̄
and

our formula simplifies to

〈σ vMøller〉 =
2π2
(

g
spin
X

)2

kBT

(2π~)6
n2

X ,eq

∞∫

4m2
X c2

ds
√

s
[
s−4c2m2

X

]
K1

(
c
√

s

kBT

)

σ

=
1

8c2m4
X kBT

(

K2

(
mX c2

kBT

))2

∞∫

4m2
X c2

ds
√

s
[
s−4c2m2

X

]
K1

(
c
√

s

kBT

)

σ,

or in natural units c = ~= kB = 1:

〈σ vMøller〉 =
1

8m4
XT
(
K2

(
mX

T

))2

∞∫

4m2
X

ds
√

s
[
s−4m2

X

]
K1

(√
s

T

)

σ.

10.2.3 The effective number of relativistic degrees of freedom

In this paragraph we introduce two effective numbers of relativistic degrees of freedom, g∗ and

g∗,S. The first (g∗) one enters the relation between energy density and temperature, the second

one (g∗,S) enters the relation between scale factor and temperature. We now distinguish between

bosons and fermions, using Bose-Einstein and Fermi-Dirac distributions, respectively. However,

we neglect particle masses. In the relativistic limit this is justified.

Let’s start with g∗. Let’s consider a relativistic boson with g
spin
i spin degrees of freedom at

temperature Ti. A typical example is a photon, where g
spin
photon = 2. If the relativistic boson is

decoupled, its spectral energy density corresponds to the temperature Ti, which does not need to

be the temperature of the other particle species. The spectral energy density is given by

ui (ω,Ti) =
g

spin
i ~

2π2c3

ω3

e
~ω

kBTi −1

,
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and the energy density is obtained by

ρi (Ti) =

∞∫

0

dω ui (ω,Ti) =
g

spin
i

2π2

(kBTi)
4

(~c)3

∞∫

0

dx
x3

ex −1
= g

spin
i

π2 (kBTi)
4

30(~c)3
.

This is the Stefan-Boltzmann law. For the number density we obtain

ni (Ti) =

∞∫

0

dω
ui (ω,Ti)

~ω
=

g
spin
i

2π2

(kBTi)
3

(~c)3

∞∫

0

dx
x2

ex −1
= g

spin
i

ζ3 (kBTi)
3

π2 (~c)3
.

Let’s repeat the calculation for a relativistic fermion with g
spin
i spin degrees of freedom The

spectral energy density is now

ui (ω,Ti) =
g

spin
i ~

2π2c3

ω3

e
~ω

kBTi +1

,

and we obtain for the energy density

ρi (Ti) =

∞∫

0

dω ui (ω,Ti) =
g

spin
i

2π2

(kBTi)
4

(~c)3

∞∫

0

dx
x3

ex +1
=

7

8
g

spin
i

π2 (kBTi)
4

30(~c)3
.

Compared to the boson case we get an extra factor 7/8. For the number density we obtain

ni (Ti) =

∞∫

0

dω
ui (ω,Ti)

~ω
=

g
spin
i

2π2

(kBTi)
3

(~c)3

∞∫

0

dx
x2

ex +1
=

3

4
g

spin
i

ζ3 (kBTi)
3

π2 (~c)3
.

Compared to the boson case we get an extra factor 3/4.

Let us now consider various relativistic species i, each with their own temperature Ti. The

total energy density is then

ρ = ∑
i

ρi (Ti) .

Let us denote by T the photon temperature. We take T as a reference temperature. We may write

ρ =
π2

30(~c)3
g∗ (kBT )4 ,

with

g∗ = ∑
bosons

g
spin
i

(
Ti

T

)4

+
7

8
∑

fermions

g
spin
i

(
Ti

T

)4

.
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This defines g∗. The effective number g∗ enters the relation between the energy density and

the temperature. The relation is applicable as long as the universe is radiation dominated (i.e.

dominated by relativistic particles).

Let us now define g∗,S. The sub-script S refers to the entropy. We first consider an individual

species of particles i. For vanishing chemical potential µi the entropy is given by

Si =
Ei + piV

Ti

,

where pi denotes the pressure due to the species i. We will also consider the entropy density si:

si =
Si

V
=

ρi + pi

Ti
.

For relativistic particles we have

pi =
1

3
ρi.

This holds for bosons and for fermions. To see this, we note that the pressure pi is given for

relativistic particles (with E = cp) by

pi = g
spin
i

∫
d3p

(2π~)3

c2~p2

3E
fi (E,Ti) = 4πg

spin
i

∞∫

0

dp

(2π~)3

c2p4

3E
fi (E,Ti)

=
1

3

g
spin
i ~

2π2c3

∞∫

0

dω ω3 fi (~ω,Ti) =
1

3

∞∫

0

dω ui (ω,Ti) =
1

3
ρi.

Please note that pi denotes the pressure, while p = |~p| denotes the absolute value of the three-

momentum. We further used

fi (E,Ti) =
1

e
E

kBTi ∓1
, ui (ω,Ti) =

g
spin
i ~

2π2c3

ω3

e
~ω

kBTi ∓1

.

The entropy density is therefore given by

si =
4

3

ρi

Ti
.

Adding up the different species we obtain

s =
2π2kB

45(~c)3
g∗,S (kBT )3 ,

with

g∗,S = ∑
bosons

g
spin
i

(
Ti

T

)3

+
7

8
∑

fermions

g
spin
i

(
Ti

T

)3

.
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If entropy is conserved, we have

g∗,ST 3R3 = const,

leading to

T ∼ g
− 1

3

∗,S
1

R
.

10.3 Neutrinos and hot relics

Let us now discuss the implications of the Boltzmann equation

d

dt
nX = −3HnX −〈σ vMøller〉

(
n2

X −n2
X ,eq

)
.

The first term on the right-hand side gives the dilution of the number density due to the expansion

of the universe. The second term accounts for annihilation, while the third term (which comes

with a positive sign) corresponds to the production process. As long as the first term on the right-

hand side can be neglected against the second and the third term, the Boltzmann equation will

drive the number density nX towards the equilibrium number density nX ,eq. This changes when

the first term becomes comparable to the other two terms. We define the freeze-out condition by

neq 〈σ vMøller〉 = H.

For the thermal average of the cross section times velocity we will use very crude approxima-

tions. For relativistic particles we will assume

〈σ vMøller〉 = ~
2c3g4 (kBT )2

(mmediatorc
2)

4
,

where g is a dimensionless coupling and mmediator is the mass of a mediator particle through

which annihilation proceeds.

An example for relativistic particles are neutrinos. In this case mmediator = mZ and g is the

weak coupling. Fermi’s constant is defined by

GF

(~c)3
=

√
2e2

8sin2 θW m2
W c4

≈ 1.166 ·10−5GeV−2.

For the neutrino annihilation cross section we make the crude approximation

〈σ vMøller〉 = ~
2c3 G2

F

(~c)6
(kBT )2 .

For relativistic fermions we use

neq =
3

4

ζ3 (kBT )3

π2 (~c)3
.
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We assume that decoupling of the neutrinos occurs, when the universe is radiation dominated.

With the first Friedmann equation and the effective number g∗ of relativistic degrees of freedom

H2 =
8πG

3c2
ρ, ρ =

π2

30(~c)3
g∗ (kBT )4

one obtains

H =

√

4π3Gg∗
45~3c5

(kBT )2 .

We may now calculate the freeze-out temperature:

neq 〈σ vMøller〉 = H,

3ζ3 (kBT )3

4π2 (~c)3
· ~2c3 G2

F

(~c)6
(kBT )2 =

√

4π3Gg∗
45~3c5

(kBT )2 ,

kBT = π

(
4

3ζ3

) 1
3

(

GF

(~c)3

)− 2
3 (

4πGg∗
45~c5

) 1
6

.

Let us first calculate the effective number g∗ of relativistic degrees of freedom. Let us assume

that the relativistic particles at freeze-out are photons, electrons, positrons and neutrinos. We

have

fermion factor gspin

γ 2

e− 7
8

2

e+ 7
8

2

νe,νµ,ντ
7
8

1

ν̄e, ν̄µ, ν̄τ
7
8

1

g∗ 43
4

With G = 6.7086 · 10−39~c5GeV−2 one obtains an estimate for the freeze-out temperature of

neutrinos:

kBT ≈ π

(
4

3ζ3

) 1
3 (

1.166 ·10−5
)− 2

3

(
4π

45
· 43

4
·6.7086 ·10−39

) 1
6

GeV ≈ 3.3 MeV.

With the current upper limit on the neutrino masses mνc2 < 2 eV we have

mνc2 ≪ kBT,

which justifies a posteriori the use of the relativistic approximation. It also justifies a posteriori

that the relativistic degrees of freedom are photons, electrons, positrons and neutrinos. Neutrinos

are hot relics.
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Let us discuss the temperature of the cosmic neutrino background. Our previous formulae

are valid as long as the neutrinos are relativistic. We denote by T1,ν the temperature of the

neutrinos at decoupling. At decoupling the neutrino temperature equals the temperature of the

rest of the universe, and in particular equals the temperature of the photons T1,γ:

T1,ν = T1,γ.

After decoupling, the temperature of the neutrinos is simply red-shifted:

T2,ν =

(
R1

R2

)

T1,ν,

where R1 is the scale factor at decoupling and R2 is the scale factor at time t2. We are interested

in the relation of the neutrino temperature to the photon temperature. We have seen that the

neutrinos decouple around kBT ≈ 3.3 MeV. Around 1 MeV (≈ 2 · 511 keV) a large fraction

of electrons and positrons annihilate, leaving only a tiny fraction of electrons behind (which

are part of the observed matter today). The electron-positron annihilation reheats the photon

gas. We may calculate the change in the photon temperature due to reheating, assuming that

the process conserves entropy. Let us introduce the effective number gbefore
∗,S corresponding to

just before electron-positron annihilation and taking only photons, electrons and positrons into

account. gbefore
∗,S is given by

gbefore
∗,S = 2+

7

8
·2 ·2 =

11

2
.

Immediately after electron-positron annihilation there are only photons (and neutrinos) left and

we set

gafter
∗,S = 2.

The neutrinos are already decoupled and take no part in the temperature/entropy increase. Their

entropy is the same before and after electron-positron annihilation. We further assume that

electron-positron annihilation occurs in a time interval, where we may neglect changes in the

scale factor R. If the entropy is conserved (i.e. the entropy from the electrons/positrons is trans-

ferred to the photons) we have

gbefore
∗,S

(

T beforeR
)3

+Sν = gafter
∗,S
(

T afterR
)3

+Sν,

where Sν denotes the entropy of the neutrinos. We therefore have

T after =

(

gbefore
∗,S
gafter
∗,S

) 1
3

T before.

Thus after electron-positron annihilation the neutrino temperature and the photon temperature

are related by

Tν =

(

gafter
∗,S

gbefore
∗,S

) 1
3

Tγ =

(
4

11

) 1
3

Tγ.
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As long as the neutrinos are relativistic (and after electron-positron annihilation) we have for the

effective number g∗,S

g∗,S = 2+
7

8
·2 ·3 · 4

11
=

43

11
≈ 3.91.

This is based on the assumption that the neutrinos freeze-out first and electron-positron anni-

hilation occurs afterwards. As the temperatures of neutrino freeze-out and electron-positron

annihilation are quite close, the neutrino freeze-out is not fully completed as electron-positron

annihilation starts. Thus some energy/entropy is transferred to the neutrinos. This leads to a

small corrections, which may be described by changing the number of neutrinos from three to an

effective number of neutrino species Neff = 3.046. This yields

g∗ = 3.38, g∗,S = 3.94.

Let us now discuss the neutrino contribution to the density parameter. We set

Ων =
8πG

3c2H2
ρν,

Let us assume that the neutrinos have (small) masses and that they are non-relativistic today. Let

t2 denote today’s time. With three neutrinos (and three anti-neutrinos) we have

ρν = 2

(

∑
i

mic
2

)

nν (t2) ,

where nν(t2) denotes today’s number density of one neutrino species. We assume the number

densities of all neutrinos (and anti-neutrinos) to be the same. Let nγ(t2) denote today’s number

density of the photons from the cosmic microwave background. nγ(t2) is given by

nγ (t2) =
2ζ3

π2

(
kBTγ,2

)3

(~c)3
.

We may re-write the energy density as

ρν = 2

(

∑
i

mic
2

)(
nν (t2)

nγ (t2)

)

nγ (t2) .

Let us now consider a time t1, where the neutrinos where still relativistic, but after neutrinos

and photons decoupled. Since both neutrinos and photons are decoupled their numbers does not

change from t1 to t2 and we have

nν (t1)

nγ (t1)
=

nν (t2)

nγ (t2)
.
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Since the neutrinos are still relativistic at t1, we may use

nν (t1) =
3ζ3

4π2

(kBTν,1)
3

(~c)3
.

Combining everything we obtain

ρν =
3

4

(

∑
i

mic
2

)(
Tν,1

Tγ,1

)3

nγ (t2) =
3

11

(

∑
i

mic
2

)

nγ (t2)

and thus

Ων =
8πG

3c2H2
· 3

11

(

∑
i

mic
2

)

nγ (t2) =
48ζ3

33π

(

∑
i

mic
2

)(
G

c5~

) (
kBTγ,2

)3

(~H)2
.

with kBTγ,2 = 2.35 ·10−4 eV and ~H = 1.45 ·10−33 eV one obtains

Ων ≈ 0.023





∑
i

mic
2

eV



 .

The neutrinos are hot dark matter. They cannot constitute the bulk of dark matter. Let us assume

that their contribution to the density parameter is x, with

x < ΩDM ≈ 0.26.

We thus obtain a bound on the neutrino masses

∑
i

mic
2 < x ·43.2 eV.

A conservative estimate for x is x < 0.13, e.g. assuming that the neutrino contribution is not more

than half of the total dark matter contribution. We then find

∑
i

mic
2 < 5.6 eV.

10.4 Cold relics and the WIMP miracle

Let us now turn to cold dark matter. We consider a dark matter particle with mass mX and we

will assume that this particle decouples when it is non-relativistic, i.e. mXc2 ≫ kBT . We do not

distinguish between bosons and fermions and work for simplicity with the Maxwell-Boltzmann

distribution.

The thermal average of the annihilation cross section times velocity is denoted by 〈σ vMøller〉.
We keep the dependence on this quantity explicit. A concrete crude approximation is for example

given by

〈σ vMøller〉 = β ~
2c3 G2

F

(~c)6

(
mX c2

)2
.
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Such a cross section would arise, if the dark matter particles annihilate through a mediator par-

ticle with coupling and mass similar to the electro-weak bosons. This is encoded in the factor

G2
F . In order to get the dimensions right, we need an additional factor E2. The appropriate scale

is now mXc2. β = v/c is the ratio of a typical non-relativistic velocity to the speed of light. As a

numerical example let us take mX = 1 TeV and

〈σ vMøller〉ref = 1.4 ·10−5 · ~2c3 G2
F

(~c)6

(
mXc2

)2 ≈ 2.22 ·10−32 m3s−1.

For the number density we use the non-relativistic approximation

neq =

(
mX kBT

2π~2

) 3
2

e
−mX c2

kBT .

We will again assume that freeze-out occurs while the universe is radiation dominated. Thus

H =

√

4π3Gg∗
45~3c5

(kBT )2 .

Assuming that the freeze-out occurs before electroweak symmetry breaking, we may assume that

all particles of the Standard Model are relativistic. Thus

g∗ = 2(1+3+8)
︸ ︷︷ ︸

gauge bosons

+
7

8



2 ·2 ·6 ·3
︸ ︷︷ ︸

quarks

+ 2 ·2 ·3
︸ ︷︷ ︸

charged leptons

+ 2 ·3
︸︷︷︸

neutrinos



+ 4
︸︷︷︸

Higgs

=
427

4
.

Before electroweak symmetry breaking the complex Higgs doublet contributes four degrees of

freedom. Three degrees of freedom become after electroweak symmetry breaking the longitudi-

nal modes of the W±- and Z-bosons. The fourth degree of freedom is the Higgs boson. Let us

introduce

x =
mX c2

kBT
.

The condition for freeze-out

neq 〈σ vMøller〉 = H

yields

(

mX c2kBT

2π(~c)2

) 3
2

e−x 〈σ vMøller〉 =

√

4π3Gg∗
45~3c5

(kBT )2 ,

√
xe−x = π3

√

32Gg∗
45~c5

~
2c3

mXc2 〈σ vMøller〉
.
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Given mX and 〈σ vMøller〉 we may solve this equation (numerically) for x and obtain in this

way the freeze-out temperature T1. For our numerical example mX = 1 TeV and 〈σ vMøller〉ref =
2.22 ·10−32 m3s−1 we find x = 26.82.

Let us now turn to the contribution to the density parameter. We denote quantities at the time

of the freeze-out with a subscript 1, while today’s quantities are denoted with a subscript 2. We

first consider a crude “sudden approximation”: For T > T1 we assume that the number density

nX is given by the equilibrium distribution, while for T < T1 we assume that all particles X are

frozen out and the total number of particles X stays constant. With these assumptions we have

ΩX =
8πG

3c2H2
ρX (t2) , ρX (t2) = mX c2nX (t2) , nX (t2) =

(
R1

R2

)3

nX (t1) .

The last equation states that after freeze-out the dark matter particles X are decoupled. The

number of particles X is conserved, the number density is diluted by the third power of the scale

factor. For this factor we have

(
R1

R2

)3

=
g∗,S,2
g∗,S,1

(
T2

T1

)3

,

with

g∗,S,1 =
427

4
, g∗,S,2 = 3.94

and T2 = 2.73K is the temperature of the cosmic microwave background. Putting everything

together we get

ΩX =
8πG

3c2H2
mX c2 g∗,S,2

g∗,S,1

(
T2

T1

)3(
mX kBT1

2π~2

) 3
2

e
−mX c2

kBT1

=
4

3
√

2π(~H)2

(
G

~c5

)
(
mX c2

)4 g∗,S,2
g∗,S,1

(
T2

T1

)3

x
− 3

2

1 e−x1

=
π

9
√

10

√
g∗,1

g∗,S,2
g∗,S,1

(
8πG

~c5

) 3
2 c3 (kBT2)

3

H2 〈σ vMøller〉
x1.

For our numerical example mX = 1 TeV and 〈σ vMøller〉ref = 2.22 ·10−32 m3s−1 (and g∗,1 = g∗,S,1)

we obtain

ΩX ≈ 0.25.

In the discussion above we made the (unrealistic) assumption that above the freeze-out temper-

ature the number density nX is in thermal equilibrium, while below the freeze-out temperature

the particle number NX is constant. In reality freeze-out does nor occur suddenly, but proceeds

gradually. We may model this more accurately with the help of the Boltzmann equation

∂

∂t
nX = −3HnX −〈σ vMøller〉

(
n2

X −n2
X ,eq

)
.
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It is convenient to use as evolution variable not the time t, but the dimensionless parameter

x = mX c2/(kBT ) introduced above. In addition, we scale out the effect of the expansion of the

universe by considering instead of nX the quantity

Y =
nX

s
,

where s is the entropy density. Note that sR3 = const and hence

R3 ∂s

∂t
+3sR2Ṙ = 0,

∂s

∂t
= −3sH.

Furthermore

∂x

∂t
= −mX c2

kBT

1

T

∂T

∂t
= −mX c2

kBT

1

3T 3

∂T 3

∂t
= −mX c2

kBT

1

3s

∂s

∂t
=

mX c2

kBT
H = xH.

The Boltzmann equation may re-written as

∂

∂x
Y = − s

xH
〈σ vMøller〉

(
Y 2 −Y 2

eq

)
.

The Hubble parameter is x-dependent. In a radiation dominated universe we have H2 ∼ ρ ∼ T 4.

Thus

H =
H (x = 1)

x2
.

Let us introduce

λ =
sx3

H (x = 1)
〈σ vMøller〉 =

2π2kB

45(~c)3
g∗,S

(
mX c2

)3 〈σ vMøller〉
H (x = 1)

.

Assuming that in the range of interest 〈σ vMøller〉 and g∗,S are temperature-independent, it follows

that λ is temperature-independent constant as well, and hence a x-independent constant. Then

∂

∂x
Y = − λ

x2

(
Y 2 −Y 2

eq

)
.

At high temperatures, corresponding to x ≪ 1 we have Y ≈ Yeq. This gives a boundary con-

dition and we may integrate the differential equation numerically towards low temperatures,

corresponding to x ≫ 1.

In order to get a qualitative understanding we consider the following approximation: For

x ≫ x1 (where x1 denotes the freeze-out value defined by ΓX ,eq = H) we have Y ≫ Yeq and the

differential equation simplifies to

∂

∂x
Y = − λ

x2
Y 2.
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Integration from x = x1 to x = ∞ yields

1

Y∞
− 1

Y1
=

λ

x1
.

Typically, Y1 ≫ Y∞ and hence

Y∞ =
x1

λ
.

Within this approximation we obtain

ΩX =
π

9
√

10

√
g∗,1

g∗,S,2
g∗,S,1

(
8πG

~c5

) 3
2 c3 (kBT2)

3

H2 〈σ vMøller〉
x1,

i.e. the same result as within the “sudden approximation”. This is not surprising, as we made

again essentially the same approximation. Please note the factor 1/〈σ vMøller〉, the higher the

thermal average of the cross section times velocity, the lower the relic abundance. The factor x1

depends only mildly on the product mX〈σ vMøller〉.
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11 Inflation

11.1 The horizon problem

Let us consider photons from the cosmic microwave background. They decoupled at t1 = trecomb

and had no interaction afterwards. At t1 their particle horizon is given by

χp = c

t1∫

t0

dt

R(t)
= c

R1∫

R0

dR

R2H (R)
=

c

R2H2

z0∫

z1

dz

E (z)
=

c

R2H

∞∫

z1

dz

E (z)
,

where today’s quantities (t2 = ttoday) are denoted by H2 = H. Quantities at the time of the big

bang (t0 = tbig bang) are denoted with a subscript 0.

ttoday

trecomb

tbig bang

2χP

Up to recombination the universe was dominated by radiation and matter. We therefore model

E(z) by

E (z) =
[

ΩR,2 (1+ z)4 +ΩM,2 (1+ z)3
] 1

2
.

We obtain

χp =
2c

R2HΩ
1
2

M,2 (1+ z1)
1
2

[√

1+(1+ z1)
ΩR,2

ΩM,2
−
√

(1+ z1)
ΩR,2

ΩM,2

]

.

Numerically we have with z1 = 1100, ΩR,2 = 10−5 and ΩM,2 = 0.31

C1 =

√

1+(1+ z1)
ΩR,2

ΩM,2
−
√

(1+ z1)
ΩR,2

ΩM,2
= 0.83.
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Thus

2dP = 2R1χP =
4cR1

R2HΩ
1
2

M,2 (1+ z1)
1
2

C1 =
4c

HΩ
1
2

M,2 (1+ z1)
3
2

C1.

An event at t0 = tbig bang cannot influence simultaneously two photons, which were separated

more than 2dP at recombination time.

Let us now consider an object of spatial size dtrans, which is observed on the sky today (t2 =
ttoday) and extends over an angle θ. The angular diameter distance dA is defined by

dA =
dtrans

θ
.

It can be shown that the angular diameter distance is related to the luminosity distance

dL = (1+ z)2
dA,

where z is the red shift. We have

dA =
dL

(1+ z1)
2
=

c

H (1+ z1)

z1∫

0

dz

E (z)
.

With

E (z) =
[

0.69+0.31(1+ z)3
] 1

2

we obtain for the integral

z1∫

0

dz

E (z)
≈ 3.15.

Let us now consider the angle under which we observe today a region of cosmic microwave

photons, which could have had a chance to reach thermal equilibrium between t0 and t1. We

have

θ =
2dP

dA
≈ 4

3.15

1√
ΩM

C1√
1+ z1

≈ 5.7 ·10−2 ≈ 3◦.

Further more

θ2

4π
= 2.6 ·10−4.

We observe in experiments that the cosmic microwave background is isotropic over the complete

sky with anisotropies ≤ 10−5. Within the Robertson-Walker model of cosmology we see that

photons could have reached thermal equilibrium between t0 = tbig bang and t1 = trecomb in regions

of the size θ2. Within these regions we would expect the cosmic microwave background to be

isotropic. The fact that the cosmic microwave background is isotropic over the complete sky

can be explained within the Robertson-Walker model of cosmology only by fine-tuned initial

conditions at t0 = tbig bang. This is the horizon problem.
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11.2 The flatness problem

Consider the differential equation

dx

dt
= λ(x− x0)

with two constants λ and x0. It is clear that x(t) = x0 is a fixed-point of the differential equation.

What happens if we start from the initial condition at time t1 with initial value

x(t1) = x0 +δ,

with δ small? For λ < 0 the system will evolve towards the fixed point and we call the point

x(t) = x0 a stable fixed point.

For λ > 0 the system will evolve away from the fixed point. We say that in this case the point

x(t) = x0 is an unstable fixed point.

Let us now assume λ> 0. A solution to the differential equation with initial condition x(t1) =
x0 +δ is given by

x(t) = x0 +δeλ(t−t1).

Assume now that we observe today (at time t1) the value x0 +δ. We may then ask, what was the

initial condition at an earlier time t0 leading to the observed value x(t1) = x0 +δ today. This is

easily answered:

x(t0) = x0 +δeλ(t0−t1).

In other words, if the value today is a small quantity δ away from the unstable fixed point x0, it

must have even closer (by an exponential factor) to the unstable fixed point at earlier times:

x(t0)− x0 = δe−λ(t1−t0).

Thus we need very precisely fine-tuned initial conditions at time t0 to explain the observed value

at t1 today.

Let us now apply this to cosmology. The time evolution of the density parameter

Ω = 1+κ
c2

H2R2
.

is given by

d

dt
Ω = − 2κc2

H2R2

(
Ḣ

H
+

Ṙ

R

)

= − 2κc2

H2R2
[−(1+q)H +H] = 2qH (Ω−1) .

The point Ω = 1 is a fixed point of the differential equation. The prefactors H and q determine

whether it is a stable or an unstable fixed point. We may assume H > 0 for all past times (i.e. the

universe was not collapsing in the past). The parameter q is given by

q =
4πG

3c2H2 ∑
i

ρi (1+3wi) =
1

2
∑

i

Ωi (1+3wi) .
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The parameter q is positive if all components i satisfy the strong energy condition wi >−1
3
. The

notable exception is the vacuum energy, for which we have wΛ =−1.

For a radiation dominated universe or a matter dominated universe we have H > 0 and q > 0.

This implies that in these cases the value Ω = 1 is an unstable fixed point.

In a vacuum dominated universe (like ours today) we have wΛ = −1 and therefore H > 0

and q < 0. This implies that for a vacuum dominated universe the value Ω = 1 is a stable fixed

point. Note that on cosmological time scales the period where the universe is vacuum dominated

is quite recent.

Changing the evolution variable from the time t to the scale factor R, the above differential

equation may re-written as

dΩ

d lnR
= 2q(Ω−1) .

If we assume in addition, that the universe consists only of one component we have

q =
1

2
Ω(1+3w)

and

dΩ

d lnR
= (1+3w)Ω(Ω−1) .

The flatness problem is the following: Given that we measure today (at time t2) a value of Ω
close to 1, we may first evolve back to the time t1, where the parameter q changed sign. At time

t1 the deviation of Ω from 1 was larger, but still quite close to 1. Evolving backwards would

require extremely fine-tuned initial conditions to arrive at this value.

Let us estimate the amplification due to the evolution from t2 backwards to t1. We model our

universe as consisting of vacuum energy only. We find

Ω1 −1 ≈ (Ω2 −1)e2H(t2−t1).

With t2 − t1 ≈ 13 ·109 yr we find

e2H(t2−t1) ≈ 6.07,

and hence

O(|Ω1 −1|) = O(|Ω2 −1|) .

Let us now consider the backward evolution from t1 to an earlier time t0. For simplicity we

assume a radiation dominated universe. We now obtain

Ω0 −1 ≈ (Ω1 −1)

(
R0

R1

)2

= (Ω1−1)

(
t0

t1

)

.

Taking for t0 the Planck time t0 = 10−43 s gives

t0

t1
≈ 10−61.
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11.3 Basics of inflation

Please note that the horizon problem and the flatness problem do not contradict the standard

Friedmann-Robertson-Walker cosmology model. All observed phenomena are in agreement with

the Friedmann-Robertson-Walker cosmology model and specific initial conditions. The problem

is only that the initial conditions need to be extremely fine-tuned to arrive at the universe observed

today. We would prefer a mechanism, which starts from rather random initial conditions and

nevertheless explains the observations today. This is the motivation for inflationary models.

We call

c

RH
=

c

Ṙ

the comoving Hubble radius. During the radiation or matter dominated period, the expansion

of the universe decelerates and the comoving Hubble radius increases. The basic idea of inflation

is a shrinking comoving Hubble radius at the beginning of the universe.

d

dt

( c

RH

)

< 0.

This is equivalent to

R̈ > 0,

or

q = −RR̈

Ṙ2
< 0.

The conditions R̈ > 0 or q < 0 describe an accelerated expansion, hence the name “inflation”.

We may also translate the condition of a shrinking comoving Hubble radius to a condition on

the equation of state for a perfect fluid: From the second Friedmann equation

R̈

R
= −4πG

3c2
(ρ+3p)

we obtain with R̈ > 0 the condition

p < −1

3
ρ.

Thus we see that during inflation we had negative pressure.

Remark: This violates the strong energy condition (ρ + 3p ≥ 0), but so does a universe

dominated by vacuum energy with an equation of state p = −ρ. There is nothing wrong with

that, it only means that it is not sensible to impose the strong energy condition.

Let us now discuss how inflation solves the horizon problem and the flatness problem. We

first consider the horizon problem. Here, the problem was the finite particle horizon at recombi-

nation time. Let us now denote by t0 the time when inflation ends. During inflation we have an
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equation of state with w < −1
3

or n < 2, where n = 3(1+w). The comoving particle horizon at

time t0 is given by

χp =
c

R2H2

∞∫

z0

dz

E (z)
.

If we assume

E (z) = Ω
1
2

2 (1+ z)
n
2

with n < 2 we obtain for the red shift integral

∞∫

z0

dz(1+ z)−
n
2 =

2

2−n
(1+ z)

2−n
2

∣
∣
∣
∣

∞

z1

.

For n < 2 the integral diverges and we obtain an infinite comoving particle horizon. This solves

the horizon problem.

Let us now discuss the flatness problem. We recall the differential equation

dΩ

d lnR
= 2q(Ω−1) .

For q < 0 the point Ω= 1 is a stable fixed point of the differential equation. Thus, if we start with

random initial conditions before inflation, a sufficient long inflation period will evolve the value

of Ω very close to 1 at the end of inflation, such that the further evolution according to standard

Friedmann-Robertson-Walker cosmology is compatible with the observed value of Ω today. We

may estimate the required time period of inflation. Let us denote by t−1 the time when inflation

starts and by t0 the time when inflation ends. We assume that

|Ω−1 −1| = O(1) ,

and

|Ω0 −1| = O

(

10−63
)

.

It is common practice to give the time of the inflation period by a number N, which corresponds

to the power of e, by which the scale factor increases during the inflation period. N is also called

the number of e-folds. In detail, dN is defined by

dN = Hdt = d lnR.

Integration yields (with N(t−1) = 0 and N(t0) = N)

N = ln
R0

R−1
or

R0

R−1
= eN .
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Integration of the differential equation

dΩ

d lnR
= (1+3w)Ω(Ω−1)

gives

|Ω0 −1|
|Ω−1 −1| =

(
R0

R−1

)1+3w

= e(1+3w)N

and therefore

N = − 1

1+3w
ln

( |Ω−1 −1|
|Ω0 −1|

)

.

For example, for |Ω−1−1|/|Ω0−1|= 1063 and w =−1 we obtain N ≈ 73.

For a perfect fluid with −1 ≤ w <−1/3 we have 0 ≤ n < 2 and

H = H0

(
R

R0

)− n
2

= H0e−
n
2 N.

For

0 ≤ n

2
≪ 1

we see that the Hubble parameter does not change much during inflation. Let us introduce two

slow-roll parameters ε and η defined by

ε = − Ḣ

H2
= − R

H

dH

dR
= −d lnH

dN
,

η = − Ḧ

2ḢH
= ε− 1

2ε

dε

dN
.

We recall that q was defined by Ḣ =−(1+q)H2 and therefore

ε = 1+q.

For the perfect fluid discussed above we find

ε =
n

2
, η =

n

2
.

11.4 The inflaton field

Up to now we discussed inflation as a period where we have (i) a shrinking comoving Hubble

radius, (ii) accelerated expansion, (iii) negative pressure p < −ρ/3. The three conditions are
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(under modest assumptions) equivalent. Let us now discuss how inflation can be realised. We

already know about one scenario, which has all the three properties listed above: A universe

dominated by vacuum energy. However, just simply postulating that the universe was vacuum

dominated early on is not what we want: Such a universe will remain vacuum dominated forever.

We would like to have an inflation period, which comes to an end, followed by a radiation dom-

inated period, which is then followed by a matter dominated and finally by a vacuum dominated

period.

Let us consider the action of a scalar field minimally coupled to gravity. The action reads

S = SEH +Sφ,

SEH = − c3

16πG

∫
d4x

√−gR,

Sφ =
1

c

∫
d4x

√−gLφ, Lφ =
~2c

2
gµν
(
∂µφ
)
(∂νφ)−V (φ) .

We determine the energy-momentum tensor

Tµν =
2√−g

∂
√−gL

∂gµν
= 2

∂L

∂gµν
+

2√−g
L

∂
√−g

∂gµν
= 2

∂L

∂gµν
−Lgµν

=
~2c

2

[

2
(
∂µφ
)
(∂νφ)−gµν (∂λφ)

(

∂λφ
)]

+gµνV (φ) .

Let us now specialise to the Robertson-Walker metric with coordinates (ct,r,θ,ϕ) and assume

that the field φ(x) is homogeneous:

φ(x) = φ(t,~x) = φ(t) .

This implies

∂rφ = ∂θφ = ∂ϕφ = 0.

Then

T00 =
~2c

2
(∂0φ)2 +V (φ) ,

Ti j = −gi j

[
~2c

2
(∂0φ)2 −V (φ)

]

and T0i = 0. This is the energy-momentum tensor of a perfect fluid with

ρ =
~2c

2
(∂0φ)2 +V (φ) , p =

~2c

2
(∂0φ)2 −V (φ) .

As usual we define the parameter w by p = wρ, this yields

w =
~2c
2
(∂0φ)2 −V (φ)

~2c
2
(∂0φ)2 +V (φ)

.
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For V (φ)> ~2c(∂0φ)2 we have

w < −1

3
.

Thus we have inflation if the potential energy of the field is larger than twice the kinetic energy

of the field.

Let us now discuss the equation of motion for the field φ. For the Robertson-Walker metric

we have g00 = 1 and

√−g =
R(t)3r2 sinθ√

1−κr2
.

Therefore

∂0

√−g =
1

c

∂

∂t

√−g =
3

c

Ṙ

R

√−g =
3

c
H
√−g.

With the assumptions as above Lφ simplifies to

Lφ =
~2c

2
(∂0φ)2 −V (φ)

The variation of Sφ with respect to the field φ gives

δSφ =
1

c

∫
d4x

√−g

[

~
2c(∂0φ)(∂0δφ)− ∂V

∂φ
δφ

]

= −1

c

∫
d4x

√−g

[
~2c√−g

∂0

(√−g∂0φ
)
+

∂V

∂φ

]

δφ

= −1

c

∫
d4x

√
−g

[

~
2c∂2

0φ+3~2H∂0φ+
∂V

∂φ

]

δφ.

Thus the equation of motion for the field φ is

~
2c∂2

0φ+3~2H∂0φ+
∂V

∂φ
= 0.

φ̈+3Hφ̇+
c

~2

∂V

∂φ
= 0.

In addition, we have the Friedmann equations, which for κ = 0 read

H2 =
8πG

3c2

[
~2c

2
(∂0φ)2 +V (φ)

]

,

R̈

R
= −8πG

3c2

[

~
2c(∂0φ)2 −V (φ)

]

.
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Previously we introduced the slow-roll parameter ε =−Ḣ/H2. We have

H2 (1− ε) = H2

(

1+
Ḣ

H2

)

= H2 + Ḣ =

(
Ṙ

R

)2

+
d

dt

(
Ṙ

R

)

=
R̈

R
,

and therefore

ε = 3

~2c
2
(∂0φ)2

~2c
2
(∂0φ)2 +V (φ)

.

Inflation occurs for ε ≪ 1, i.e. when the potential energy of the inflaton field dominates over

the kinetic energy of the inflaton field. This motivates the name “slow-roll parameter”. Inflation

ends when w =−1/3 or V (φ) = ~2c(∂0φ)2. In terms of ε this translates to

ε = 1.

The inflation period should be sufficiently long, i.e. φ̇ should not change too fast. Therefore we

require

∣
∣φ̈
∣
∣ ≪

∣
∣3Hφ̇

∣
∣ ,
∣
∣
∣

c

~2
∂φV

∣
∣
∣ .

In this limit the equation of motion for the field φ simplifies to

3Hφ̇+
c

~2
∂φV = 0,

and the Friedmann equation to

H2 =
8πG

3c2
V.

In the limit ε ≪ 1 the two slow-roll parameters are given by

ε ≈ 3

~2c
2
(∂0φ)2

V
, η ≈ − φ̈

Hφ̇
.

Thus we see that |φ̈| ≪ |3Hφ̇| implies |η| ≪ 1. In the limit ε ≪ 1 and |η| ≪ 1 we further have

ε ≈ c3

16π~2G

(
∂φV

V

)2

=
cM2

Pl

16π~4

(
∂φV

V

)2

,

η ≈ c3

8π~2G

(

∂2
φV

V

)

=
cM2

Pl

8π~4

(

∂2
φV

V

)

.

Let us now estimate the number of e-folds:

N =

t f∫

ti

dN =

t f∫

ti

Hdt =

φ f∫

φi

H

φ̇
dφ = −3~2

c

φ f∫

φi

H2

∂φV
dφ

= −8πG~2

c3

φ f∫

φi

V

∂φV
dφ = −8π~4

cM2
Pl

φ f∫

φi

V

∂φV
dφ.
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Let us now specialise to the simplest potential

V =
1

2
m2c3φ2.

We have

∂φV

V
=

2

φ
,

and

ε =
cM2

Pl

16π~4

(
∂φV

V

)2

=
c

4π~4

(
MPl

φ

)2

.

φ f is determined by ε = 1. We find

φ f =
1

~2

√
c

4π
MPl.

The number of e-folds is

N = −8π~4

cM2
Pl

φ f∫

φi

V

∂φV
dφ = −4π~4

cM2
Pl

φ f∫

φi

φdφ = −2π~4

cM2
Pl

(
φ2

f −φ2
i

)
=

2π~4φ2
i

cM2
Pl

− 1

2
.

The number of e-folds determines how close the density parameter Ω is driven to one during

inflation. To solve the flatness problem we require

N & 60.

Remark: The values of the inflaton field in this model are of the order of the Planck mass.
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12 Gravitational waves

The first experimental evidence for gravitational waves came from an indirect measurement: the

observation of binaries of neutron stars. As the two stars inspiral towards each other they emit

gravitational waves. The emission of the gravitational waves is strong enough that it affects the

dynamics of the binary system. It carries away energy and angular momentum from the system,

reducing the size of the orbit. This effect may occur on a timescale short enough to be observable.

This effect has been observed by Hulse and Taylor in 1974 in a binary system consisting of a

pulsar and a companion neutron star (Nobel prize 1993).

In 2015 there has been the first direct detection of gravitational waves by the LIGO interfer-

ometers, followed by further detections of gravitational waves by the LIGO and VIRGO collab-

orations (Nobel prize 2017).

12.1 Gauge invariance of gravity

The Einstein-Hilbert action is invariant under general coordinate transformations

x′µ = f µ (x) .

In fact, one of Einstein’s original motivations was to find a theory invariant under these transfor-

mations. We may view a general coordinate transformations as a (generalised) gauge transfor-

mations. We write an infinitesimal general coordinate transformation as

x′µ = xµ − εξµ (x) .

The minus sign has no particular importance and is just a convention. The infinitesimal inverse

transformation is given by

xµ = x′µ + εξµ
(
x′
)
+O

(
ε2
)
.

Let us now work out the metric in the transformed system:

g′µ′ν′
(
x′
)

=
∂xµ

∂x′µ
′

∂xν

∂x′ν
′ gµν

(
x
(
x′
))

=
(

δ
µ

µ′ + ε∂µ′ξ
µ
(
x′
))(

δν
ν′ + ε∂ν′ξ

ν
(
x′
))(

gµν

(
x′
)
+ εξρ

(
x′
)

∂ρgµν

(
x′
))

+O
(
ε2
)

= gµ′ν′
(
x′
)
+ ε
[(

∂µ′ξ
µ
(
x′
))

gµν′
(
x′
)
+
(
∂ν′ξ

ν
(
x′
))

gµ′ν
(
x′
)
+ξρ

(
x′
)

∂ρgµ′ν′
(
x′
)]

+O
(
ε2
)
.

We may write this in a shortened form as

g′µν = gµν + ε
[(

∂µξρ
)

gρν +(∂νξρ)gµρ +ξρ∂ρgµν

]
+O

(
ε2
)
.

Let us now specialise to an expansion around the flat Minkowski metric. With

gµν (x) = ηµν +κhµν (x) ,

172



we find for h′µν:

h′µν = hµν +
ε

κ

[(
∂µξρ

)
ηρν +(∂νξρ)ηµρ

]

+ε
[(

∂µξρ
)

hρν +(∂νξρ)hµρ +ξρ∂ρhµν

]
+O

(
ε2
)
.

This expression can be simplified and we find

h′µν = hµν +
ε

κ

[
∇µξν +∇νξµ

]
+O

(
ε2
)
,

where ξµ = gµνξν = ηµνξν + κhµνξν. We may view the transformation from hµν to h′µν as an

infinitesimal gauge transformation.

12.2 Linearised gravity

Einstein’s equations are non-linear differential equations in the metric. We recall that the New-

tonian limit is defined as the limit where

• the gravitational field is weak, such that it can be treated as a perturbation of flat space-

time,

• all particle velocities are small compared to the speed of light,

• the gravitational field is static (i.e. time-independent).

In this chapter we are interested in a less restrictive scenario: We consider the situation where

the gravitational field is weak, but we will not require that the particle velocities are small nor

that the gravitational field is static. (It is clear that we have to allow time-dependent fields in

order to describe gravitational waves.) For a weak gravitational field we expand around the flat

Minkowski metric

gµν = ηµν +κhµν,

with

∣
∣κhµν

∣
∣≪ 1, µ,ν ∈ {0,1,2,3}.

For |hµν|= O(1) this implies

κ ≪ 1,

and we may use κ for power counting in perturbation theory. In linearised gravity we keep only

the first non-trivial order in an expansion in κ. Since gµν and ηµν are symmetric, hµν is symmetric

as well:

hνµ = hµν.
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In writing gµν = ηµν +κhµν we have picked a reference frame and broken the invariance under

general coordinate transformations. However, there remains a residual freedom in the choice of

coordinates. Under an infinitesimal transformation

x′µ = xµ − εξµ (x) .

we have

κh′µν = κhµν + ε
[(

∂µξρ
)

ηρν +(∂νξρ)ηµρ

]
+O

(
ε2,εκ

)

= κhµν + ε
(
∂µξν +∂νξµ

)
+O

(
ε2,εκ

)
.

To lowest order we have ξµ = gµνξν = ηµνξν+O(κ). We have |κh′µν| ≪ 1 provided O(ε) = O(κ)
and

∣
∣∂µξν

∣
∣ = O(1) ,

i.e. the coordinate transformation is not fastly varying. We call these coordinate transformations

gauge transformations in the linearised theory.

Let us now work out the expressions for the most important quantities in linearised gravity.

The inverse metric is given by

gµν = ηµν −κhµν +O
(
κ2
)
,

where hµν is given by

hµν = ηµρηνσhρσ.

In general we may rise and lower indices with ηµν and ηµν in quantities which are first order in

κ. The Christoffel symbols in linearised gravity are

Γ
ρ
µν =

1

2
gρλ
(
∂µgνλ +∂νgµλ −∂λgµν

)

=
κ

2
ηρλ

(
∂µhνλ +∂νhµλ −∂λhµν

)
+O

(
κ2
)

=
κ

2

(
∂µh

ρ
ν +∂νh ρ

µ −∂ρhµν

)
+O

(
κ2
)
.

Since the Christoffel symbols are first order in κ, we need to keep for the Riemann curvature

tensor only the derivatives of the Christoffel symbols, but not the Γ2-terms:

R
ρ
σµν = ∂µΓ

ρ
νσ −∂νΓ

ρ
µσ +Γ

η
νσΓ

ρ
µη −Γ

η
µσΓ

ρ
νη

= ∂µΓ
ρ
νσ −∂νΓ

ρ
µσ +O

(
κ2
)

=
κ

2

(
∂µ∂σh

ρ
ν −∂ν∂σh ρ

µ −∂µ∂ρhνσ+∂ν∂ρhµσ

)
+O

(
κ2
)
.

The Ricci tensor is given by

Ricµν = Rλ
µλν

=
κ

2

(
∂µ∂ρh

ρ
ν +∂ν∂ρh ρ

µ −∂µ∂νh
ρ

ρ −✷hµν

)
+O

(
κ2
)
.
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For the scalar curvature we obtain

R = κ
(
∂µ∂νhµν −✷hµνηµν

)
+O

(
κ2
)
.

Putting everything together we obtain for the Einstein tensor

Gµν = Ricµν −
1

2
gµνR

=
κ

2

(
∂µ∂ρh

ρ
ν +∂ν∂ρh ρ

µ −∂µ∂νh
ρ

ρ −✷hµν −ηµν∂ρ∂σhρσ +ηµν✷hρσηρσ
)
+O

(
κ2
)
.

Let us introduce the trace-reversed perturbation:

h̄µν = hµν −
1

2
ηµνh, h = hρσηρσ.

We have

h̄ = ηµνh̄µν = h− 1

2
ηµνηµνh = −h.

This motivates the name “trace-reversed perturbation”. The inverse transformation from h̄µν to

hµν is given by

hµν = h̄µν −
1

2
ηµνh̄.

In terms of h̄ the Einstein tensor reads

Gµν =
κ

2

(
∂µ∂ρh̄

ρ
ν +∂ν∂ρh̄ ρ

µ −✷h̄µν −ηµν∂ρ∂σh̄ρσ

)
+O

(
κ2
)
.

The expression for the Einstein tensor is slightly simpler when expressed through h̄ instead of h.

Einstein’s equations read now

✷h̄µν +ηµν∂ρ∂σh̄ρσ −∂µ∂ρh̄
ρ

ν −∂ν∂ρh̄ ρ
µ = −16πG

κc4
Tµν +O(κ) .

This equation simplifies if we choose a coordinate system in which

∂νh̄µν = 0.

This equation defines the Lorenz gauge. Due to the freedom of gauge transformations in the

linearised theory we may always impose this condition. To see this, assume that h̄µν is not of this

form. Under the gauge transformation x′µ = xµ −κξµ(x) we have

h̄′µν = h̄µν +
(
∂µξν +∂νξµ −ηµν∂ρξρ

)
+O(κ) ,

and

∂νh̄′µν = ∂νh̄µν +✷ξµ +O(κ) ,
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If we want to enforce ∂νh̄′µν = 0 we have to find a ξµ such that

✷ξµ = −∂νh̄µν.

From the theory of Green functions we know that a solution of the equation

✷ξµ(x) = jµ(x)

is given by

ξµ(x) =
∫

d4y G(x− y) jµ(y),

where G(x− y) is the Green function satifying

✷xG(x− y) = δ4 (x− y) .

Thus we see that in Lorenz gauge the linearised Einstein’s equations take the form of a wave

equation with a source (neglecting O(κ)-terms):

✷h̄µν = −16πG

κc4
Tµν.

Outside the source we have

✷h̄µν = 0.

Let us count the degrees of freedom. We have

h̄µν = h̄νµ ⇒ 10 d.o.f.,

∂νh̄µν = 0 ⇒ (10−4) d.o.f. = 6 d.o.f..

However, imposing just the Lorenz gauge does not eliminate completely all gauge freedom. We

may still perform gauge transformations

x′µ = xµ −κξµ, with ✷ξµ = 0.

Under these transformation we have

h̄′µν = h̄µν +ξµν +O(κ) , ξµν = ∂µξν +∂νξµ −ηµν∂ρξρ,

∂νh̄′µν = ∂νh̄µν +O(κ) ,

and we see that we stay within Lorenz gauge if the original field hµν satisfies the Lorenz condi-

tion. Thus we may impose four additional constraints on h̄µν. A possible choice of additional

constraints is

h̄ = 0,

h̄0i = 0, i ∈ {1,2,3}.
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The first additional constraint (h̄ = 0) implies

h̄µν = hµν,

the second additional constraint combined with the Lorenz condition implies

∂νh̄0ν = ∂0h̄00 +∂ih̄0i = ∂0h̄00 = ∂0h00 = 0.

Thus h00 is a time-independent or non-dynamical component. If non-zero, it corresponds to a

static Newtonian potential. For the discussion of gravitational waves we are not interested in

static components and one takes h00 = 0. Technically, we replace the first Lorenz condition

∂νh̄0ν = 0 by h00 = 0. Thus we arrive at the conditions for the transverse traceless gauge:

h0µ = 0,

h i
i = 0,

∂ jhi j = 0.

One easily checks that these conditions imply the Lorenz condition ∂νh̄µν = 0. It is common

practice to denote the field hµν in the transverse traceless gauge by

hTT
µν ,

where TT stands for “transverse traceless”. Let us now count again the degrees of freedom. We

have

hµν = hνµ ⇒ 10 d.o.f.,

h0µ = 0 ⇒ (10−4) d.o.f. = 6 d.o.f.,

h i
i = 0 ⇒ (10−4−1) d.o.f. = 5 d.o.f.,

∂ jhi j = 0 ⇒ (10−4−1−3) d.o.f. = 2 d.o.f..

Thus we are left with 2 independent components of the metric, which correspond to the two

physical degrees of freedom for a gravitational wave.

In a particle picture the field hµν describes a graviton, which is a massless spin-2 particle,

whose helicity states are only +2 and −2. This is similar to the photon field Aµ, which describes

a massless spin-1 particle, whose helicity states are only +1 and −1.

Remark: One may choose the transverse traceless gauge in vacuum (Tµν = 0), but not inside

the source. The transverse traceless gauge imposes h00 = 0, which implies that there are no static

components. This is true in the vacuum (far away from the sources), but not inside the sources.

Inside the source we may decompose hµν into

• unphysical gauge degrees of freedom,

• physical non-radiative degrees of freedom related to matter sources,

• physical radiative degrees of freedom.
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By a careful analysis one may show, that the physical radiative degrees of freedom obey a wave

equation, while the physical non-radiative degrees of freedom obey a Poisson equation (i.e. an

equation of the type ∆φ = −4πρ). For the piece of the metric corresponding to the physical

radiative degrees of freedom one may impose the transverse traceless conditions.

Let us now return to the wave equation in the vacuum:

✷hTT
µν = 0.

Solutions to this equation are

hTT
µν = Cµνe±ikρxρ

, kρ =
(ω

c
,~k
)

,

where Cµν is a constant symmetric rank-2 tensor, which is purely spatial and traceless:

C0µ = 0,

C µ
µ = 0.

Note that C00 = 0 implies C
µ

µ =C
j

j . We have

✷hTT
µν = Cµν✷e±ikρxρ

= −Cµνk2e±ikρxρ

and Cµνe±ikρxρ
is a solution of the wave equation provided k2 = 0. Thus

ω

c
= |~k|.

The condition k2 = 0 also implies that gravitational waves propagate with the speed of light. We

set k = |~k| and write

~k = kn̂,

where n̂ is a unit vector (|n̂| = 1). Of course, the perturbation of the metric should be real. This

is easily enforced by replacing eik·x and e−ik·x by

cos(k · x) , sin(k · x) .

Let us investigate the polarisation tensor Cµν in more detail. As Cµν is purely spatial we have

Cµν =







0 0 0 0

0

0 Ci j

0






.

The Lorenz condition implies

∂ jhi j = 0 ⇒ n̂ jCi j = 0.
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n̂ is a vector in the three-dimensional spatial sub-space and defines a plane in this sub-space as

the vectors perpendicular to n̂. Let û and v̂ be two orthogonal unit vectors in this plane. With the

help of û and v̂ we may express the two polarisation states of Ci j as

C+
i j = ûiû j − v̂iv̂ j,

C×
i j = ûiv̂ j + v̂iû j.

One easily verifies that C+ and C× satisfy the traceless condition:

(
C+
) j

j
= −û2 + v̂2 = −1+1 = 0,

(
C×) j

j
= û jv̂

j + v̂ jû
j = −û · v̂− v̂ · û = −2û · v̂ = 0.

Let us now specialise to n̂ = êzand û = êx, v̂ = êy. We define

h+ = C11, h× = C12.

Then

hTT
µν =







0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0







cos
(

ω
(

t − z

c

))

.

Let n̂ be a three-dimensional unit vector

3

∑
j=1

n̂ jn̂
j = 1,

describing the propagation direction of a gravitational wave. Given a solution h̄µν of ✷h̄µν = 0 in

Lorenz gauge, we may easily project on the transverse traceless gauge as follows: We first define

projection operators

P
j

i = δ
j

i − n̂in̂
j, Pi j = P k

i ηk j = ηi j − n̂in̂ j, Λ kl
i j = P k

i P l
j − 1

2
Pi jP

kl.

We use the convention that repeated latin indices i, j, ... are summed over {1,2,3}. Λ kl
i j satisfies

Λ kl
i j n̂i = Λ kl

i j n̂ j = Λ kl
i j n̂k = Λ kl

i j n̂l = 0,

Λ kl
i j Λ nm

kl = Λ nm
i j ,

ηi jΛ kl
i j = Λ kl

i j ηkl = 0.

We then define hTT
µν by hTT

0µ = 0 and

hTT
i j = Λ kl

i j h̄kl.

179



One easily verifies that hTT
µν is in the transverse traceless gauge:

ηi jhTT
i j = ηi jΛ kl

i j h̄kl = 0,

∂ jhTT
i j = ±ikn̂ jhTT

i j = ±ikn̂ jΛ kl
i j h̄kl = 0.

Remark: The polarisation states of a classical radiation field are related to the particles that

one obtains upon quantisation. In particular one obtains the spin of the quantised field from the

transformation properties of the polarisation modes: If the polarisation modes are invariant under

a rotation of an angle θ, the spin of the quantised particle is given by

S =
2π

θ
.

Let us consider a rotation in the x-y-plane:

Ri j =





cosθ sinθ 0

−sinθ cosθ 0

0 0 1





The field transforms as

(
hTT

i j

)′
= RikR jlh

TT
kl .

Explicitly we find

h′+ = h+ cos(2θ)+h× sin(2θ) ,

h′× = −h+ sin(2θ)+h× cos(2θ) .

This is invariant for θ = π and therefore

S =
2π

π
= 2.

12.3 Detection of gravitational waves

In this section we investigate the effect of gravitational waves on test masses. The metric of a

gravitational wave is given by

gµν = ηµν +κhTT
µν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







+κ







0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0







cos
(

ω
(

t − z

c

))

.

In general relativity, a particle moves along a geodesic. The geodesic equation reads

d2xµ

ds2
+Γ

µ
τσ

dxτ

ds

dxσ

ds
= 0,
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where s = cτ and τ is the proper time. Let us work out the coordinate acceleration d2xi/dt2 for

i ∈ {1,2,3}:

d2xi

c2dt2
=

d2xi

d(x0)2
=

(
ds

dx0

)
d

ds

[
dxi

ds

ds

dx0

]

=

(
dx0

ds

)−2
d2xi

ds2
−
(

dx0

ds

)−3(
dxi

ds

)
d2x0

ds2

= −
(

dx0

ds

)−2

Γi
µν

dxµ

ds

dxν

ds
+

(
dx0

ds

)−3(
dxi

ds

)

Γ0
µν

dxµ

ds

dxν

ds

= −
(

dx0

ds

)−2[

Γi
00

dx0

ds

dx0

ds
+2Γi

0 j

dx0

ds

dx j

ds
+Γi

jk

dx j

ds

dxk

ds

]

+

(
dx0

ds

)−3(
dxi

ds

)[

Γ0
00

dx0

ds

dx0

ds
+2Γ0

0 j

dx0

ds

dx j

ds
+Γ0

jk

dx j

ds

dxk

ds

]

= −Γi
00 −2Γi

0 j

dx j

dx0
−Γi

jk

dx j

dx0

dxk

dx0
+

dxi

dx0

(

Γ0
00 +2Γ0

0 j

dx j

dx0
+Γ0

jk

dx j

dx0

dxk

dx0

)

= −Γi
00 −2Γi

0 j

v j

c
−Γi

jk

v jvk

c2
+

vi

c

(

Γ0
00 +2Γ0

0 j

v j

c
+Γ0

jk

v jvk

c2

)

.

In the last line we introduced the coordinate velocities vi = dxi/dt. Let us assume that our test

mass is initially at rest in our coordinate system. In this case the geodesic equation reduces to

d2xi

c2dt2
+Γi

00 = 0.

In the transverse traceless gauge we have

Γi
00 =

κ

2

(
∂0h i

0 +∂0h i
0 −∂ih00

)
= 0

and hence

d2xi

c2dt2
= 0.

Thus

xi = const.

This does not mean that a gravitational wave has no effect on test masses. It only means that our

chosen coordinate system moves with the waves.

In order to understand the situation consider a spherical balloon, where we mark a few points.

As coordinates on the surface of the balloon we use two angles θ and φ. We then periodically

increase/decrease the air inside the balloon. Thus the metric on the surface of the balloon is given

by

ds2 = [R0 +Acos(ωt)]2
[
dθ2 + sin2 θdφ2

]
.
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The marked points stay at constant θ and φ, however the distance between two marked points is

varying with time.

Let us now return to gravitational waves. We have to look at the distance between two test

masses. Consider a gravitational wave propagating along the z-direction. Assume that at each of

the two points

P1 : (x,y,z) = (0,0,0), P2 : (x,y,z) = (x2,0,0)

we have a test mass. The distance between the two points is

d12 =

x2∫

0

dx
√

|g11| =
x2∫

0

dx

√
∣
∣−1+κhTT

11

∣
∣ =

x2∫

0

dx

√

1−κh+ cos
(

ω
(

t − z

c

))

= x2

√

1−κh+ cos
(

ω
(

t − z

c

))

≈ x2

(

1− κh+

2
cos
(

ω
(

t − z

c

)))

.

Thus we see that the distance between the two test masses is changing with time in the presence

of a gravitational wave. For the fractional distance change one has

δd12

d12
≈ −κh+

2
cos
(

ω
(

t − z

c

))

.

Let us now repeat the calculation, where the point P2 has coordinates

P2 : (x,y,z) = (cosϕ,sinϕ,0).

We now have

d12 =

1∫

0

dλ
√
∣
∣g11 cos2 ϕ+g22 sin2 ϕ+2g12 sinϕcosϕ

∣
∣

=

√

1−κh+ cos(2ϕ)cos
(

ω
(

t − z

c

))

−κh× sin(2ϕ)cos
(

ω
(

t − z

c

))

≈ 1− κh+

2
cos(2ϕ)cos

(

ω
(

t − z

c

))

− κh×
2

sin(2ϕ)cos
(

ω
(

t − z

c

))

.

Let us now specialise to case, where the gravitaional wave has a pure “plus”-polarisation, i.e.

h+ 6= 0, h× = 0. In this case

δd12

d12
≈ −κh+

2
cos(2ϕ)cos

(

ω
(

t − z

c

))

.

Consider now a test mass at the origin in the x−y-plane and a number of test masses on a circle in

the x− y-plane with centre (0,0). Plotting the distance between the test mass at the centre and a

test mass at an angle ϕ at various times gives us the following picture for the “plus”-polarisation:
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x

y

For a gravitational wave, which has a pure “cross”-polarisation, i.e. h+ = 0 and h× 6= 0 we have

δd12

d12
≈ −κh×

2
sin(2ϕ)cos

(

ω
(

t − z

c

))

.

This gives us the following picture for the the “cross”-polarisation:

x

y

These plots clarify also the motivation for the names “plus”-polarisation and “cross”-polarisation.

As in optics, we may consider linear combinations of the “plus”-polarisation and the “cross”-

polarisation. Left- and right-circular polarisations are defined by

hTT
µν = C+

µν cos
(

ω
(

t − z

c

))

±C×
µν sin

(

ω
(

t − z

c

))

.

The corresponding plot for a circular polarisation looks as follows:

x

y

Typical experiments for the detection of gravitational waves work as follows: A laser beam

splitter is placed at

P1 : (x,y,z) = (0,0,0).

Two mirrors are placed at

P2 : (x,y,z) = (L,0,0), P3 : (x,y,z) = (0,L,0).
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A laser beam is sent to the splitter, the light travels than along the x-arm and y-arm. At the

mirrors it is reflected. At the splitter, the two beams are combined again and sent to the detector.

A non-equal change in the distance from the splitter to the mirrors will result in an observable

interference pattern at the detector.

A typical range for observable gravitational wave frequencies for terrestial detectors is

0.1s−1 < ω < 103s−1.

Typical values for the amplitude of the metric perturbation are

∣
∣κhµν

∣
∣ = O

(
10−21

)
.

12.4 Production of gravitational waves

Let us now consider the production of gravitational waves. To simplify the derivation we will

again assume that the gravitational field is weak. In addition we assume that the velocities of

the sources are small. The need for the second assumption can be anticipated from classical

Newtonian mechanics. The virial theorem for a two-body system with an 1/r-potential states

〈T 〉 = −1

2
〈U〉 ,

1

2
µv2 =

1

2

GµM

r
, M = m1 +m2, µ =

m1m2

m1 +m2
.

Here, 〈. . .〉 denotes the time average. We denote the Scharzschild radius by

rs =
2GM

c2
.

Then

(v

c

)2

=
1

2

rs

r
.

A weak gravitational field implies rs ≪ r, within classical Newtonian mechanics this implies

v ≪ c.

Let us now discuss the generation of gravitational waves. We start from Einstein’s equations

with a source term. In Lorenz gauge we have

✷h̄µν = −16πG

κc4
Tµν.

We recall from electrodynamics that an equation of the form

✷ f (x) = j(x)

184



is solved with the help of the Green’s function. By definition, the Green’s function G(x,x′) =
G(ct,~x,ct ′,~x′) satisfies

✷G
(
x,x′
)

= δ4
(
x− x′

)
=

1

c
δ
(
t − t ′

)
δ3
(
~x−~x′

)
.

The Green’s function for the d’Alembert operator

✷ =
1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

is well-known:

G±(ct,~x,ct ′,~x′) =
1

4π

1

|~x−~x′|δ
(
ct −

[
ct ′±

∣
∣~x−~x′

∣
∣
])
.

G+ is called the retarded Green’s function, G− is called the advanced Green’s function. In

the following we will only consider the retarded Green’s function and drop the superscript “+”.

A solution to ✷ f (x) = j(x) is given by

f (x) =
∫

d4x′G
(
x,x′
)

j
(
x′
)
.

Thus

h̄µν = −16πG

κc4

∫
d4x′G

(
x,x′
)

Tµν

(
x′
)

= − 4G

κc4

∫
d3x′

Tµν (ct −|~x−~x′| ,~x′)
|~x−~x′| .

We are in particular interested in the spatial part

h̄i j = − 4G

κc4

∫
d3x′

Ti j (ct −|~x−~x′| ,~x′)
|~x−~x′| .

Far away from the source we may approximate |~x−~x′| by

∣
∣~x−~x′

∣
∣ = r− n̂ ·~x′+O

(
r−1
)
, r = |~x| , n̂ =

~x

|~x| =
~x

r
.

For the energy-momentum tensor we have

Ti j

(
ct −

∣
∣~x−~x′

∣
∣ ,~x′
)

≈ Ti j

(
ct − r+ n̂ ·~x′,~x′

)
≈ Ti j

(
ct − r,~x′

)
+
(
n̂ ·~x′

)
∂0Ti j

(
ct − r,~x′

)
.

Let ts be the typical time scale of variation of the source, i.e.

∂0Ti j ≈ Ti j

cts
.
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Then

(
n̂ ·~x′

)
∂0Ti j ≈

(
n̂ ·~x′

) Ti j

cts
=

(

n̂ ·~v
′

c

)

Ti j.

Since we assumed that the velocities of the sources are small (|v′| ≪ c), we may neglect this

term. Thus

h̄i j = − 4G

κc4r

∫
d3x′Ti j

(
ct − r,~x′

)
.

Within linearised gravity the Christoffel symbols are of order κ and therefore

0 = ∇µTµν = ∂µTµν +O(κ) .

Thus

∂0T00 +∂iTi0 = 0,

∂0T0 j +∂iTi j = 0.

Combining the two equations we obtain

(
∂0
)2

T00 = ∂k∂lTkl .

We multiply both sides by xix j. Rearranging the right-hand side we obtain

(
∂0
)2 (

T00xix j

)
=

(

∂k∂lTkl

)

xix j = ∂k
[(

∂lTkl

)

xix j

]

−
(

∂lTil

)

x j −
(

∂lTjl

)

xi

= ∂k∂l
(
Tklxix j

)
−∂k

(
Tkix j

)
−∂k

(
Tk jxi

)
−∂l

(
Tilx j

)
−∂l

(
Tjlxi

)
+Ti j +Tji

= ∂k∂l
(
Tklxix j

)
−2∂k

(
Tkix j

)
−2∂k

(
Tk jxi

)
+2Ti j.

Thus

Ti j =
1

2

(
∂0
)2 (

T00xix j

)
− 1

2
∂k∂l

(
Tklxix j

)
+∂k

(
Tkix j

)
+∂k

(
Tk jxi

)
.

The last three terms on the right-hand side are total derivatives with respect to the spatial coordi-

nates. Plugging the expression for Ti j into our formula for h̄i j we obtain

h̄i j = − 4G

κc4r

∫
d3x′Ti j

(
ct − r,~x′

)
= − 2G

κc4r
∂2

0

∫
d3x′T 00

(
ct − r,~x′

)
x′ix

′
j

= − 2G

κc4r
∂2

0

∫
d3x′ρ

(
ct − r,~x′

)
x′ix

′
j.

We obtain hTT
i j with the help of the projection operator Λ kl

i j

hTT
i j = Λ kl

i j h̄kl.

186



The quadrupole moment is defined by

Qi j

(
x0
)

=
∫

d3x′ρ
(
x0,~x′

)(
3x′ix

′
j − r′2δi j

)
.

We finally obtain

hTT
i j = − 2G

3κc4r
Λ kl

i j ∂2
0 Qkl (ct − r) .

The term proportional to δkl in the quadrupole moment projects to zero. This formula is known as

the quadrupole formula. Note the second time derivative: A static source cannot radiate gravi-

tational waves. Note also that the source must possess at least a quadrupole moment. Monopole

and dipole radiation is absent for gravitational waves.

Let us consider a simple example: A binary system of equal masses m1 = m2 = m rotating

on a circular orbit in the x− y-pane around the centre of mass.

~x1(t) =
rb

2





cos(ωbt)
sin(ωbt)

0



 , ~x2(t) = −rb

2





cos(ωbt)
sin(ωbt)

0



 .

Kepler’s third law relates rb and ωb:

ω2
br3

b = 2Gm.

ρ is given by

ρ(x) = mc2δ(z)

×
[

δ
(

x− rb

2
cos(ωbt)

)

δ
(

y− rb

2
sin(ωbt)

)

+δ
(

x+
rb

2
cos(ωbt)

)

δ
(

y+
rb

2
sin(ωbt)

)]

.

The quadrupole moment is given by

Qi j (ct) =
1

2
mc2 (2Gm)

2
3

ω
4
3

b





3cos2 (ωbt)−1 3cos(ωbt)sin(ωbt) 0

3cos(ωbt)sin(ωbt) 3sin2 (ωbt)−1 0

0 0 −1



 .

For the second time derivative we obtain

∂2
0 Qi j = −3m(2Gmωb)

2
3





cos(2ωbt) sin(2ωbt) 0

sin(2ωbt) −cos (2ωbt) 0

0 0 0



 .

Let us assume that the observer is placed along the z-direction at the distance z. Then

κhTT
i j =

(2Gm)
5
3 ω

2
3

b

c4z





cos(2ωbt −φ0) sin(2ωbt −φ0) 0

sin(2ωbt −φ0) −cos(2ωbt −φ0) 0

0 0 0



 ,
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where φ0 is given by

φ0 =
2ωbz

c
.

This corresponds to a circular polarised gravitational wave. Note that the gravitational wave has

angular frequency 2ωb, where ωb is the angular frequency of the rotating binary system.

For m = m⊙, ωb = 2π/(1h) and z = 1kpc one obtains

(2Gm)
5
3 ω

2
3

b

c4z
≈ 10−21.

We may repeat the exercise in the slightly more general situation for a binary system with unequal

masses m1 6= m2. It is convenient to introduce the total mass M and the reduced mass µ

M = m1 +m2, µ =
m1m2

m1 +m2
.

We may directly translate our previous formulae by noting that the energy density is proportional

to the reduced mass µ, while the total mass enters Kepler’s third law:

ω2
br3

b = GM.

Thus

∂2
0 Qi j = −6G

2
3 µM

2
3 ω

2
3

b





cos(2ωbt) sin(2ωbt) 0

sin(2ωbt) −cos(2ωbt) 0

0 0 0



 .

and

κhTT
i j =

4G
5
3 µM

2
3 ω

2
3

b

c4z





cos(2ωbt −φ0) sin(2ωbt −φ0) 0

sin(2ωbt −φ0) −cos (2ωbt −φ0) 0

0 0 0



 .

We see that these formulae only depend on the combination

Mc = µ
3
5 M

2
5 .

Mc is called the chirp mass. In terms of the chirp mass we have

∂2
0 Qi j = −6G

2
3 M

5
3
c ω

2
3

b





cos(2ωbt) sin(2ωbt) 0

sin(2ωbt) −cos(2ωbt) 0

0 0 0



 .

and

κhTT
i j =

4cω
2
3

b

z

(
GMc

c3

) 5
3





cos(2ωbt −φ0) sin(2ωbt −φ0) 0

sin(2ωbt −φ0) −cos(2ωbt −φ0) 0

0 0 0



 .
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12.5 The energy-momentum tensor for gravitational waves

Up to now we treated gravitational waves in linearised gravity, expanded around flat Minkowski

metric

gµν = ηµν +κhµν.

We have seen that gravitational waves change the distance between two test masses and it is

therefore clear that gravitational waves carry energy and momentum. We would like to determine

the energy-momentum tensor associated to a gravitational wave. In order to this, we have to

extend our formalism. There are two modifications required:

1. We have to set up a formalism, which allows an expansion around a curved background,

2. We have to expand to order κ2.

Let us understand the first point: Within general relativity, any form of energy is a source of

space-time curvature. A decomposition of the form gµν = ηµν + κhµν excludes from the very

beginning the possibility that a gravitational wave deforms the background metric.

We therefore would like to write

gµν = ḡµν +κhµν,

where we think about ḡµν as the background metric. However, in general such a decomposition

is not unique. We have the problem of deciding which part belongs to ḡµν and which part to

hµν. In order to have an un-ambiguous decomposition we need a hierarchy of scales: Let ω be

the angular frequency of the gravitational wave and λ = λ/(2π) = c/ω the reduced wavelength.

Denote by λB the typical scale of the spatial variation of the background and by ωB the typical

angular frequency of the time variation of the background. Note that λB and ωB need not be

related by λBωB = c, they can be independent. We require

λ ≪ λB, ω ≫ ωB.

Let’s consider a classical analogy: Suppose that we are interested in water waves on the ocean.

Take the reduced wavelength to be O(101m)-O(102m). Typical wave velocities are 5−25ms−1,

giving ω ≈ O(1s−1). The water waves propagate on a curved background: There is a spatial

curvature due to the fact that the earth is a sphere, defining a length λB = r⊕ of the order of

the earth’s radius. In addition, there is a time variation due to tidal effects, defining an angular

frequency ωB ≈ O(1h−1). For both cases we have a clear separation of scales.

Let us now assume a clear separation of scales: We assume λ ≪ λB and/or ω ≫ ωB. We may

project to the background quantities by averaging: For λ ≪ λB we choose a l with λ ≪ l ≪ λB

and average over spatial volumes l3. The short-wavelength modes of the gravitational waves will

average out. For ω≫ωB we choose a T with 1/ω≪ T ≪ 1/ωB and average over a time intervall

of length T . Again, the high-frequency modes of the gravitational waves will average out. We
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denote the average by 〈. . .〉. A few examples for explicit averages (either over a time intervall or

over a spatial volume or both) are

〈

cos
(

ω
(

t − r

c

))〉

=
〈

sin
(

ω
(

t − r

c

))〉

=0,

〈

cos2
(

ω
(

t − r

c

))〉

=
〈

sin2
(

ω
(

t − r

c

))〉

=
1

2
. (1)

The average

〈
gµν

〉

gives the slowly-varying piece of the metric. We expand the full metric in κ:

gµν = ḡµν +κhµν +κ2 jµν +O
(
κ3
)
.

The lowest-order term ḡµν is slowly-varying, while the first-order term hµν is rapidly-varying.

The second-order term jµν has rapidly-varying and slowly-varying contributions. We split the

second-order piece into a slowly-varying piece j̄µν and a rapidly-varying piece j
high
µν :

jµν = j̄µν + j
high
µν .

Separating the terms in the metric into slowly-varying / rapidly-varying contributions we have

gµν =
(
ḡµν +κ2 j̄µν

)
+
(

κhµν +κ2 j
high
µν

)

+O
(
κ3
)
.

We would like to determine the contribution due to j̄µν. We expand the Einstein tensor in κ:

Gµν = G
(0)
µν

(
ḡρσ

)
+κG

(1)
µν

(
ḡρσ,hλτ

)
+κ2G

(1)
µν

(
ḡρσ, jλτ

)
+κ2G

(2)
µν

(
ḡρσ,hλτ

)
+O

(
κ3
)
.

G
(1)
µν and G

(2)
µν can be obtained from a straightforward, but tedious second-order calculation.

Let us consider Einstein’s equations in the vacuum. Einstein’s equations hold order-by-order

in κ:

G
(0)
µν

(
ḡρσ

)
= 0,

G
(1)
µν

(
ḡρσ,hλτ

)
= 0,

G
(1)
µν

(
ḡρσ, jλτ

)
+G

(2)
µν

(
ḡρσ,hλτ

)
= 0.

We perform an average of the Einstein tensor:

0 =
〈
Gµν

〉
= G

(0)
µν

(
ḡρσ

)
+κ2G

(1)
µν

(
ḡρσ, j̄λτ

)
+κ2

〈

G
(2)
µν

(
ḡρσ,hλτ

)〉

+O
(
κ3
)
.

We re-write this equation as

G
(0)
µν

(
ḡρσ

)
+κ2G

(1)
µν

(
ḡρσ, j̄λτ

)
= −κ2

〈

G
(2)
µν

(
ḡρσ,hλτ

)〉

+O
(
κ3
)
,
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and define the effective energy-momentum tensor of a gravitational wave by

T GW
µν = −κ2c4

8πG

〈

G
(2)
µν

(
ḡρσ,hλτ

)〉

.

It remain to calculate T GW
µν . One finds

T GW
µν =

κ2c4

32πG

〈

∇µh̄ρσ∇νh̄ρσ − 1

2
∇µh̄∇νh̄−∇µh̄νρ∇σh̄ρσ −∇νh̄µρ∇σh̄ρσ

〉

,

where the covariant derivatives and the raising/lowering of indices are done with respect to ḡµν.

(As we work to order O(κ2) and this expression is already of order O(κ2) anything else would be

of higher order.) In the transverse traceless gauge this simplifies to

T GW
µν =

κ2c4

32πG

〈
∇µhρσ∇νhρσ

〉
.

The energy density of a gravitational wave in the transverse traceless gauge is given by

ρGW = T GW
00 =

κ2c2

32πG

〈
ḣi jḣ

i j
〉
.

Let us now specialise to the case where

ḡµν = ηµν

and

κhTT
µν = κ







0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0







cos
(

ω
(

t − z

c

))

.

We find

ρGW =
κ2c2ω2

16πG

(
h2
++h2

×
)〈

cos2
(

ω
(

t − z

c

))〉

=
κ2c2ω2

32πG

(
h2
++h2

×
)
.

Let us now consider a binary system and let us work out the radiated energy per unit time (i.e.

the radiation power). We start from

hTT
i j = − 2G

3κc6r
Λ kl

i j Q̈kl (ct − r) .

As in electrodynamics we define Poynting’s vector (i.e. energy flux per unit time and unit area)

by

Sk = cT 0k =
κ2c5

32πG

〈

∂0hi j∂
khi j
〉

.
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It is convenient to use as spatial coordiantes (r,θ,φ). For a function hi j = (1/r) · fi j(ct − r) we

have

∂

∂t
hi j =

c

r
f ′i j (ct − r) ,

∂

∂r
hi j = − 1

r2
fi j (ct − r)− 1

r
f ′i j (ct − r) = −1

c

∂

∂t
hi j +O

(
1

r2

)

,

and hence

∂rhi j = −∂0hi j +O

(
1

r2

)

, ∂rhi j = ∂0hi j +O

(
1

r2

)

,

We obtain the radiated energy per unit time by integrating the energy flux per unit time and unit

area over sphere with radius r:

P = r2
∫

dΩ~S · n̂ = r2
∫

dΩ Sr =
κ2c5r2

32πG

∫
dΩ

〈
∂0hi j∂

0hi j
〉

=
G

72πc9

〈...
Qkl (ct − r)

...
Qmn (ct − r)

〉
∫

dΩ Λ kl
i j Λi jmn

The angular integral gives
∫

dΩ Λ kl
i j Λi jmn =

∫
dΩ Λklmn =

2π

15

(

11δkmδln −4δklδmn +δknδml
)

.

Thus

P =
G

45c9

〈...
Qi j (ct − r)

...
Q

i j
(ct − r)

〉

.

With

...
Qi j = 12c2G

2
3 M

5
3
c ω

5
3

b





sin(2ωbt −φ0) −cos(2ωbt −φ0) 0

−cos(2ωbt −φ0) −sin(2ωbt −φ0) 0

0 0 0





we finally obtain

P =
32

5c5
G

7
3 M

10
3

c ω
10
3

b .

12.6 The inspiral phase of a binary system

When we first derived the emission of gravitational waves from a binary system we assumed

that the emission of gravitational waves has no impact on the binary system. In particular we

assumed that the orbit is not changed. In reality this is not true. The gravitational waves carry

away energy and momentum, causing the orbit of the binary system to shrink until coalescence.

We may model the initial phase of the inspiral process with the tools we have up to now. The

final phase of the inspiral process and the merger involve strong fields and cannot be described

by perturbation theory. Here one resorts to numerical general relativity.

During the inspiral phase the following things happen:
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• The total energy of the binary system decreases due to the emission of gravitational waves.

• This implies that rb decreases and ωb increases.

• If ωb increases, the radiated power increases even more. This accelerates the process of

energy-loss.

This will end with the coalescence.

We will model the beginning of the inspiral phase of the binary system by assuming that the

orbit stays circular with a slowly decreasing radius ( |ṙS| ≪ v). The total energy of the binary

system is (M = m1 +m2, µ = m1m2/(m1 +m2))

Eb = 〈T 〉+ 〈U〉 =
1

2
µv2 − GµM

rb

= −GµM

2rb

,

where we used the virial theorem. Kepler’s third law relates ωb and rb:

ω2
br3

b = GM,

and therefore

Eb = −1

2
µG

2
3 M

2
3 ω

2
3

b = −1

2
G

2
3 M

5
3
c ω

2
3

b .

The loss of energy is given by the radiated power:

dEb

dt
= −P.

This leads to the equation

ω̇b =
96

5

(
GMc

c3

) 5
3

ω
11
3

b .

The angular frequency ω of the gravitational wave is related to ωb by ω = 2ωb. We therefore

have

ω̇ =
12 ·2 1

3

5

(
GMc

c3

) 5
3

ω
11
3 .

This equation allows us to determine the chirp mass of a binary system from the observation of

the variation of the angular frequency of a gravitational wave.

We may integrate the differential equation and obtain

ω(t) =
5

3
8

4

(
GMc

c3

)− 5
8 1

(tc− t)
3
8

,

where tc denotes the time of coalescence. This expression is divergent at t = tc, indicating that

our perturbative treatment is not valid close to coalescence. The amplitude of the gravitational

wave grows as

4c

r

(
GMc

c3

) 5
3

[ωb (t)]
2
3 = 2

4
3

c

r

(
GMc

c3

) 5
3

[ω(t)]
2
3 .
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12.7 Post-Newtonian and post-Minkowskian expansions

Within perturbation theory we may systematically improve our predictions by including higher-

order terms. Two formalisms are frequently used: The post-Newtonian and the post-Minkowskian

expansion.

We start with the post-Newtonian expansion. In the dicussion of the production of gravita-

tional waves we assumed weak gravitational fields and small velocities. If we consider again a

binary system, we defined the Scharzschild radius as

rs =
2GM

c2
,

where M denotes the total mass. The requirement of a weak gravitational field implies

rs

2rb

≪ 1,

the requirement of small velocities implies

(vb

c

)2

≪ 1.

The virial theorem relates the two small quantities:

(vb

c

)2

=
rs

2rb

.

The post-Newtonian expansion is a simultaneous expansion in the two small quantities

vb

c
and

√
rs

2rb

,

where we treat vb/c of the same order as
√

rs/(2rb). This is an expansion in the weak gravita-

tional field limit and the small velocity limit. When we derived the quadrupole formula for the

emission of gravitational waves we basically worked in the lowest order of the post-Newtonian

expansion.

For the post-Minkowksian expansion we only expand in the weak gravitational field limit.

There are no restrictions on the velocities. The post-Minkowksian expansion is usually applied

outside the source. We have

√
rs

2rb

=
1

c

√
GM

rb

.

Outside the source we may treat M and rb as fixed parameters and the post-Minkowskian ex-

pansion becomes an expansion in
√

G. When we discussed the propagation of gravitational

waves and the detection of gravitational waves we basically worked in the lowest order of the

post-Minkowskian expansion.

194



One usually employs the post-Newtonian expansion inside the source and the post-Minkow-

skian expansion outside the source. The reason is as follows: The post-Newtonian expansion is

not valid far away from the source. To see this, we first note that for typical binary systems we

have rb ≪ λ, i.e. a hierarchy

rs ≪ rb ≪ λ.

We call rb < r < λ the near zone and λ < r the far zone. In the far zone, the metric perturbation

is of the form

hµν =
1

r
fµν (ct − r) .

Within the post-Newtonian expansion we reconstruct this function from its expansion for small

retardations:

hµν ≈ 1

r

[

fµν (ct)− r∂0 fµν (ct)+
1

2
r2∂2

0 fµν (ct)+ . . .

]

For

fµν (ct − r) ∼ cos
(

ω
(

t − r

c

))

= cos

(
ct − r

λ

)

each derivative brings a factor 1/λ. Within the post-Newtonian expansion we compute the re-

tarded function as an expansion in r/λ. The expansion parameter is smaller one in the near zone,

but not in the far zone. We do not expect the series expansion to converge in the far zone.

On the other hand, the post-Minkowksian expansion assumes only a weak gravitational field.

If the gravitational field is weak inside the source (which we assume to be the case), then it is

also weak outside the source and we may use the post-Minkowksian expansion down to r > rb.

(We do not use the post-Minkowksian expansion inside the source, the reason is simply that it is

too complicated to keep the full velocity dependence.)

Thus the two expansions overlap in the near zone. In the near zone the predictions from the

two expansions can be matched order by order in perturbation theory.
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13 Perturbative quantum gravity

This chapter assumes a knowledge of quantum field theory.

13.1 Natural units

In quantum field theory it is common practice to use natural units

c = 1, ~= 1.

Furthermore it is common practice to rescale the fields and the sources. In the case of electrody-

namics one rescales the fields and the sources as follows:

~Enat =
1√
4π

~EGauss, ρnat =
√

4πρGauss,

~Bnat =
1√
4π

~BGauss, ~jnat =
√

4π~jGauss.

Maxwell’s equations in natural units (and with rescaled fields and sources) read

~∇ ·~B = 0, ~∇ ·~E = ρ,

~∇×~E +∂t
~B = 0, ~∇×~B−∂t

~E = ~j.

The Poisson equation in electrostatics reads

∆Φem = −ρ.

The Lagrange density of electrodynamics is given in natural units by

L = −1

4
FµνFµν,

i.e. without an additional factor 1/(4π). The energy-momentum tensor of electrodynamics has

in natural units likewise no explicit prefactor 1/(4π).
In this chapter we use natural units. Einstein’s equations read in natural units

Ricµν −
1

2
gµνR−Λgµν = 2GTµν.

The action of general relativity reads in natural units

SEH = − 1

4G

∫
d4x

√−g(R+2Λ) .

We set

κ =
√

8G,

and hence

SEH = − 2

κ2

∫
d4x

√−g(R+2Λ) .
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13.2 Low-energy effective theory of quantum gravity

In the derivation/motivation of Einstein’s equations we considered the Newtonian limit. The

Newtonian limit is defined by three conditions: (i) the gravitational field is weak, (ii) all velocities

are small compared to the speed of ligth and (iii) the gravitational field is static. In this chapter

we do not impose the last two conditions. We only assume that the gravitational field is weak.

Thus we will treat the gravitational field as a small perturbation of the flat Minkowski metric.

Previously, we only considered classical physics, i.e. we looked at solutions of Einstein’s

equations (in the limit, where the gravitational field is weak). The path integral formalism allows

us to go from classical physics to quantum physics: Instead of just considering the field config-

uration, which happens to be the solution of Einstein’s equations, we now consider all possible

field configurations and weight each field configuration by exp iS. This gives us the low-energy

effective theory of quantum gravity, which we may treat with perturbation theory. This gives us

the correct quantum theory at low-energy. The effective theory breaks down at higher energies,

where perturbations to the flat Minkowski metric no longer are small. The situation is similar to

other effective theories like Fermi’s four-fermion theory or chiral perturbation theory.

Within the low-energy effective theory we have a correspondence between gravitational

waves and gravitons, in the same way as we have in quantum electrodynamics a correspon-

dence between electromagnetic waves and photons. We may therefore discuss the scattering of

gravitons. Let us stress that the experimental requirements for measuring the corresponding cross

sections are far beyond the current experimental abilities. However, the discussion of graviton

scattering amplitudes will reveal intriguing connections with Yang-Mills amplitudes.

We denote by

ηµν =







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







the metric of flat Minkowski space. We write

gµν = ηµν +κhµν

and treat κhµν as a perturbation. We recall that we defined κ =
√

8G. The tensor hµν describes

the graviton field. The metric ηµν of flat Minkowski space is a solution of Einstein’s equations

without a cosmological constant:

Ricµν −
1

2
gµνR = 0.

We stress that ηµν is not a solution of Einstein’s equations with a non-zero cosmological constant.

Our plan is to use perturbation theory around a solution of Einstein’s euqations, therefore we

restrict ourselves to Λ = 0. The Einstein-Hilbert action without a cosmological constant reads

SEH =
∫

d4x L, L=− 2

κ2

√−gR.
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We will treat κ/4 as a small coupling.

Let us now consider for hµν the effective (not necessarily renormalisable) quantum field the-

ory described by the generating functional

Z [Jµν] =
∫

Dhµν exp

[

i

∫
d4x LEH +LGF +LFP + Jµνhµν

]

,

where LGF denotes the gauge-fixing term and LFP the corresponding Faddeev-Popov term. We

will give an expression for the gauge-fixing term later on. The Faddeev-Popov term will only

contribute to loop amplitudes. We will treat the quantum field theory defined by the equation

above perturbatively. Our first goal is the expansion of the Lagrange density in powers of hµν (or

equivalently in powers of κ). Let us introduce the following abbreviations:

(ηhη)µν = ηµµ1hµ1µ2
ηµ2ν,

(ηhηhη)µν = ηµµ1hµ1µ2
ηµ2µ3hµ3µ4

ηµ4ν,

(ηhηhηhη)µν = ηµµ1hµ1µ2
ηµ2µ3hµ3µ4

ηµ4µ5hµ5µ6
ηµ6ν.

With the help of these abbreviations we may express the inverse metric tensor gµν through hµν:

gµν = ηµν −κ(ηhη)µν +κ2 (ηhηhη)µν −κ3 (ηhηhηhη)µν +O
(
κ4
)
.

The inverse metric tensor is an infinite power series in κ. Let us now turn to the determinant

g = det(gµν). Also here we introduce a few abbreviations:

(ηh) = ηµ1µ2hµ2µ1
,

(ηhηh) = ηµ1µ2hµ2µ3
ηµ3µ4hµ4µ1

,

(ηhηhηh) = ηµ1µ2hµ2µ3
ηµ3µ4hµ4µ5

ηµ5µ6hµ6µ1
,

(ηhηhηhηh) = ηµ1µ2hµ2µ3
ηµ3µ4hµ4µ5

ηµ5µ6hµ6µ7
ηµ7µ8hµ8µ1

.

We then find for the determinant:

−det
(
gµν

)
=

1+κ(ηh)+κ2

[
1

2
(ηh)2 − 1

2
(ηhηh)

]

+κ3

[
1

6
(ηh)3 − 1

2
(ηhηh)(ηh)+

1

3
(ηhηhηh)

]

+κ4

[
1

24
(ηh)4 − 1

4
(ηhηh)(ηh)2 +

1

8
(ηhηh)2 +

1

3
(ηhηhηh)(ηh)− 1

4
(ηhηhηhηh)

]

.

Note that this expression is a polynomial in κ and terminates with the κ4-term. However, by

taking the square root of this expression we again obtain an infinite power series in κ:

√−g = 1+
κ

2
(ηh)+

κ2

8

[

(ηh)2 −2(ηhηh)
]

+
κ3

48

[

(ηh)3 −6(ηhηh)(ηh)+8(ηhηhηh)
]

+O
(
κ4
)
.
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In order to find the expression for the scalar curvature R let us first consider the Christoffel

symbols

Γκµν =
1

2

(
∂µgνκ +∂νgµκ −∂κgµν

)
=

κ

2

(
∂µhνκ +∂νhµκ −∂κhµν

)
.

Here we used ∂αηβγ = 0. The Riemann curvature tensor is then given by

Rκλµν =
κ

2

(
∂λ∂µhκν −∂κ∂µhλν +∂κ∂νhλµ −∂λ∂νhκµ

)
+gξη

(
ΓξκνΓηλµ −ΓξκµΓηλν

)
.

The first term is linear in hµν, while the second term is at least quadratic in hµν. For the scalar

curvature we have then

R = gκµgλνRκλµν.

Since both gµν and
√−g are infinite power series in κ we obtain for the Lagrange density an

infinite power series in κ as well. We write

LEH +LGF =
∞

∑
j=1

L
( j),

where the term L( j) contains the field hµν exactly j times. In this way we obtain a theory with

an infinite tower of vertices, ordered by the number of the fields. The term L(1) is given by

L
(1) = −2

κ
ηκµηλν∂λ

(
∂µhκν−∂νhκµ

)
.

This term is a total derivative and vanishes in the action after partial integration:

−2

κ
ηκµηλν

∫
d4x ∂λ

(
∂µhκν −∂νhκµ

)
= 0.

We may therefore ignore this term and start the expansion of the Lagrange density in powers of

κ with the term quadratic in hµν.

Let us add the following remark: If we would have expanded naively the Einstein-Hilbert ac-

tion with a cosmological constant Λ 6= 0 around the flat Minkowski metric ηµν, we would have

picked up an additional term

−2Λ

κ
ηµνhµν

contributing to L(1), coming from the expansion of
√−g. This additional term is not a total

derivative and does not vanish. Terms of this type are called tadpoles and indicate that we ex-

panded around the wrong background field.
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Let us now return to the case Λ = 0. We consider the term L(2), bilinear in hµν. The gauge-

fixing term LGF gives a contribution to L(2). A popular gauge choice for gravity is de Donder

gauge. This gauge is defined by

LGF =
1

κ2
CµηµνCν,

where Cµ is given by

Cµ = ηαβΓµαβ =
κ

2
ηαβ

(
∂αhβµ +∂βhαµ −∂µhαβ

)
= κηαβ

(

∂αhβµ −
1

2
∂µhαβ

)

.

In this gauge one finds

L
(2) =

1

2
hµ1µ2

(
1

2
ηµ1µ2ην1ν2 − 1

2
ηµ1ν1ηµ2ν2 − 1

2
ηµ1ν2ηµ2ν1

)

✷hν1ν2
.

Here, we symmetrised the expression in the bracket in (µ1,µ2) and (ν1,ν2). We are free to do this,

since hµν is symmetric under an exchange of µ and ν. Let us first consider the tensor structure

(in D space-time dimensions). For

Mµ1µ2ν1ν2 =
1

2
ηµ1ν1ηµ2ν2 +

1

2
ηµ1ν2ηµ2ν1 − 1

2
ηµ1µ2ην1ν2,

Nµ1µ2ν1ν2
=

1

2

(

ηµ1ν1
ηµ2ν2

+ηµ1ν2
ηµ2ν1

− 2

D−2
ηµ1µ2

ην1ν2

)

we have

Mµ1µ2ρ1ρ2Nρ1ρ2ν1ν2
=

1

2

(
δ

µ1
ν1

δ
µ2
ν2
+δ

µ1
ν2

δ
µ2
ν1

)
.

The propagator of the graviton is therefore given by

1

2

(

ηµ1ν1
ηµ2ν2

+ηµ1ν2
ηµ2ν1

− 2

D−2
ηµ1µ2

ην1ν2

)
i

p2
.

Let us now turn to the three-graviton vertex. The three-graviton vertex is determined by L(3).

After a longer calculation and by using integration-by-parts one finds

L
(3) = κ

[

−1

4
ηµ1ν1ηµ2ν2ηµ3ν3ηρ2ρ3 +

1

4
ηµ1ν1ηµ2ν3ηµ3ν2ηρ2ρ3 +ηµ1ν2ηµ2ν1ηµ3ν3ηρ2ρ3

−ηµ1ν2ηµ2ν3ηµ3ν1ηρ2ρ3 +
1

2
ηµ1ρ2ηρ3ν1ηµ2ν2ηµ3ν3 − 1

2
ηµ1ρ2ηρ3ν1ηµ2ν3ηµ3ν2

+2ηµ1ρ2ηρ3ν2ηµ2ν3ηµ3ν1 −ηµ1ρ2ηρ3ν2ηµ2ν1ηµ3ν3 − 1

2
ηµ3ρ2ηρ3ν2ηµ1ν1ηµ2ν3

+ηµ3ρ2ηρ3ν2ηµ1ν3ηµ2ν1 −ηµ1ρ2ηρ3ν3ηµ2ν2ηµ3ν1 −ηµ3ρ2ηρ3ν3ηµ1ν2ηµ2ν1

+
1

2
ηµ3ρ2ηρ3ν3ηµ1ν1ηµ2ν2

]

hµ1ν1

(
∂ρ2

hµ2ν2

)(
∂ρ3

hµ3ν3

)
.
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Let us write L(3) as

L
(3) = Oµ1µ2µ3ν1ν2ν3 (∂1,∂2,∂3)hµ1ν1

hµ2ν2
hµ3ν3

,

where Oµ1µ2µ3ν1ν2ν3 (∂1,∂2,∂3) is defined by comparison with the previous equation (2). The

notation ∂ j denotes a derivative acting on the field hµ jν j
. The Feynman rule for the three-graviton

vertex is then

V µ1µ2µ3ν1ν2ν3 (p1, p2, p3) = i ∑
σ∈S3

Oµσ(1)µσ(2)µσ(3)νσ(1)νσ(2)νσ(3)
(
ipσ(1), ipσ(2), ipσ(3)

)
.

The explicit expression for V µ1µ2µ3ν1ν2ν3 is rather long and not given here. However, one inter-

esting property should be mentioned: The three-graviton vertex can be written as

V µ1µ2µ3ν1ν2ν3 (p1, p2, p3) = i
κ

4
V µ1µ2µ3 (p1, p2, p3)V ν1ν2ν3 (p1, p2, p3)+ ...,

where the dots denote terms, which vanish in the on-shell limit. The expressionV µ1µ2µ3 (p1, p2, p3)
is the Feynman rule for the colour-stripped cyclic-order three-gluon vertex, given by

V µ1µ2µ3 (p1, p2, p3) = i
[
gµ1µ2

(
p

µ3

1 − p
µ3

2

)
+gµ2µ3

(
p

µ1

2 − p
µ1

3

)
+gµ3µ1

(
p

µ2

3 − p
µ2

1

)]
.

We see that the three-graviton vertex in the on-shell limit is given (up to a prefactor involving

the coupling) as the square of the cyclic-ordered three gluon vertex. This relates gravity with

non-abelian gauge theories and is known as the double-copy property.

In principle it is possible to derive from the Lagrange density systematically the additional

Feynman rules for vertices with four, five, ..., n gravitons. In addition we need a rule for the

external graviton states. This rule is rather simple. A graviton is a spin 2 particle with two

polarisation states, corresponding to the helicities h = +2 and h =−2. We label these states by

++ and −−. We may describe the polarisation tensor of an external graviton by a product of

two polarisation vectors for gauge bosons:

ε++
µν (p) = ε+µ (p)ε+ν (p) , ε−−

µν (p) = ε−µ (p)ε−ν (p) .

For the calculation of the scattering amplitude with n gravitons we will need all vertices with

up to n gravitons. The scattering amplitude may then be computed through Feynman diagrams.

However, this approach is rather tedious. More efficient methods are based on the “double-

copy”-property or on-shell recursion formulae.

13.3 Interaction of gravitons with matter

We will model matter by a massive (complex) scalar field. The relevant Lagrangian for the

coupling of a complex scalar field to gravity is given by

Lscalar =
√−g

[(
∂µφ∗

)
(∂νφ)gµν −m2φ∗φ

]
.
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As previously, we expand this Lagrange density in a series in κ:

Lscalar =
∞

∑
i=0

L
(i)
scalar.

The zeroth-order term L
(0)
scalar reads

L
(0)
scalar =

(
∂µφ∗

)
(∂νφ)ηµν −m2φ∗φ.

This term gives the propagator of the scalar field:

i

p2 −m2
.

The term L
(1)
scalar reads

L
(1)
scalar =

κ

4

[
2(ηµ1µ2ηµ3µ4 −ηµ1µ3ηµ2µ4 −ηµ1µ4ηµ2µ3)hµ1µ2

(
∂µ3

φ∗
)(

∂µ4
φ
)
−2m2ηµ1µ2hµ1µ2

φ∗φ
]
.

From this term we derive the Feynman rule for the scalar-scalar-graviton vertex:

i
κ

4

[
2p

µ1

1 p
µ2

2 +2p
µ1

2 p
µ2

1 −
(
2p1 · p2 +2m2

)
ηµ1µ2

]
,

where p1 denotes the momentum of the outgoing φ∗-particle and p2 denotes the momentum of

the outgoing φ-particle.

We may now calculate the scattering amplitude for the scattering of two scalar particles with

masses m and m′ through the exchange of a graviton. Theres is only one Feynman diagram:

p1

p2 p3

p4

We obtain for the scattering amplitude

M =
(κ

4

)

i
[
2p

µ1

2 p
µ2

3 +2p
µ1

3 p
µ2

2 −
(
2p2p3 +2m′2)ηµ1µ2

]

×1

2

[
ηµ1ν1

ηµ2ν2
+ηµ1ν2

ηµ2ν1
−ηµ1µ2

ην1ν2

] i

(p2 + p3)
2

×
(κ

4

)

i
[
2p

ν1
1 p

ν2
4 +2p

ν1
4 p

ν2
1 −

(
2p1p4 +2m2

)
ην1ν2

]
,
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where the first line contains the Feynman rule for the upper scalar-scalar-graviton vertex, the

second line contains the Feynman rule for the graviton propagator and the third line contains the

Feynman rule for the lower scalar-scalar-graviton vertex. The contraction of the indices leads to

M = −i
(κ

4

)2 4

t

[
(s+u)

(
m2 +m′2)− su−m4 −m′4 −4m2m′2] .

Here we introduced the Mandelstam variables

s = (p1 + p2)
2 = (p3 + p4)

2 , t = (p2 + p3)
2 = (p1 + p4)

2 , u = (p1 + p3)
2 = (p2 + p4)

2 .

Let us now consider the scattering process φ1φ2 → φ3φ4 in the non-relativistic limit. In this limit

the spatial components of the four-vectors are small against the energy components. If we only

keep the leading term of each component we have

p
µ
1 = (−m,−~p1), p

µ
2 = (−m′,−~p2), p

µ
3 = (m′,~p3), p

µ
4 = (m,~p4).

The minus sign in p1 and p2 is related to the fact that within our convention we consider all

momenta as outgoing. For the Mandelstam variables s and u we obtain

s =
(
m+m′)2

, u =
(
m−m′)2

.

For the Mandelstam variable t we obtain

t = −|~p3 −~p2|2 = −|~p4 −~p1|2 = −|~q|2 .

In the non-relativistic limit the Mandelstam variable t is small against all other variables s, u,

m2 und m′2. Thus, we may neglect t in the numerator of the scattering amplitude. In the non-

relativistic limit the scattering amplitude simplifies to

M = i
(κ

4

)2 8m2m′2

|~q|2
= 4i

Gm2m′2

|~q|2
.

Let us compare this scattering amplitude to the scattering amplitude for the scattering of two

electrically charged fermions with charges Q and Q′ and masses m and m′. Within quantum

electrodynamics we obtain in the non-relativistic limit

A = −4i
QQ′mm′

|~q|2
.

Let us first consider the signs. From electrodynamics we know that equal-sign charges (QQ′ > 0)

repel each other, while opposite-sign charges (QQ′ < 0) attract each other. From the sign of M

we conclude that gravitation is always an attractive force.

The two scattering amplitudes agree up to prefactors. The kinematic dependence on the

momenta is given in both cases by the factor 1/|~q|2 and corresponds in the classicial limit to an

1/r-potential.

203



13.4 The relation between graviton amplitudes and Yang-Mills amplitudes

We finish this lecture with a remarkable relation between scattering amplitudes in three – at

first-sight – different theories. We consider (i) gravity specified by

LEH = − 2

κ2

√−gR,

(ii) Yang-Mills theory specified by the Lagrangian

LY M = −1

4
Fa

µνFa µν,

and (iii) a bi-adjoint scalar theory specified by the Lagrangian

Lbi−adjoint scalar =
1

2

(

∂µφab
)(

∂µφab
)

− λ

3!
f a1a2a3 f̃ b1b2b3φa1b1φa2b2φa3b3.

Let us first comment on the last two theories: We start with Yang-Mill theory. This is a gauge

theory. Gauge theories describe the strong, weak and electromagnetic interactions. We denote

by G the gauge group, this is a Lie group. We consider a non-Abelian gauge group (an example

could be SU(3), which is relevant for the strong interactions). We denote g its Lie algebra and

T a the generators of the Lie algebra where the index a takes values from 1 to dimG. We use the

conventions

[

T a,T b
]

= i f abcT c, Tr
(

T aT b
)

=
1

2
δab.

We denote by Aa
µ(x) the gauge field. The field describes a massless spin-1 boson. The field

strength is given by

Fa
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν.

The coupling of Yang-Mills theory is denoted by g. The Lagrange density is invariant under

local gauge transformations

T aAa
µ(x) → U(x)

(

T aAa
µ(x)+

i

g
∂µ

)

U†(x),

with

U(x) = exp(−iT aθa(x)) .

Let us now consider scattering amplitudes of n gauge bosons to lowest in perturbation theory.

These amplitudes depend on a set of n four-vectors p = (p1, p2, . . . , pn), describing the mo-

menta of the n gauge bosons and a set of n polarisation vectors ε = (ε1, . . . ,εn), describing the

spins/polarisations of the n gauge bosons. A gauge boson is a spin 1 particle and has two spin

states, either the projection of the spin along the momentum is +1 (positive helicity) or −1 (neg-

ative helicity). We denote the corresponding polarisation vectors by ε+µ and ε−µ . We denote the
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tree amplitude by A
(0)
n (p,ε). We may write the amplitude in a form, where we group terms with

the same group-theoretical factors together:

A
(0)
n (p,ε) = gn−2 ∑

σ∈Sn/Zn

2 Tr(T aσ(1) ...T aσ(n)) A
(0)
n (σ, p,ε) .

The expression on the right-hand side is called the colour-decomposition of the Yang-Mills

amplitude. The quantities A
(0)
n (σ, p,ε) accompanying the colour factor 2 Tr(T aσ(1) ...Taσ(n)) are

called partial amplitudes. Partial amplitudes are gauge-invariant. Closely related are primitive

amplitudes, which for tree-level Yang-Mills amplitudes are calculated from planar diagrams

with a fixed cyclic ordering of the external legs and cyclic-ordered Feynman rules. Primitive

amplitudes are gauge invariant as well. For tree-level Yang-Mills amplitudes the notions of

partial amplitudes and primitive amplitudes coincide. Primitive amplitudes depend on p, ε and a

permutation σ ∈ Sn. Let us now keep p and ε fixed and view A
(0)
n (σ, p,ε) as a function of σ. For

simplicity we suppress the dependence on p and ε and write

A
(0)
n (σ1, . . . ,σn) = A

(0)
n (σ, p,ε) .

An obvious question related to the colour decomposition is: How many independent primitive

amplitudes are there for n external particles? For a fixed set of external momenta and a fixed

set of polarisations the primitive amplitudes are distinguished by the permutation specifying the

order of the external particles. For n external particles there are n! permutations and therefore n!

different orders. However, there are relations among primitive amplitudes with different external

order. The first set of relations is rather trivial and given by cyclic invariance:

A
(0)
n (1,2, ...,n) = A

(0)
n (2, ...,n,1)

Cyclic invariance is the statement that only the external cyclic order matters, not the point, where

we start to read off the order. Cyclic invariance reduces the number of independent primitive

amplitudes to (n−1)!.
The first non-trivial relations are the Kleiss-Kuijf relations. Let

~α =
(
α1,α2, ...,α j

)
, ~β =

(
β1,β2, ...,βn−2− j

)

be two ordered sequences of numbers, such that

{1}∪{α1, ...,α j}∪{β1, ...,βn−2− j}∪{n} = {1, ...,n}.

We further set~βT = (βn−2− j, ...,β2,β1). The Kleiss-Kuijf relations read

A
(0)
n (1,α1, ...,α j,n,β1, ...,βn−2− j) = (−1)n−2− j ∑

σ∈~α�~βT

A
(0)
n (1,σ1, ...,σn−2,n).

Here, ~α � ~βT denotes the set of all shuffles of ~α with~βT , i.e. the set of all permutations of the

elements of~α and~βT , which preserve the relative order of the elements of~α and of the elements
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of ~βT . The Kleiss-Kuijf relations reduce the number of independent primitive amplitudes to

(n−2)!.
Apart from cyclic invariance and the Kleiss-Kuijf relations there are in addition the Bern-

Carrasco-Johansson relations (BCJ relations). The fundamental BCJ relations read

n−1

∑
i=2

(
n

∑
j=i+1

2p2p j

)

A
(0)
n (1,3, ..., i,2, i+1, ...,n−1,n) = 0.

Cyclic invariance allows us to fix one external particle at a specified position, say position 1. The

Kleiss-Kuijf relations allow us to fix a second external particle at another specified position, say

position n. The BCJ relations allow us to fix a third external particle at a third specified position,

say position 2. The BCJ relations reduce the number of independent primitive amplitudes to

(n−3)!. The full set of relations among primitive tree amplitudes in pure Yang-Mills theory is

given by cyclic invariance, Kleiss-Kuijf relations, and the fundamental BCJ relations. Therefore

a basis of independent primitive amplitudes consists of (n−3)! elements.

Let us now turn to the bi-adjoint scalar theory. This theory consists of a scalar field φab in

adjoint representation of two Lie groups G and G̃. We will denote indices referring to G by

a, indices referring to G̃ by b. Amplitudes in this theory have a double colour decomposition,

similar to the (single) colour decomposition of gauge amplitudes:

m
(0)
n (p) = λn−2 ∑

σ∈Sn/Zn

∑
σ̃∈Sn/Zn

2 Tr(T aσ(1) ...T aσ(n)) 2 Tr
(

T̃ bσ̃(1)...T̃ bσ̃(n)

)

m
(0)
n (σ, σ̃, p) .

The double-ordered amplitude m
(0)
n (σ, σ̃, p) is rather simple and explicitly given by

m
(0)
n (σ, σ̃, p) = i(−1)n−3+nflip(σ,σ̃) ∑

G∈Tn(σ)∩Tn(σ̃)
∏

e∈E(G)

1

se

.

We denote by Tn(σ) the set of all ordered tree diagrams with trivalent vertices and external

order σ. Two diagrams with different external orders are considered to be equivalent, if we can

transform one diagram into the other by a sequence of flips. Under a flip operation one exchanges

at a vertex two branches. We denote by Tn(σ)∩Tn(σ̃) the set of diagrams compatible with the

external orders σ and σ̃ and by nflip(σ, σ̃) the number of flips needed to transform any diagram

from Tn(σ)∩Tn(σ̃) with the external order σ into a diagram with the external order σ̃. The

number nflip(σ, σ̃) will be the same for all diagrams from Tn(σ)∩Tn(σ̃). For a diagram G we

denote by E(G) the set of the internal edges and by se the Lorentz invariant corresponding to the

internal edge e.

Let us now consider graviton scattering amplitudes. The polarisation of an external graviton

is described by a product of two spin-1 polarisation vectors

ε
λ jλ̃ j

µ jν j
= ε

λ j
µ j ε

λ̃ j

ν j
.

We may therefore describe the polarisation configuration of n external gravitons by two n-tuples

ε =
(

ελ1

1 , ...,ελn
n

)

, ε̃ =
(

ελ̃1

1 , ...,ελ̃n
n

)

,
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where for each graviton the n-tuple ε contains one polarisation vector and the n-tuple ε̃ the other

polarisation vector. Of course, since either (λ j, λ̃ j) = (+,+) or (λ j, λ̃ j) = (−,−) we have ε = ε̃

for gravitons. Thus we denote the tree-level scattering amplitude for n gravitons by M
(0)
n (p,ε, ε̃)

It will be convenient to factor of the gravitational coupling and we define M
(0)
n by

M
(0)
n (p,ε, ε̃) =

(κ

4

)n−2

M
(0)
n (p,ε, ε̃) .

We recall that there are (n−3)! independent primitive tree-level amplitudes in Yang-Mills theory.

Using cyclic-invariance, the Kleiss-Kuijf relations and the BCJ relations we may fix three exter-

nal particles at specified positions. A basis of the independent cyclic orders is then for example

given by

B = { σ = (σ1, ...,σn) ∈ Sn | σ1 = 1,σ2 = 2,σn = n } .

Clearly,

|B| = (n−3)!.

Let us now define a (n−3)!× (n−3)!-dimensional matrix mσσ̃, indexed by permutations σ and

σ̃ from B. We set

mσσ̃ = m
(0)
n (σ, σ̃, p) .

The entries of the matrix mσσ̃ are the double-ordered primitive amplitudes for the bi-adjoint

scalar theory with trivalent vertices encountered in the previous paragraphs. The matrix mσσ̃ is

invertible and we set

Sσσ̃ =
(
m−1

)

σσ̃
.

The Kawai-Lewellen-Tye (KLT) relation reads

M
(0)
n (p,ε, ε̃) = ∑

σ,σ̃∈B

A
(0)
n (σ, p,ε) Sσσ̃ A

(0)
n (σ̃, p, ε̃) ,

where the sum runs over a basis of cyclic orders. This formula relates the n-graviton amplitude

to Yang-Mills amplitudes and the bi-adjoint scalar amplitudes.
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