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1 Overview

1.1 Literature

There is no shortage of text books on quantum field theory. I will list a few of them here:

- M. Peskin und D. Schroeder, An Introduction to Quantum Field Theory, Perseus Books, 1995.

- M. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press,

2014.

- M. Srednicki, Quantum Field Theory, Cambridge University Press, 2007.

Lecture notes (on more specialised topics):

- S. Weinzierl, The art of computing loop integrals, arXiv:hep-ph/0604068

- S. Weinzierl, Tales of 1001 Gluons, arXiv:1610.05318

2 Review of quantum field theory

We start with a review of the basics of quantum field theory. We will assume that these concepts

have been covered in a first course on quantum field theory, therefore the exposition in this

section will be brief.

2.1 Path integral formalism

The generating functional is given by

Z[J(x)] = N

∫
Dφ(x) exp

[

i

∫
d4x L(φ)+ J(x)φ(x)

]

.

Functional derivatives are defined by

δ

δJ(y)
Z [J(x)] = lim

ε→0

Z [J(x)+ εδ(x− y)]−Z [J(x)]

ε
.

The n-point Green functions are obtained as functional derivatives of Z[J]:

〈
Ω
∣
∣T φ̂(x1)...φ̂(xn)

∣
∣Ω
〉

= Gn(x1, ...,xn) =
(−i)n

Z[0]

δnZ[J(x)]

δJ(x1)...δJ(xn)

∣
∣
∣
∣
J=0

The functional Z[J] generates all Green functions:

Z[J] = Z[0]∑
n

in

n!

∫
d4x1...d

4xn

〈
Ω
∣
∣T φ̂(x1)...φ̂(xn)

∣
∣Ω
〉

J(x1)...J(xn)
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For the computation of scattering amplitudes we would like to have as boundary condition not

the vacuum but an n particle state. If we assume that interactions are only relevant within a finite

volume, we can take this n particle state as the superposition of n non-interacting one-particle

states. We call such a state an asymptotic state. If we consider a scalar field theory, the asymptotic

field satisfies the Klein-Gordon equation

(
✷+m2

)
φasymp(x) = 0.

Consider now

Zasymp [J] =
∫

limφ=φasymp

Dφ exp

[

i

∫
d4x L(φ)+ J(x)φ(x)

]

.

Then

Zasymp [0] =

∑
in

n!

∫
d4x1...d

4xnφasymp(x1)...φasymp(xn)
(
✷x1

+m2
)
...
(
✷xn

+m2
)

Gn(x1, ...,xn).

Define now the Fourier transform of the Green functions by

Gn(x1, ...,xn) =
∫

d4p1

(2π)4
...

d4pn

(2π)4
e−i∑ p jx j (2π)4 δ4 (p1 + ...+ pn) G̃n(p1, ..., pn)

and the truncated (amputated) Green function in momentum space by

G̃n
trunc(p1, ..., pn) =

(
i

p2
1 −m2

)−1

...

(
i

p2
n −m2

)−1

G̃n(p1, ..., pn).

2.2 Cross sections and decay rates

To calculate the cross section at an collider with no initial-state hadrons (e.g. an electron-positron

collider):

σ =
1

2K(Q2)

1

nspin(A)nspin(B)

∫
dφ(pA + pB; p1, ..., pn) |A (pA pB → p1 p2...)|2

where 2K(Q2) is the flux factor and we have 2K(Q2) = 2Q2 for massless incoming particles.

The scattering amplitudes is given by

A (pA pB → p1 p2...) = G̃n
trunc,connected (pA pB → p1 p2...) .

For a decay rate we have

Γ =
1

2mA

1

nspin(A)

∫
dφ(pA; p1, ..., pn) |A (pA → p1 p2...)|2 .
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The phase-space measure is given by

dφ(Q; p1, p2, ..., pn) =
1

∏ j n j!

(

∏
f

d3p f

(2π)32E~p f

)

(2π)4δ4(Q−∑ p f ),

if the final state contains n j identical particles of type j. If the colliding particles are not elemen-

tary (like protons or antiprotons), we have to include the probability of finding the elementary

particle A inside the proton or antiproton. If the proton has momentum p̂p one usually specifies

the probability of finding a parton with momentum fraction x by the parton distirbution function

f (x).

The parton has then the momentum

pA = xpp.

For the cross section we have to integrate over all possible momentum fractions and the formula

for a hadron-hadron collider becomes

σ =
∫

dx1 f (x1)
∫

dx2 f (x2)
1

2K(s)

1

nspin(A)nspin(B)

1

ncolour(A)ncolour(B)∫
dφ(pA + pB; p1, ..., pn) |A (pA pB → p1p2...)|2 .

ncolour(A) and ncolour(B) are the number of colour degrees of the initial state particles.

2.3 Gauge theory

An important example of a quantum field theory is given by gauge theories. Gauge theories (also

called Yang-Mills theories) are characterised by the fact that at each point in space-time we have

an internal symmetry group G. Let us now briefly review Yang-Mills theory.

Let G be a Lie group, g its Lie algebra and T a the generators of the Lie algebra where the

index a takes values from 1 to dimG. We use the conventions

[

T a,T b
]

= i f abcT c, Tr
(

T aT b
)

=
1

2
δab.

The Lie group is called abelian, if all structure constants f abc vanish, otherwise it is called non-

abelian. In particle physics we encounter abelian and non-abelian gauge groups. An example for

the abelian case is given by quantum electrodynamics (QED), corresponding to the abelian gauge

group U(1). An example for the non-abelian case is given by quantum chromodynamics (QCD),

corresponding to the non-abelian gauge group SU(3). The extension towards non-abelian gauge

groups was first suggested by Yang and Mills in 1954, hence the name “Yang-Mills theory” as

a synonym for “gauge theory”. We may view the abelian case as a special case of the general

non-abelian case.
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The field strength tensor is given by

Fa
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν,

where a is an index running over all generatros of the Lie algebra. For a SU(N) gauge group the

index a runs from 1 to N2 −1. The Lagrange density reads:

L = −1

4
Fa

µνFaµν.

The Lagrange density is invariant under the local transformations

T aAa
µ(x) → U(x)

(

T aAa
µ(x)+

i

g
∂µ

)

U†(x)

with

U(x) = exp(−iT aθa(x)) .

The action is given by the integral over the Lagrange density:

S =

∫
d4x L .

The quantity

LGF = − 1

2ξ

(
∂µAa

µ

)
(∂νAa

ν)

is called the gauge-fixing term, the quantity

LFP = −c̄a∂µDab
µ cb

the Faddeev-Popov term.

2.4 Fermions in the fundamental representation of the gauge group

We recall that the Lagrange density for a free fermion (e.g. no interactions) is given by

LF = ψ̄(iγµ∂µ −m)ψ.

We are now looking for a Lagrange density for the fermionic sector, which remains invariant

under gauge transformations. Under a gauge transformation a fermion field ψi(x) transforms as

ψi(x)→Ui j(x)ψ j(x), Ui j(x) = exp(−iT aθa(x)) ,

ψ̄i(x)→ ψ̄ j(x)U
†
ji(x).
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θa(x) depends on the space-time coordinates x. For an infinitessimal gauge transformation we

have

ψi(x) → (1− iT aθa(x))ψ j(x).

We immediately see that a fermion mass term

−mψ̄(x)ψ(x)

is invariant under gauge transformations. (Note however that in the standard model the fermion

masses are generated through the Yukawa couplings to the Higgs field.) But the term involving

derivatives is not gauge invariant:

iψ̄(x)γµ∂µψ(x) → iψ̄(x)U†(x)γµ∂µ (U(x)ψ(x))

= iψ̄(x)γµ∂µψ(x)+ iψ̄(x)γµ
(

U†(x)∂µU(x)
)

ψ(x)
︸ ︷︷ ︸

extra

.

The solution comes in the form of the covariant derivative

Dµ = ∂µ − igT aAa
µ(x),

where the gauge field transforms as

T aAa
µ(x) → U(x)

(

T aAa
µ(x)+

i

g
∂µ

)

U†(x).

Then the combination

iψ̄(x)γµDµψ(x) = iψ̄(x)γµ
(
∂µ − igT aAa

µ(x)
)

ψ(x)

→ iψ̄(x)U†(x)γµ

[

∂µ − igU(x)

(

T aAa
µ(x)+

i

g
∂µ

)

U†(x)

]

U(x)ψ(x)

= iψ̄(x)γµ∂µψ(x)+ iψ̄(x)γµ
(

U†(x)∂µU(x)
)

ψ(x)

+gψ̄(x)γµT aAa
µ(x)ψ(x)+ iψ̄(x)γµ

[(

∂µU†(x)
)

U(x)
]

ψ(x)

is invariant.

This gives us the Lagrange density for the fermion sector:

Lfermions = ∑
fermions

ψ̄(x)
(
iγµDµ −m f

)
ψ(x).

2.5 Feynman rules for QED and QCD

From the Lagrange density we may derive the Feynman rules. We summarise here the Feynman

rules for QED and QCD.
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Propagators:

The propagators for the gauge bosons are in the Feynman gauge (ξ = 1).

gauge bosons gluon Aa
µ

−igµν

k2 δab

photon Aµ
−igµν

k2

fermions quarks ψi i
p/+m

p2−m2 δi j

leptons ψ i
p/+m

p2−m2

ghosts ca i
k2 δab

Vertices:

Quark-gluon-vertex:

igγµT a
i j

3-gluon-vertex:

k1,µ,a

k2,ν,bk3,λ,c

g f abc
[
(k2 − k3)µgνλ +(k3 − k1)νgλµ +(k1 − k2)λgµν

]

4-gluon-vertex:

µ,a

ν,bλ,c

ρ,d
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−ig2
[

f abe f ecd
(
gµλgνρ−gµρgνλ

)
+ f ace f ebd

(
gµνgλρ −gµρgλν

)
+ f ade f ebc

(
gµνgλρ −gµλgνρ

)]

Gluon-ghost-vertex:

µ,b

q,c

k,a

−g f abckµ

Fermion-photon-vertex:

ieQγµ

Additional rules:

An integration

∫
d4k

(2π)4

for each loop.

A factor (−1) for each closed fermion loop.

Symmetry factor: Multiply the diagram by a factor 1/S, where S is the order of the permuta-

tion group of the internal lines and vertices leaving the diagram unchanged when the external

lines are fixed.

External particles:

Outgoing fermion: ū(p)
Outgoing antifermion: v(p)

Incoming fermion: u(p)
Incoming antifermion: v̄(p)

Gauge boson: εµ(k)
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Polarisation sums:

∑
λ

u(p,λ)ū(p,λ) = p/+m,

∑
λ

v(p,λ)v̄(p,λ) = p/−m,

∑
λ

ε∗µ(k,λ)εν(k,λ) = −gµν +
kµnν +nµkν

kn
−n2 kµkν

(kn)2
.

Here nµ is an arbitrary four vector. The dependence on nµ cancels in gauge-invariant quantities.

Using Weyl spinors, a convenient choice of polarisation vectors for the gauge bosons is given by

ε+µ (k,q) =
〈q−|γµ|k−〉√

2〈qk〉
,

ε−µ (k,q) =
〈q+ |γµ|k+〉√

2 [kq]
,

where qµ is an arbitrary light-like reference momentum. The dependence on qµ cancels in gauge-

invariant quantities.
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3 The Standard Model

3.1 Spontaneous symmetry breaking

The concept of gauge theories allowed us to describe successfully quantum electrodynamics and

quantum chromodynamcis, the quantum theories of the electromagnetic and the strong force.

Both theories are characterised by the fact, that the particles which mediate the forces (photons

and gluons) are massless particles. This is required by gauge invariance. In fact, a naive mass

term for the gauge bosons in the Lagrangian

Lmass = m2Aa
µAa µ

is not invariant under gauge invariance

T aAa
µ(x) → U(x)

(

T aAa
µ(x)+

i

g
∂µ

)

U†(x).

On the other hand it is an experimental fact, that the W -bosons and the Z-boson have non-zero

masses. As we do not want to abandon the concept of gauge theories, we face the problem on how

to incoporate massive gauge bosons into gauge theories. The solution is provided by the concept

of spontaneously broken gauge theories, also known under the name “Higgs mechanism”. To

start the discussion let us consider a simple physical system with a complex coordinate φ and a

potential

V (φ) = m2 |φ|2 + 1

4
λ
(

|φ|2
)2

.

The potential has a harmonic term m2 |φ|2 and an anharmonic term 1
4
λ
(

|φ|2
)2

. For m2 > 0 and

λ > 0 the potential has an absolut minimum at φ = 0. In classical mechanics the ground state

would therefore be φ = 0. This is nothing new.

Imagine now that the potential is given by

V (φ) = −µ2 |φ|2 + 1

4
λ
(

|φ|2
)2

,

with

µ2 > 0, λ > 0.

Then the potential has the shape of a mexican hat, and φ = 0 corresponds to a local maxima. The

potential has a minima for

|φ|2 =
2µ2

λ
.
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The minimas are described by a circle in the complex plane. The ground state of the physical

system will be one point of this circle, with no preference for any particular point. Without loss

of generality we can choose this point to lie along the positive real axis. Therefore we face the

situation, that the potential has a rotational symmetry around the point φ = 0, while the ground

state has not. This is the concept of a spontaneously broken symmetry. In general one speaks

about a spontaneously broken symmetry, if the Lagrangian of a theory has a certain symmetry,

which is not preserved in the ground state of the theory.

3.2 The Higgs mechanism

The standard model is based on the gauge group

SU(3)×SU(2)×U(1),

where SU(3) is the gauge group of the strong interactions, SU(2) the gauge group associated

to the weak isospin and U(1) the gauge group associated to the hypercharge. This group is not

identical to the gauge group of quantum electrodynamics. To avoid confusions, one often writes

UY (1) for the group related to the hypercharge and Uel−magn(1) for the gauge group of QED.

In the standard model, the electroweak sector SU(2)×UY(1) is spontaneously broken down to

Uel−magn(1). We now study the spontaneously symmetry breakdown in detail.

Within the standard model one assumes an additional complex scalar field, transforming as the

fundamental representation of SU(2) and having hypercharge Y = 1. In the weak isospin space

we can write the field as a two-vector with complex entries. It will be conveninet to use the

following parametrisation:

φ(x) =

(

φ+(x)
1√
2
(v+H(x)+ iχ(x))

)

.

φ+(x) is a complex field (two real components), H(x) and χ(x) are real fields. The quantity v is

a real constant. We will later see that it corresponds to the vacuum expectation value of the field

φ(x). The three components φ(x) and χ(x) are absorbed as the longitudinal modes of W±
µ and Zµ.

H(x) is the Higgs field.

The Lagrange density of the Higgs sector

LHiggs =
(
Dµφ

)†
(Dµφ)−V (φ)+LYukawa.

The covariant derivative is given by

Dµ = ∂µ − igIaW a
µ − ig′

Y

2
Bµ,

where Ia = 1
2
σa (σa are the Pauli matrices) and we have Y = 1 for the Higgs doublet. (Note that

our g′ =−g1 (Hollik).)
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The Higgs potential is given by

V (φ) = −µ2φ†φ+
1

4
λ
(

φ†φ
)2

.

For µ2 > 0 (and λ > 0) we have spontaneous symmetry breaking. In that case the potential has a

minimum for

φ†φ =
2µ2

λ
=

v2

2
.

We have

v = 2

√

µ2

λ
.

We write

φ(x) =

(

φ+(x)
1√
2
(v+H(x)+ iχ(x))

)

,

φ†(x) =

(

φ−(x),
1√
2
(v+H(x)− iχ(x))

)

.

We introduced this parametrisation already previously. We now see that this parametrisation

corresponds to an expansion around the minimum of the potential V (φ). Indeed, we have for

φ+(x) = 0 and H(x) = χ(x) = 0:

φ(x) =
v√
2

(
0

1

)

,

giving us one point in the minimum of the potential. All points in the minimum of the potential

are parametrised with two parameters α and β through

φ(x) =
v√
2

(
eiα sinβ
eiα cosβ

)

.

We have to pick a point in the minimum of the potential, any choice of point is as good as

any other choice. The choive made above is the conventional choice. With the parametrisation

around the minimum as above let us now consider the terms bilinear in the fields W a
µ and Bµ

coming from (Dµφ)†(Dµφ). We find

(
Dµφ

)† (
Dµφ

)
∣
∣
∣
W a

µ ,Bµ−bilinear
=

1

8
g2v2

(
W 1

µ W 1
µ +W 2

µ W 2
µ

)

+
1

8
v2
(
Bµ,W

3
µ

)
(

g′2 −gg′

−gg′ g2

)(
Bµ

W 3
µ

)

.
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We define

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)

and
(

Aµ

Zµ

)

=

(
cosθW sinθW

−sinθW cosθW

)(
Bµ

W 3
µ

)

.

The angle θW is given by

cosθW =
g

√

g2 +g′2
, sinθW =

g′
√

g2 +g′2
.

θW is called the Weinberg angle. We then obtain

(
Dµφ

)† (
Dµφ

)
∣
∣
∣
W a

µ ,Bµ−bilinear
=

1

2

(vg

2

)2 (
W+

µ
∗
W+

µ +W−
µ

∗
W−

µ

)

+
1

2

(
v

2

√

g2 +g′2
)2
(
Aµ,Zµ

)
(

0 0

0 1

)(
Aµ

Zµ

)

.

We therefore have

mW =
v

2
g, mZ =

v

2

√

g2 +g′2.

It is not too difficult to show that the Higgs mass is given by

mH =

√

λ

2
v.

In order to see this, we look at all terms bilinear in H from

−V (φ)|H−bilinear = µ2φ†φ− 1

4
λ
(

φ†φ
)2
∣
∣
∣
∣
H−bilinear

= −1

2

(

−µ2 +
3

4
λv2

)

H2 = −1

2

(
λv2

2

)

H2.

The gauge couplings g and g′ are related to the elementary electric charge by

e =
gg′

√

g2 +g′2
,

or

g =
e

sinθW
, g′ =

e

cosθW
.
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3.3 Yukawa couplings

The Higgs sector generates also the fermion masses through Yukawa couplings. We discuss this

mechanism first in a simplified model without flavour mixing. The full standard model including

flavour mixing is discussed in the next section 3.5.

Spin 1/2 particles are described by four-component spinors ψ(x). With the chiral projectors

P± =
1

2
(1± γ5)

we define left- and right-handed spinors:

ψ±(x) = P±ψ(x).

The fermions in the standard model can be grouped into three families:







u

d

νe

e






,







c

s

νµ

µ






,







t

b

ντ

τ






.

The families differ only by the masses of their members.

Let us now discuss the quantum numbers of the fermions in the electro-weak sector:

The left-handed components (uL,dL) and (νL,eL) transform as the fundamental representation

under the SU(2) group. The right-handed components uR, dR, νR and eR transform as a singlet

under the SU(2) group.

In detail one has:

I3 Y Q

uL
1
2

1
3

2
3

dL −1
2

1
3

−1
3

νL
1
2

−1 0

eL −1
2

−1 −1

I3 Y Q

uR 0 4
3

2
3

dR 0 −2
3

−1
3

νR 0 0 0

eR 0 −2 −1

The electric charge is given by the Gell-Mann-Nishijima formula:

Q = I3 +
Y

2

Remark: The table contains a right-handed neutrino, which does not interact with any other par-

ticle.
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The Yukawa couplings are given by

LYukawa =

∑
families

{

−λd

(
ūL, d̄L

)
φdR −λu

(
ūL, d̄L

)
φCuR −λe (ν̄L, ēL)φeR −λν (ν̄L, ēL)φCνR + h.c.

}

,

where the charge-conjugate Higgs field is given by

φC = 2iI2φ∗ = iσ2φ∗ =
(

0 1

−1 0

)(

φ−(x)
1√
2
(v+H(x)− iχ(x))

)

=

(
1√
2
(v+H(x)− iχ(x))

−φ−(x)

)

.

Example:

−λd

(
ūL, d̄L

)
φdR + h.c. = −λd

(
ūL, d̄L

)

(

φ+(x)
1√
2
(v+H(x)+ iχ(x))

)

dR + h.c.

= −vλd√
2

(
ūL, d̄L

)
(

0

1

)

dR + interaction terms+ h.c.

= −vλd√
2

d̄LdR + interaction terms+ h.c.

Therefore the Yukawa couplings generate the masses of the fermions. From the above example

we obtain

md =
1√
2

vλd .

The case of the up-type masses is similar. We have for example

−λu

(
ūL, d̄L

)
φCuR + h.c. = −λu

(
ūL, d̄L

)

(
1√
2
(v+H(x)− iχ(x))

−φ−(x)

)

uR + h.c.

= −vλu√
2

(
ūL, d̄L

)
(

1

0

)

uR + interaction terms+ h.c.

= −vλu√
2

ūLuR + interaction terms+ h.c.,

giving us

mu =
1√
2

vλu.

3.4 Feynman rules in the electroweak sector

In this paragraph we present the most important Feynman rules in the electroweak sector. A

complete list of Feynman rules can be found in many textbooks. We present the Feynman rules
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for the fields Aµ, Zµ and W±
µ . The original fields are related to the new fields by

(
Bµ

W 3
µ

)

=

(
cosθW −sinθW

sinθW cosθW

)(
Aµ

Zµ

)

,

(
W 1

µ

W 2
µ

)

=
1√
2

(
1 1

i −i

)(
W+

µ

W−
µ

)

.

As with any gauge theory, we also have to fix the gauge for the electroweak sector. A useful

gauge fixing condition is given in the electroweak sector by the ’t Hooft gauge (also called Rξ-

gauge):

LGF =

− 1

ξW
(∂µW+

µ − imW ξW φ+)(∂µW−
µ + imW ξW φ−)− 1

2ξZ
(∂µZµ −mZξZχ)2

︸ ︷︷ ︸

SU(2)

− 1

2ξγ
(∂µAµ)

2

︸ ︷︷ ︸

U(1)

ξ = 0 corresponds to Landau gauge, ξ = 1 to the Feynman gauge. φ+, φ− and χ are called the

would-be Goldstone fields. For the propagators we have to look at all terms in the Lagrangian,

which contain exactly two fields. LHigss will contain terms, which involve one electroweak gauge

boson (Zµ, W±
µ ) and one pseudo-Goldstone field (χ, φ±). These terms lead to a mixing between

electroweak gauge bosons and pseudo-Goldstone fields, resulting in a propagator matrix. The ’t

Hooft Rξ-gauge eliminates these mixing terms.

The propagators for the W - and Z-bosons are given in ’t Hoofts Rξ=1-gauge by

gauge bosons photon Aµ
−igµν

k2

W-boson W±
µ

−igµν

k2−m2
W

Z-boson Zµ
−igµν

k2−m2
Z

Higgs sector Higgs H i

k2−m2
H

Let us now look at the interaction vertices of the electroweak gauge bosons with fermions. We

have for the covarariant derivative

Dµ = ∂µ − igIaW a
µ − ig′

Y

2
Bµ

= ∂µ − iQeAµ −
ie

2sinθW cosθW

(
2I3 −2Qsin2 θW

)
Zµ

− ie√
2sinθW

(
I1+ iI2

)
W+

µ − ie√
2sinθW

(
I1 − iI2

)
W−

µ .
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Note that

I1 + iI2 =

(
0 1

0 0

)

, I1− iI2 =

(
0 0

1 0

)

.

Thus we obtain

ψ̄iγµDµψ
∣
∣
trilinear

= ψ̄γµψ

[

QeAµ +
e

2sinθW cosθW

(
2I3−2Qsin2 θW

)
Zµ

+
e√

2sinθW

(
I1 + iI2

)
W+

µ +
e√

2sinθW

(
I1− iI2

)
W−

µ

]

.

Thus we see that the photon-fermion-antifermion vertex is iQeγµ, as already known from QED.

The Z-fermion-antifermion vertex is given by

ie

2sinθW cosθW

γµ

(
v f −a f γ5

)
,

where

v f = I3 −2Qsin2 θW , a f = I3,

and I3 equals 1/2 for up-type fermions and −1/2 for down-type fermions. The ū jW
+dk-vertex

is given by

ie

2
√

2sinθw

γµ (1− γ5)Vjk,

the d̄kW
−u j-vertex is given by

ie

2
√

2sinθw

γµ (1− γ5)V ∗
jk.

In a model without flavour mixing we have Vjk = δ jk, in the next paragraph we will study flavour

mixing in the Standard model and Vjk will be the appropriate matrix element of the quark mixing

matrix or the neutrino mixing matrix.

Let us also look at the fermion-antifermion-Higgs vertex. The vertex comes from the Yukawa

part of the Lagrange density. As Feynman rules one finds

−i
λ f√

2
,

where λ f is the Yukawa coupling of fermion f . Since

m f =
1√
2

vλ f and v =
2mW

e
sinθW

we may equally write for the fermion-antifermion-Higgs vertex

− ie

2sinθw

m f

mW
.
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3.5 Flavour mixing

We now come to the final ingredient of the standard model: flavour mixing. Let us consider the

electroweak sector, in particular the coupling of quarks to the electroweak gauge bosons. Recall

the Lagrange density for the quark sector:

Lfermions = ∑
families

{
(
ūL, d̄

′
L

)
iγµDµ

(
uL

d′
L

)

+ ūRiγµDµuR + d̄′
RiγµDµd′

R

}

For reasons, which will become clear later, we put a prime on all d-type quark fields. The

Lagrange density is obtained by replacing the ordinary derivative ∂µ with the covariant derivative

Dµ = ∂µ − igIaW a
µ − ig′

Y

2
Bµ.

This is required by gauge invariance. This Lagrange density does not allow for mixing between

the various quark flavours.

On the other hand the Yukawa couplings are given by

LYukawa = ∑
families

{

−λd

(
ūL, d̄L

)
φdR −λu

(
ūL, d̄L

)
φCuR + h.c.

}

where the charge-conjugate Higgs field is given by

φC = iσ2φ∗ = 2iI2φ∗.

Note that now the prime is missing on the d-type quark fields. We have seen that the Yukawa

terms lead to mass terms for the fermions:

−λd

(
ūL, d̄L

)
φdR −λu

(
ūL, d̄L

)
φCuR + h.c. =

−vλd√
2

d̄LdR −
vλu√

2
ūLuR + h.c.+ interaction terms

However, the Yukawa couplings are not constrained by any gauge symmetry and we could allow

for flavour mixing in the Yukawa terms. In fact, nature has chosen this possibility. We therefore

consider a general mass term of the form

Lmass = ∑
families

d̄′′
LMdd′′

R + ū′′LMuu′′R + h.c.

where Md and Mu are (arbitrary) complex 3× 3 matrices in family space. A matrix M can be

diagonalised by a biunitary transformation

V−1MW = M̃,

where M̃ is a diagonal matrix.

Proof: Using the polar decomposition, M can be written as

M = HU,
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where H is hermitian and U is a unitary matrix. H can be diagonalised by a unitary matrix V :

V−1HV = M̃,

therefore W =U−1V .

The gauge part of the Lagrange density

Lfermions = ∑
families

{
(
ūL, d̄

′
L

)
iγµDµ

(
uL

d′
L

)

+ ūRiγµDµuR + d̄′
RiγµDµd′

R

}

is invariant under the rotations with respect to the family index:
(

uL

d′
L

)

→ SL

(
uL

d′
L

)

uR → SR,uuR

dR → SR,ddR

Using this freedom we have with

Mu =VuM̃uW−1
u , Md =VdM̃dW−1

d ,

∑
families

d̄′′
LVd
︸︷︷︸

d̄′
LV−1

u Vd

M̃d W−1
d d′′

R
︸ ︷︷ ︸

d′
R

+ ū′′LVu
︸︷︷︸

ū′L

M̃uW−1
u u′′R
︸ ︷︷ ︸

u′R

+ h.c. =

∑
families

d̄′
LV−1

u Vd
︸ ︷︷ ︸

d̄L

M̃dd′
R + ū′LM̃uu′R + h.c.

V−1
u Vd describes the quark mixing and is a unitary 3×3 matrix:

VCKM = V−1
u Vd.

Note that

d′ =VCKMd and d̄′VCKM = d̄.

A unitary n×n matrix is decribed by n2 real parameters, out of these

n(n+1)

2

are phases. For 3×3 matrices we have three angles and six phases. We still have the freedom to

redefine our fields by a unitary diagonal matrix:

ψ →





eiφ1 0 0

0 eiφ2 0

0 0 eiφ3



ψ
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This can be used to eliminate 2n−1 phases, e.g. five out of the six phases for three generations.

This leaves one “physical” phase in the CKM matrix.

Standard parameterisations:

The CKM matrix connects the weak eigenstates (d′,s′,b′) with the mass eigenstates (d,s,b):




d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d

s

b





Standard parametrisation:

VCKM =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 ,

with ci j = cosθi j and si j = sinθi j. The standard parametrisation can be written as a product of

three simpler matrices:

VCKM =





1 0 0

0 c23 s23

0 −s23 c23



×





c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13



×





c12 s12 0

−s12 c12 0

0 0 1



 .

This is basically a parametrisation in terms of three Euler angles and one phase.

Wolfenstein parametrisation:

A second parametrisation, the Wolfenstein parametrisation, is quite useful in the quark sector.

The usefulness stems from the fact that in the quark sector the CKM matrix is hierarchically

ordered. The Wolfenstein parametrisation is an approximate parametrisation, given by

VCKM =






1− λ2

2
λ Aλ3 (ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3 (1−ρ− iη) −Aλ2 1




+O

(
λ4
)
.

Neutrino mixing:

In the lepton sector one uses for Dirac neutrinos the lepton mixing matrix





ν′e
ν′µ
ν′τ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3





ν′e, ν′µ and ν′τ are the weak eigenstates, whereas ν1, ν2 and ν3 are the mass eigenstates.
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GIM mechanism:

The coupling of the Z-boson to the quarks is flavour-neutral, e.g. there are no flavour-changing

neutral currents (FCNC).

ψ̄′
(

gcosθW I3−g′ sinθW
Y

2

)

γµZµψ′ =
e

sinθW cosθW
ψ̄′
(

cos2 θW I3− sin2 θW
Y

2

)

γµZµψ′.

The interaction involves only the diagonal matrices I3 and 1. The primed fields with charge −1/3

occur in the form

d̄′
LγµZµd′

L + s̄′LγµZµs′L + b̄′LγµZµb′L =
(
d̄′

L, s̄
′
L, b̄

′
L

)
γµZµ





d′
L

s′L
b′L





=
(
d̄L, s̄L, b̄L

)
V

†
CKMγµZµVCKM





dL

sL

bL





=
(
d̄L, s̄L, b̄L

)
γµZµV

†
CKMVCKM
︸ ︷︷ ︸

1





dL

sL

bL



 .

Historical note: Around 1970 only the up-, down- and strange quarks were known. Cabibbo

proposed already in 1963 that the linear combination

d′ = cosθCd + sinθCs

enters the weak part of the Lagrangian. This model would predict flavour-changing neutral

currents:

d̄′γµZµd′ =

cos2 θCd̄γµZµd + sin2 θC s̄γµZµs
︸ ︷︷ ︸

∆S=0

+sinθC cosθCd̄γµZµs+ sinθC cosθC s̄γµZµd
︸ ︷︷ ︸

∆S=1

This model is in conflict with experimental observations, for example the ratio of neutral-current

(∆S = 1) to charged-current rates in kaon decay is

K+ → π+νν̄

K+ → π0µ+νe
< 10−5.

Glashow, Iliopoulos and Maiani postulated a fourth quark as a isospin partner of sL and used the

mixing matrix between down- strange quarks:
(

d′

s′

)

=

(
cosθC sinθC

−sinθC cosθC

)(
d

s

)

Then

d̄′γµZµd′+ s̄′γµZµs′ = d̄γµZµd + s̄γµZµs,

an no flavour-changing neutral currents occur at tree level.
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3.6 Summary of the Standard Model

Let us summarise the standard model of particle physics. The Lagrange density for the standard

model is split into three parts:

LSM = Lgauge +Lfermions +LHiggs.

The Lagrange density for the gauge bosons:

Lgauge = −1

4
Fa

µνFaµν

︸ ︷︷ ︸

SU(3)

−1

4
W a

µνW µνa

︸ ︷︷ ︸

SU(2)

−1

4
BµνBµν

︸ ︷︷ ︸

U(1)

+LGF +LFP,

where

Fa
µν = ∂µAa

ν−∂νAa
µ +g3 f abc

SU(3)A
b
µAc

ν,

W a
µν = ∂µW a

ν −∂νW a
µ +g f abc

SU(2)W
b
µ W c

ν ,

Bµν = ∂µBν−∂νBµ.

For SU(3), the indices a, b and c label the generators of SU(3) and run from 1 to 8. For SU(2),
they label the generators of SU(2) and run from 1 to 3. The gauge fixing part (’t Hooft gauge):

LGF =− 1

2ξg
(∂µAa

µ)
2

︸ ︷︷ ︸

SU(3)

− 1

ξW
(∂µW+

µ − imW ξW φ+)(∂µW−
µ + imW ξW φ−)− 1

2ξZ
(∂µZµ −mZξZχ)2

︸ ︷︷ ︸

SU(2)

− 1

2ξγ
(∂µAµ)

2

︸ ︷︷ ︸

U(1)

ξ = 0 corresponds to Landau gauge, ξ = 1 to the Feynman gauge. φ+, φ− and χ are called the

would-be Goldstone fields and have their origin in the Higgs sector. The fields W a
µ and Bµ are

related to the W±
µ , Zµ and Aµ fields as follows:

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
,

(
Aµ

Zµ

)

=

(
cosθW sinθW

−sinθW cosθW

)(
Bµ

W 3
µ

)

.

The Faddeev-Popov term for QCD reads:

LFP = c̄a
(

−∂µDab
µ

)

cb

The covariant derivative in the fundamental representation reads

Dab
µ = δab∂µ −g3 f abc

SU(3)A
c
µ.
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In the electroweak sector we have the ghost fields d±(x), dZ(x) and dγ(x). The Faddeev-Popov

term has the form

LFP = d̄αKαβdβ.

The Lagrange density for the fermion sector:

Lfermions = ∑
families

{
(
ūL, d̄

′
L

)
iγµDµ

(
uL

d′
L

)

+ ūRiγµDµuR + d̄′
RiγµDµd′

R

+
(
ν̄′L, ēL

)
iγµDµ

(
ν′L
eL

)

+ ν̄′RiγµDµν′R + ēRiγµDµeR

}

,

Dµ =

{
∂µ − igT aAa

µ − igIaW a
µ − ig′Y

2
Bµ, quarks,

∂µ − igIaW a
µ − ig′Y

2
Bµ, leptons.

Note that a right-handed neutrino (with no interactions through Dµ) has been added.

The Lagrange density of the Higgs sector

LHiggs =
(
Dµφ

)†
(Dµφ)+µ2φ†φ− 1

4
λ
(

φ†φ
)2

+LYukawa,

The covariant derivative is given as before by

Dµ = ∂µ − igIaW a
µ − ig′

Y

2
Bµ.

The Higgs doublet is parameterised as follows:

φ(x) =

(

φ+(x)
1√
2
(v+H(x)+ iχ(x))

)

,

φ†(x) =

(

φ−(x),
1√
2
(v+H(x)− iχ(x))

)

.

The Higgs doublet has Y = 1.

The Yukawa couplings are given by

LYukawa = ∑
families

{

−λd

(
ūL, d̄L

)
φdR −λu

(
ūL, d̄L

)
φCuR −λe (ν̄L, ēL)φeR −λν (ν̄L, ēL)φCνR + h.c.

}

The CKM matrix connects the weak eigenstates (d′,s′,b′) with the mass eigenstates (d,s,b):




d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d

s

b





In the lepton sector one uses for Dirac neutrinos the lepton mixing matrix




ν′e
ν′µ
ν′τ



 =





Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









ν1

ν2

ν3





ν′e, ν′µ and ν′τ are the weak eigenstates, whereas ν1, ν2 and ν3 are the mass eigenstates.
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4 Loop integrals

Up to now we considered only tree-level processes. Let us now turn to quantum corrections. We

will now encounter Feynman diagrams with closed loops. Let us look at an example: Fig. 1

shows a Feynman diagram contributing to the one-loop corrections for the process e+e− → qgq̄.

p1

p2

p3p4

p5

Figure 1: A one-loop Feynman diagram contributing to the process e+e− → qgq̄.

At high energies we can ignore the masses of the electron and the light quarks. From the Feynman

rules one obtains for this diagram:

v̄(p4)(ieγµ)u(p5)
−i

p2
123

×
∫

d4k1

(2π)4

−i

k2
2

ū(p1)(igT aε/(p2))
ip/12

p2
12

(

igT bγν

) ik/1

k2
1

(
ieQγµ

) ik/3

k2
3

(

igT bγν
)

v(p3)

= −e2Qg3
(

T aT bT b
)

i j
v̄(p4)γ

µu(p5)
1

p2
123

∫
d4k1

(2π)4

1

k2
2

ū(p1)ε/(p2)
p/12

p2
12

γν
k/1

k2
1

γµ
k/3

k2
3

γνv(p3).

Here, p12 = p1+ p2, p123 = p1+ p2+ p3, k2 = k1− p12, k3 = k2− p3. Further ε/(p2) = γτετ(p2),
where ετ(p2) is the polarisation vector of the outgoing gluon. All external momenta are assumed

to be massless: p2
i = 0 for i = 1..5. We can reorganise this formula into a part, which depends

on the loop integration and a part, which does not. The loop integral to be calculated reads:

∫
d4k1

(2π)4

k
ρ
1kσ

3

k2
1k2

2k2
3

,

while the remainder, which is independent of the loop integration is given by

−e2Qg3
(

T aT bT b
)

i j
v̄(p4)γ

µu(p5)
1

p2
123 p2

12

ū(p1)ε/(p2)p/12γνγργµγσγνv(p3).

The loop integral from the example above contains in the denominator three propagator factors

and in the numerator two factors of the loop momentum. We call a loop integral, in which the

loop momentum occurs also in the numerator a tensor integral. A loop integral, in which the

numerator is independent of the loop momentum is called a scalar integral. The basic strategy

consists in reducing tensor integrals to scalar integrals. The scalar integral associated to our

example reads
∫

d4k1

(2π)4

1

k2
1k2

2k2
3

.
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4.1 Regularisation

Before we start with the actual calculation of loop integrals, we should mention one compli-

cation: Loop integrals are often divergent! Let us first look at the simple example of a scalar

two-point one-loop integral with zero external momentum:

p = 0

k

k

=

∫
d4k

(2π)4

1

(k2)2

=
1

(4π)2

∞∫

0

dk2 1

k2
=

1

(4π)2

∞∫

0

dx

x
.

This integral diverges at

• k2 → ∞, which is called an ultraviolet (UV) divergence and at

• k2 → 0, which is called an infrared (IR) divergence.

Therefore our naive loop integral is ill-defined. The first step to do is to write down a mathemati-

cal well-defined expression. To this aim we introduce an (ad-hoc) regularisation scheme. Typical

regularisation schemes are:

• Cut-off regularisation:

1

(4π)2

∞∫

0

dx

x
→ 1

(4π)2

Λ∫

λ

dx

x
=

1

(4π)2
[lnΛ− lnλ] .

• Mass regularisation for infrared divergences:

∫
d4k

(2π)4

1

(k2)2
→

∫
d4k

(2π)4

1

(k2 −m2)2
=

1

(4π)2

∞∫

0

dk2 k2

(k2−m2)2
.

• Dimensional regularisation. Here we first perform the calculation in a space-time of di-

mension D and continue to D → 4 in the end. It turns out that dimensional regularisation

is from a calculational perspective the easiest regularisation scheme. We will treat dimen-

sional regularisation in detail in the next sub-section.

4.2 Loop integration in D dimensions

In this section we will discuss how to perform the D-dimensional loop integrals. It would be

more correct to say that we exchange them for some parameter integrals. Our starting point is a

one-loop integral with n external legs:

∫
dDk

iπD/2

1

(−P1)(−P2)...(−Pn)
,
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where the propagators are of the form

Pi =

(

k−
i

∑
j=1

p j

)2

−m2
i

and p j are the external momenta. The small imaginary parts iδ are not written explicitly. In the

one-loop integral there are some overall factors, which we inserted for convenience: The integral

measure is now dDk/(iπD/2) instead of dDk/(2π)D, and each propagator is multiplied by (−1).
The reason for doing this is that the final result will be simpler.

In order to perform the momentum integration we proceed by the following steps:

1. Feynman or Schwinger parametrisation.

2. Shift of the loop momentum to complete the square, such that the integrand depends only

on k2.

3. Wick rotation.

4. Introduction of generalised spherical coordinates.

5. The angular integration is trivial. Using the definitions of Euler’s gamma and beta func-

tions, the radial integration can be performed.

6. This leaves only the non-trivial integration over the Feynman parameters.

Although we discuss here only one-loop integrals, the methods presented in this section are rather

general and can be applied iteratively to l-loop integrals.

4.2.1 Feynman and Schwinger parameterisation

As already discussed above, the only functions we really want to integrate over D dimensions are

the ones which depend on the loop momentum only through k2. The integrand of the one-loop

integral above is not yet in such a form. To bring the integrand into this form, we first convert

the product of propagators into a sum. To do this, there are two techniques, one due to Feynman,

the other one due to Schwinger. Let us start with the Feynman parameter technique. In its full

generality it is also applicable to cases, where each factor in the denominator is raised to some

power ν. The formula reads:

n

∏
i=1

1

(−Pi)
νi

=
Γ(ν)

n

∏
i=1

Γ(νi)

1∫

0

(
n

∏
i=1

dxi x
νi−1
i

) δ

(

1−
n

∑
i=1

xi

)

(

−
n

∑
i=1

xiPi

)ν ,

ν =
n

∑
i=1

νi.
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The proof of this formula can be found in many text books and is not repeated here. The price

we have to pay for converting the product into a sum are (n−1) additional integrations.

Let us look at a few special cases:

1

AB
=

1∫

0

dx
1

(xA+(1− x)B)2
,

1

ABC
= 2

1∫

0

dx

1−x∫

0

dy
1

(xA+ yB+(1− x− y)C)3
,

1

ABCD
= 6

1∫

0

dx

1−x∫

0

dy

1−x−y∫

0

dz
1

(xA+ yB+ zC+(1− x− y− z)D)4
.

Let us look at the example from the beginning of this section:

1

(−k2
1)(−k2

2)(−k2
3)

= 2

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3
δ(1− x1 − x2 − x3)

(
−x1k2

1 − x2k2
2 − x3k2

3

)3

= 2

1∫

0

dx1

1−x1∫

0

dx2
1

(
−x1k2

1 − x2k2
2 − (1− x1 − x2)k

2
3

)3
.

An alternative to Feynman parameters are Schwinger parameters. Here each propagator is rewrit-

ten as

1

(−P)ν
=

1

Γ(ν)

∞∫

0

dx xν−1 exp(xP).

Therefore we obtain for our example

1

(−k2
1)(−k2

2)(−k2
3)

=

∞∫

0

dx1

∞∫

0

dx2

∞∫

0

dx3 exp
(
x1k2

1 + x2k2
2 + x3k2

3

)
.

4.2.2 Shift of the integration variable

We can now complete the square and shift the loop momentum, such that the integrand becomes

a function of k2. This is best discussed by an example. We consider again the example from

above. With k2 = k1 − p12 and k3 = k2 − p3 we have

−x1k2
1 − x2k2

2 − x3k2
3 = −(k1 − x2 p12 − x3 p123)

2 − x1x2s12 − x1x3s123,

where s12 = (p1 + p2)
2 and s123 = (p1 + p2 + p3)

2. We can now define

k′1 = k1 − x2 p12 − x3 p123
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and using translational invariance our loop integral becomes

∫
dDk1

iπD/2

1

(−k2
1)(−k2

2)(−k2
3)

=

2

∫
dDk′1
iπD/2

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3
δ(1− x1 − x2 − x3)

(

−k′1
2 − x1x2s12 − x1x3s123

)3
.

The integrand is now a function of k′1
2
.

Let us look at a second example:

p

k− p

k

∫
d4k

iπ2

1

k2 (k− p)2

Feynman parameterisation leads to

∫
d4k

iπ2

1

k2 (k− p)2
=

1∫

0

da

∫
d4k

iπ2

1
[

ak2 +(1−a)(k− p)2
]2
.

Completing the square we find

ak2 +(1−a)(k− p)2 = k2 −2(1−a)kp+(1−a)p2

= [k− (1−a)p]
︸ ︷︷ ︸

k′

2 +a(1−a)p2,

and therefore

∫
d4k

iπ2

1

k2 (k− p)2
=

1∫

0

da

∫
d4k′

iπ2

1
[

−k′2 +a(1−a)(−p)2
]2
.

4.2.3 Wick rotation

Having succeeded to rewrite the integrand as a function of k2, we then perform a Wick rotation,

which transforms Minkowski space into an Euclidean space. Remember, that k2 written out in

components in D- dimensional Minkowski space reads

k2 = k2
0 − k2

1 − k2
2 − k2

3 − ...

(Here k j denotes the j-th component of the vector k, in contrast to the previous section, where

we used the subscript to label different vectors k j. It should be clear from the context what
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✲ Re k0

✻

Im k0

Figure 2: Integration contour for the Wick rotation. The little circles along the real axis exclude

the poles.

is meant.) Furthermore, when integrating over k0, we encounter poles which are avoided by

Feynman’s iδ-prescription.

i

k2 −m2 + iδ
.

In the complex k0-plane we consider the integration contour shown in fig. 2. Since the contour

does not enclose any poles, the integral along the complete contour is zero:

∮
dk0 f (k0) = 0.

If the quarter-circles at infinity give a vanishing contribution (it can be shown that this is the case)

we obtain

∞∫

−∞

dk0 f (k0) = −
−i∞∫

i∞

dk0 f (k0).

We now make the following change of variables:

k0 = iK0,

k j = K j, for 1 ≤ j ≤ D−1.

As a consequence we have

k2 = −K2,

dDk = idDK,

where K2 is now given with Euclidean signature:

K2 = K2
0 +K2

1 +K2
2 +K2

3 + ...

31



Combining the exchange of the integration contour with the change of variables we obtain for

the integration of a function f (k2) over D dimensions

∫
dDk

iπD/2
f (−k2) =

∫
dDK

πD/2
f (K2),

whenever there are no poles inside the contour of fig. 2 and the arcs at infinity give a vanishing

contribution. The integral on the r.h.s. is now over D-dimensional Euclidean space. This equation

justifies our conventions, to introduce a factor i in the denominator and a minus sign for each

propagator in the defintion of the basic scalar integrals. These conventions are just such that after

Wick rotation we have simple formulae.

4.2.4 Generalised spherical coordinates

We now have an integral over D-dimensional Euclidean space, where the integrand depends only

on K2. It is therefore natural to introduce spherical coordinates. In D dimensions they are given

by

K0 = K cosθ1,

K1 = K sinθ1 cosθ2,

...

KD−2 = K sinθ1...sinθD−2 cosθD−1,

KD−1 = K sinθ1...sinθD−2 sinθD−1.

In D dimensions we have one radial variable K, D−2 polar angles θ j (with 1 ≤ j ≤ D−2) and

one azimuthal angle θD−1. The measure becomes

dDK = KD−1dKdΩD,

where

dΩD =
D−1

∏
i=1

sinD−1−i θi dθi.

Integration over the angles yields

∫
dΩD =

π∫

0

dθ1 sinD−2 θ1...

π∫

0

dθD−2 sinθD−2

2π∫

0

dθD−1 =
2πD/2

Γ
(

D
2

) ,

where Γ(x) is Euler’s gamma function. Note that the integration on the l.h.s of the equation above

is defined for any natural number D, whereas the result on the r.h.s is an analytic function of D,

which can be continued to any complex value.
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4.2.5 Euler’s gamma and beta functions

It is now the appropriate place to introduce two special functions, Euler’s gamma and beta func-

tions, which are used within dimensional regularisation to continue the results from integer D

towards non-integer values. The gamma function is defined for Re(x)> 0 by

Γ(x) =
∫ ∞

0
e−ttx−1dt.

It fulfils the functional equation

Γ(x+1) = x Γ(x).

For positive integers n it takes the values

Γ(n+1) = n! = 1 ·2 ·3 · ... ·n.

At x = 1/2 it has the value

Γ

(
1

2

)

=
√

π,

which can also be inferred from the relation

Γ(x)Γ(1− x) =
π

sinπx
.

For integers n we have the reflection identity

Γ(x−n)

Γ(x)
= (−1)n Γ(1− x)

Γ(1− x+n)
.

The gamma function Γ(x) has poles located on the negative real axis at x = 0,−1,−2, .... Quite

often we will need the expansion around these poles. This can be obtained from the expansion

around x = 1 and the functional equation. The expansion around ε = 1 reads

Γ(1+ ε) = exp

(

−γEε+
∞

∑
n=2

(−1)n

n
ζnεn

)

,

where γE is Euler’s constant

γE = lim
n→∞

(
n

∑
j=1

1

j
− lnn

)

= 0.5772156649...

and ζn is given by

ζn =
∞

∑
j=1

1

jn
.
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For example we obtain for the Laurent expansion around ε = 0

Γ(ε) =
1

ε
− γE +O(ε).

Euler’s beta function is defined for Re(x)> 0 and Re(y)> 0 by

B(x,y) =

1∫

0

tx−1(1− t)y−1dt,

or equivalently by

B(x,y) =

∞∫

0

tx−1

(1+ t)x+y
dt.

The beta function can be expressed in terms of Gamma functions:

B(x,y) =
Γ(x)Γ(y)

Γ(x+ y)
.

4.2.6 Result for the momentum integration

We are now in a position to perform the integration over the loop momentum. Let us discuss

again the example from the beginning of this section. After Wick rotation we have

I =

∫
dDk1

iπD/2

1

(−k2
1)(−k2

2)(−k2
3)

= 2

∫
dDK

πD/2

∫
d3x

δ(1− x1 − x2 − x3)

(K2 − x1x2s12 − x1x3s123)
3
.

Introducing spherical coordinates and performing the angular integration this becomes

I =
2

Γ
(

D
2

)

∞∫

0

dK2
∫

d3x
δ(1− x1 − x2 − x3)

(
K2
)D−2

2

(K2 − x1x2s12 − x1x3s123)
3
.

For the radial integration we have after the substitution t = K2/(−x1x2s12 − x1x3s123)

∞∫

0

dK2

(
K2
)D−2

2

(K2 − x1x2s12 − x1x3s123)
3

= (−x1x2s12 − x1x3s123)
D
2 −3

∞∫

0

dt
t

D−2
2

(1+ t)3
.

The remaining integral is just the second definition of Euler’s beta function

∞∫

0

dt
t

D−2
2

(1+ t)3
=

Γ
(

D
2

)
Γ
(
3− D

2

)

Γ(3)
.
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Putting everything together and setting D = 4−2ε we obtain

∫
dDk1

iπD/2

1

(−k2
1)(−k2

2)(−k2
3)

=

Γ(1+ ε)
∫

d3x δ(1− x1 − x2 − x3) x−1−ε
1 (−x2s12 − x3s123)

−1−ε .

Therefore we succeeded in performing the integration over the loop momentum k at the expense

of introducing a two-fold integral over the Feynman parameters.

As the steps discussed above always occur in any loop integration we can combine them into

a master formula. If U and F are functions, which are independent of the loop momentum, we

have for the integration over Minkowski space with dimension D = 2m− 2ε (with m being an

integer and ε being the dimensional regularisation parameter):

∫
d2m−2εk

iπm−ε

(−k2)a

[−Uk2 +F ]
ν =

Γ(m+a− ε)

Γ(m− ε)

Γ(ν−m−a+ ε)

Γ(ν)

U−m−a+ε

F ν−m−a+ε
.

The functions U and F depend usually on the Feynman parameters and the external momenta

and are obtained after Feynman parametrisation from completing the square. They are however

independent of the loop momentum k. In the equation above we allowed additional powers

(−k2)a of the loop momentum in the numerator. This is a slight generalisation and will be useful

later. Here we observe that the dependency of the result on a, apart from a factor Γ(m+ a−
ε)/Γ(m− ε), occurs only in the combination m+ a− ε = D/2+ a. Therefore adding a power

of (−k2) to the numerator is almost equivalent to consider the integral without this power in

dimensions D+2.

There is one more generalisation: Sometimes it is convenient to decompose k2 into a (2m)-
dimensional piece and a remainder:

k2
(D) = k2

(2m)+ k2
(−2ε).

If D is an integer greater than 2m we have

k2
(2m) = k2

0 − k2
1 − ...− k2

2m−1,

k(−2ε) = −k2
2m − ...− k2

D−1.

We also need loop integrals where additional powers of (−k2
(−2ε)) appear in the numerator. These

are related to integrals in higher dimensions as follows:

∫
d2m−2εk

iπm−ε
(−k2

(−2ε))
r f (k

µ

(2m),k
2
(−2ε)) =

Γ(r− ε)

Γ(−ε)

∫
d2m+2r−2εk

iπm+r−ε
f (k

µ
2m,k

2
−2ε).

Here, f (k
µ

(2m),k
2
(−2ε)) is a function which depends on k2m, k2m+1, ..., kD−1 only through k2

(−2ε).

The dependency on k0, k1, ..., k2m−1 is not constrained.

Finally it is worth noting that

∫
d2m−2εk

iπm−ε

(
−k2

)a
=

{
(−1)a Γ(a+1), if m+a− ε = 0,
0, otherwise.
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4.3 Performing the Feynman integrals

Let us summarise what we learned up to now: We had the following cooking recipe for loop

integrals: In order to perform the momentum integration we proceed by the following steps:

1. Feynman parametrisation

2. Shift of the loop momentum, such that the denominator has the form
(
−ck2 −L

)n
.

3. Wick rotation

4. Introduce generalised spherical coordinates

5. The angular integration is trivial. Using the definitions of the gamma- and beta-functions,

the radial integration can be performed.

6. This leaves only the non-trivial integration over the Feynman parameters.

We may summarise steps (3)− (5) in a master formula for the integration over the momenta in

D = 2m−2ε dimensions:

∫
d2m−2εk

(2π)2m−2εi

(−k2)a

[−Uk2 +F ]
n =

1

(4π)m−ε

Γ(m+a− ε)

Γ(m− ε)

Γ(n−m−a+ ε)

Γ(n)

U−m−a+ε

F n−m−a+ε

Let us now look at a few specific Feynman integrals.

4.3.1 The one-loop tadpole

No Feynman parameterisation needed:

A0(m
2) = −16π2µ2−D

∫
dDk

(2π)Di

1

(−k2 +m2)

= −16π2µ2ε 1

(4π)2−ε
Γ(−1+ ε)

1

(m2)−1+ε

= −m2 (4π)ε Γ(−1+ ε)

(
m2

µ2

)−ε

= m2







1

ε
− γE + ln4π

︸ ︷︷ ︸

∆

+1− ln
m2

µ2






.

We recall that γE denotes Euler’s constant. It will be convenient to define

∆ =
1

ε
− γE + ln4π.
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4.3.2 The one-loop two-point function

B0(p2,m2
1,m

2
2) = 16π2µ4−D

∫
dDk

(2π)Di

1
(
−k2 +m2

1

)(
−(k− p)2 +m2

2

)

= 16π2µ4−D

1∫

0

da

∫
dDk

(2π)Di

1
[
−k2 +a(1−a)(−p2)+am2

1 +(1−a)m2
2

]2

= 16π2µ2ε Γ(ε)

(4π)2−ε

1∫

0

da
[
a(1−a)(−p2)+am2

1+(1−a)m2
2

]−ε

= (4π)εµ2εΓ(ε)

1∫

0

da
[
a(1−a)(−p2)+am2

1+(1−a)m2
2

]−ε

The case m2
1 = m2

2 = 0:

B0(p2,0,0) = (4π)εµ2εΓ(ε)

1∫

0

da
[
a(1−a)(−p2)

]−ε

= (4π)εΓ(ε)

(−p2

µ2

)−ε 1∫

0

da a−ε(1−a)−ε

= (4π)εΓ(ε)

(−p2

µ2

)−ε
Γ(1− ε)Γ(1− ε)

Γ(2−2ε)

=
1

ε
− γE + ln4π+2− ln

−p2

µ2
.

The case m2
1 = m2

2 = m 6= 0:

B0(p2,m2,m2) = (4π)εµ2εΓ(ε)

1∫

0

da
[
a(1−a)(−p2)+m2

]−ε

= (4π)ε

(
m2

µ2

)−ε

Γ(ε)

1∫

0

da

[

1+a(1−a)

(−p2

m2

)]−ε

= (4π)ε

(
m2

µ2

)−ε

Γ(ε)2

1
2∫

0

da

[

1+a(1−a)

(−p2

m2

)]−ε

With the substitution

b = 4a(1−a), a =
1

2

(

1−
√

1−b
)

, da =
db

4
√

1−b

37



one obtains

B0(p2,m2,m2) = (4π)ε

(
m2

µ2

)−ε

Γ(ε)
1

2

1∫

0

db(1−b)−
1
2 [1−bx]−ε , x =

p2

4m2

=
1

2
(4π)ε

(
m2

µ2

)−ε

Γ(ε)

1∫

0

dbb−
1
2 [1− (1−b)x]−ε

=
1

2
(4π)ε

(
m2

µ2

)−ε

Γ(ε)(1− x)−ε

1∫

0

dbb−
1
2 [1−bχ]−ε , χ =

−x

1− x
=

p2

p2 −4m2

Using

(1− x)−c =
1

Γ(c)

∞

∑
n=0

Γ(n+ c)

Γ(n+1)
xn

one obtains

B0(p2,m2,m2) =
1

2
(4π)ε

(
m2

µ2

)−ε

(1− x)−ε
∞

∑
n=0

Γ(n+ ε)

Γ(n+1)
χn

1∫

0

db bn− 1
2

=
1

2
(4π)ε

(
m2

µ2

)−ε

(1− x)−ε
∞

∑
n=0

Γ(n+ ε)

Γ(n+1)

χn

(
n+ 1

2

)

Divergent parts can only come from n = 0, therefore separate the sum into n = 0 and n > 0. If

we are only interested up to the finite terms, we can set ε = 0 in the n > 0 part.

B0(p2,m2,m2) = (4π)ε

(
m2

µ2

)−ε

Γ(ε)(1− x)−ε +
1

2

∞

∑
n=1

χn

n
(
n+ 1

2

)

=

(
1

ε
− γE + ln4π− ln

m2

µ2
− ln(1− x)

)

+
∞

∑
n=1

(

1

n
− 1
(
n+ 1

2

)

)

χn

We further have

∞

∑
n=1

χn

n
= − ln(1−χ) ,

∞

∑
n=1

χn

(
n+ 1

2

) =
∞

∑
n=1

2
√

χ2n

(2n+1)
=

∞

∑
j=1

(√
χ
) j
+
(
−√

χ
) j

( j+1)

= −2+
1√
χ

∞

∑
j=1

(√
χ
) j

j
− 1√

χ

∞

∑
j=1

(
−√

χ
) j

j
=−2− 1√

χ
ln(1−√

χ)+
1√
χ

ln(1+
√

χ)
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The case m2
1 = m2 6= 0,m2

2 = 0:

B0(p2,m2,0) = (4π)εµ2εΓ(ε)

1∫

0

da a−ε
[
(1−a)(−p2)+m2

]−ε

= (4π)ε

(
m2 − p2

µ2

)−ε

Γ(ε)

1∫

0

da a−ε [1−ay]−ε , y =
−p2

m2 − p2

= (4π)ε

(
m2 − p2

µ2

)−ε ∞

∑
n=0

Γ(n+ ε)

Γ(n+1)
yn

1∫

0

da an−ε

= (4π)ε

(
m2 − p2

µ2

)−ε ∞

∑
n=0

Γ(n+ ε)

Γ(n+1)

yn

(n+1− ε)

= (4π)ε

(
m2 − p2

µ2

)−ε
Γ(ε)

(1− ε)
+

∞

∑
n=1

yn

n(n+1)

=

(
1

ε
− γE + ln4π+1− ln

(
m2 − p2

µ2

))

+1+
1− y

y
ln(1− y)

=
1

ε
− γE + ln4π+2− ln

(
m2 − p2

µ2

)

− m2

p2
ln

(
m2

m2 − p2

)

4.3.3 More general methods

More complicated integrals are one-loop integrals with more external legs as for example the

one-loop three-point function

C0(p2
1, p2

2, p2
3,m

2
1,m

2
2,m

2
3) =

−16π2µ4−D
∫

dDk

(2π)Di

1
(
−k2 +m2

1

)(
−(k− p1)2 +m2

2

)(
−(k− p1 − p2)2 +m2

3

)

or, in general, integrals with two or even more loops. Methods to tackle these integrals are

- Mellin-Barnes representation

- Nested sums

- Differential equations

- Sector decomposition

4.4 Tensor integrals and Passarino-Veltman reduction

We now consider the reduction of tensor loop integrals (e.g. integrals, where the loop momentum

appears in the numerator) to a set of scalar loop integrals (e.g. integrals, where the numerator is
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independent of the loop momentum). The loop momentum appears in the numerator for example

through the Feynman rules for the quark propagator

i
p/+m

p2 −m2

or the Feynman rule for the three-gluon vertex

g f abc
[
(k2 − k3)µgνλ +(k3 − k1)νgλµ +(k1 − k2)λgµν

]

For one-loop integrals a systematic algorithm has been first worked out by Passarino and Velt-

man. The notation for tensor integrals:

B0,µ,µν(p,m1,m2) = 16π2µ4−D
∫

dDk

(2π)Di

1,kµ,kµkν

(k2 −m2
1)((k+ p)2−m2

2)
,

C0,µ,µν(p1, p2,m1,m2,m3) = 16π2µ4−D

∫
dDk

(2π)Di

1,kµ,kµkν

(k2 −m2
1)((k+ p1)2 −m2

2)((k+ p1 + p2)2 −m2
3)
.

The reduction technique according to Passarino and Veltman consists in writing the tensor inte-

grals in the most general form in terms of form factors times external momenta and/or the metric

tensor. For example

Bµ = pµB1

Bµν = pµ pνB21 +gµνB22

Cµ = p
µ
1C11 + p

µ
2C12

Cµν = p
µ
1 pν

1C21 + p
µ
2 pν

2C22 +{p1 p2}µνC23 +gµνC24

with

{p1 p2}µν = p
µ
1 pν

2 + pν
1 p

µ
2

One then solves for the form factors B1, B21, B22, C11, etc. by first contracting both sides with

the external momenta and the metric tensor gµν. On the left-hand side the resulting scalar prod-

ucts between the loop momentum kµ and the external momenta are rewritten in terms of the

propagators, as for example

2p · k = (k+ p)2 − k2 − p2.

The first two terms of the right-hand side above cancel propagators, whereas the last term does

not involve the loop momentum anymore. The remaining step is to solve for the formfactors by

inverting the matrix which one obtains on the right-hand side of equation (1).
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p1

k2

Figure 3: An example for irreducible scalar products in the numerator: The scalar product 2p1k2

cannot be expressed in terms of inverse propagators.

Example for the two-point function: Contraction with pµ or pµ pν and gµν yields

p2B1 =
1

2

(
A0(m1)−A0(m2)+

(
m2

2 −m2
1 − p2

)
B0

)

(
p2 1

p2 D

)(
B21

B22

)

=

(
1
2
A0(m2)+

1
2
(m2

2 −m2
1 − p2)B1

A0(m2)+m2
1B0

)

Solving for the form factors we obtain

B1 =
1

2p2

(
A0(m1)−A0(m2)+

(
m2

2 −m2
1 − p2

)
B0

)

B21 =
1

6p2

(

2A0(m2)−2m2
1B0 +4(m2

2 −m2
1 − p2)B1 +(

1

3
p2 −m2

1 −m2
2)

)

B22 =
1

6

(

A0(m2)+2m2
1B0 − (m2

2 −m2
1 − p2)B1 − (

1

3
p2 −m2

1 −m2
2)

)

Due to the matrix inversion in the lasr step Gram determinants usually appear in the denominator

of the final expression. For a three-point function we would encounter the Gram determinant of

the triangle

∆3 = 4

∣
∣
∣
∣

p2
1 p1 · p2

p1 · p2 p2
2

∣
∣
∣
∣
.

One drawback of this algorithm is closely related to these determinants : In a phase space region

where p1 becomes collinear to p2, the Gram determinant will tend to zero, and the form factors

will take large values, with possible large cancellations among them. This makes it difficult to

set up a stable numerical program for automated evaluation of tensor loop integrals.

The Passarino-Veltman algorithm is based on the observation, that for one-loop integrals a scalar

product of the loop momentum with an external momentum can be expressed as a combination

of inverse propagators. This property does no longer hold if one goes to two or more loops. Fig.

(3) shows a two-loop diagram, for which the scalar product of a loop momentum with an external

momentum cannot be expressed in terms of inverse propagators.
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5 Renormalisation

Recall: Loop diagrams are divergent !

∫
d4k

(2π)4

1

(k2)2
=

1

(4π)2

∞∫

0

dk2 1

k2
=

1

(4π)2

∞∫

0

dx

x

This integral diverges at

• k2 → ∞ (UV-divergence) and at

• k2 → 0 (IR-divergence).

Use dimensional regularisation to regulate UV- and IR-divergences.

Recall the scalar one-loop two-point function for m2
1 = m2

2 = 0:

B0(p2,0,0) =
1

ε
− γE + ln4π+2− ln

−p2

µ2
.

Infrared divergences cancel by summing over degenerate states. Ultraviolet divergences are ab-

sorbed into a redefinition of the parameters. Example: The renormalisation of the coupling:

gbare
︸︷︷︸

divergent

= Zg
︸︷︷︸

divergent

· gren
︸︷︷︸

finite

.

The renormalisation constant Zg absorbs the divergent part. However Zg is not unique: One may

always shift a finite piece from gren to Zg or vice versa. Different choices for Zg correspond to

different renormalisation schemes. Two different renormalisation schemes are always connected

by a finite renormalisation. Note that different renormalisation schemes give numerically differ-

ent answers. Therefore one always has to specify the renormalisation scheme.

Some popular renormalisation schemes:

• On-shell subtraction: Define the renormalisation constants by conditions at a scale where

the particles are on-shell p2 = m2.
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• Off-shell subtraction: For massless particles the renormalisation constants in the on-shell

scheme would contain an infrared singularity. Therefore, in the off-shell scheme one

defines the renormalisation constants by conditions at an unphysical (space-like) scale

p2 =−λ2. This scheme is also called momentum-space subtraction scheme.

• Minimal subtraction: The minimal subtraction scheme absorbs exactly the poles in 1/ε
into the renormaliztion constants (and nothing else).

• Modified minimal subtraction: As Euler’s constant γE and ln(4π) always appear in combi-

nation with a pole 1/ε, the modified minimal subtraction absorbs always the combination

∆ =
1

ε
− γE + ln4π

into the renormaliztion constants.

5.1 Renormalisation in practice

The modified minimal subtraction is popular in QCD. The Lagrange density of QCD reads

LQCD = ∑
quarks

ψ̄
(
iγµDµ −m

)
ψ− 1

4
Fa

µνFaµν − 1

2ξ

(
∂µAa

µ

)2
+ c̄a(x)

(

−∂µDab
µ

)

cb(x),

Fa
µν = ∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν,

Dµ = ∂µ − igT aAa
µ,

Dab
µ = ∂µ −g f abcAc

µ.

The Lagrange density depends on the (unrenormalised) fields Aa
µ, ψ, ca and the (unrenormalised)

parameters g, m and ξ. We redefine the fields as follows:

Aa
µ =

√

Z3Aa
µ,r, ψ =

√
Z2ψr, ca =

√

Z̃3ca
r .

We redefine the parameters as follows:

g = Zggr, m = Zmmr, ξ = Zξξr = Z3ξr.

Substituting these relations into the Lagrange density we obtain

LQCD = Lrenorm +Lcounterterms,

where Lrenorm is given by LQCD where all bare quantities are replaced by renormalised ones. The

counterterms are given by

Lcounterterms = (Z2 −1) ψ̄r

(
iγµ∂µ

)
ψr − (Z2Zm −1)mrψ̄rψr

+(Z3 −1)
1

2
Aa

µ,r

(
gµν∂2 −∂µ∂ν

)
Ab

ν,r −
(
Z̃3 −1

)
ca

r ∂2ca
r
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−




ZgZ

3
2

3
︸ ︷︷ ︸

Z1

−1




gr f abc

(
∂µAa

ν,r

)
Ab

µ,rA
c
ν,r −




Z2

gZ2
3

︸︷︷︸

Z4

−1






1

4
g2

r f abe f cdeAa
µ,rA

b
ν,rA

c
µ,rA

d
ν,r

+




ZgZ2

√

Z3
︸ ︷︷ ︸

Z1F

−1




grψ̄rT

aγµAa
µ,rψr −




ZgZ̃3

√

Z3
︸ ︷︷ ︸

Z̃1

−1




gr f abc (∂µca

r )cb
r Ac

µ,r.

The the various constants are not independent, but satisfy

Z1

Z3
=

Z̃1

Z̃3

=
Z1F

Z2
=

Z4

Z1
= Zg

√

Z3.

These are the Slavnov-Taylor-identities (or Ward-Takahashi identities). As a consequence, the

coupling constant renormalisation constant may be computed from the corrections to the three-

gluon-vertex, the four-gluon-vertex, the quark-gluon-vertex or the ghost-gluon vertex. The Slavnov-

Taylor identities guarantees that the result is the same.

5.1.1 Renormalisation of the coupling constant

Let g be the unrenormalised coupling constant, gr the renormalised coupling constant and gR the

dimensionless renormalised coupling constant. They are related by

g = Zggr,

gr = gRµε.

From a one-loop calculation one obtains

Zg = 1− 1

6

(
11CA −4TRN f

) g2
R

(4π)2
∆+O(g4

R) = 1− 1

2
β0

g2
R

(4π)2
∆+O(g4

R),

where as usual

∆ =
1

ε
− γE + ln(4π)

and the coulor factors are

CA = N, CF =
N2 −1

2N
, TR =

1

2
.

β0 is given by

β0 =
11

3
CA −

4

3
TRN f .

The unrenormalised coupling constant g is of course independent of µ:

d

dµ
g = 0
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Therefore

µ
d

dµ
(ZgµεgR) = 0,

µ
d

dµ
(Zg)µεgR +µ

d

dµ
(µε)ZggR +µ

d

dµ
(gR)Zgµε = 0.

Let us define

β(gR) = µ
d

dµ
gR.

Then

β(gR) = −µ−εZ−1
g µ

d

dµ
(µε)ZggR −µ−εZ−1

g µ
d

dµ
(Zg)µεgR

= −εgR −
(

Z−1
g µ

d

dµ
Zg

)

gR.

Note that the first coefficient of the β-function is calculated as follows:

Z−1
g µ

d

dµ
Zg = Z−1

g µ
d

dµ

(

1− 1

2
β0

g2
R

(4π)2
∆

)

= Z−1
g

(−β0∆)

(4π)2
gRµ

d

dµ
gR

= Z−1
g

(−β0∆)

(4π)2
gR (−εgR)

= Z−1
g β0

g2
R

(4π)2

= β0
g2

R

(4π)2
.

Therefore

β(gR) = µ
d

dµ
gR =−εgR −β0

g3
R

(4π)2
.

As usual denote

αs =
g2

R

4π
.

We then have

µ2 d

dµ2
αs =

1

2
µ

d

dµ
αs =

gR

4π
µ

d

dµ
gR

=
gR

4π

(

−εgR −β0
g3

R

(4π)2

)

= −εαs −
β0α2

s

4π
.
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Going to D = 4 we have therefore

µ2 d

dµ2

αs

4π
= −β0

(αs

4π

)2

.

At LO the exact solution is given by

αs(µ)

4π
=

1

β0 ln
(

µ2

Λ2

) ,

or by

αs(µ)

4π
=

αs(µ0)

4π

1

1+ αs(µ0)
4π β0 ln

(
µ2

µ2
0

) ,

depending on the preferred choice of boundary condition (Λ or αs(µ0)).

5.1.2 Mass renormalisation

As an example we consider massive quarks. The quark self-energy is given by the following

diagram:

p k1

k0

−iΣ = g2CF

∫
dDk

(2π)D
iγρ

i

k/1 −m
iγρ−i

k2
0

= −i
g2

(4π)2
CF

{

(1− ε)

[
1

p2
A0(m

2)−
(

1+
m2

p2

)

B0(p2,m2,0)

]

p/+4m

(

1− 1

2
ε

)

B0(p2,m2,0)

}

= −i{Ap/+Bm}

Resummed:

i

p/−m
+

i

p/−m
(−iΣ)

i

p/−m
+

i

p/−m

[

(−iΣ)
i

p/−m

]2

=
i

p/−m

1
(

1− Σ
p−m

) =
i

p/−m−Σ
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Modified minimal subtraction

We have for the resummed propagator

i

p/−m−Σ
=

i

p/−m− (Ap/+Bm)
=

i

(1−A)p/− (1+B)m

=
1

(1−A)

i

[p/− (1+A+B)m]
=

i(1+A)

p/− (1+A+B)m
.

Let

m = Zmmr,

where m denotes the unrenormalised mass, Zm the renormalisation constant and mr the renor-

malised mass. We require that

Zm(1+A+B) = finite,

therefore

Zm = 1− (A+B)div

We have

(A+B)div =
g2

(4π)2
CF

{
1

p2
A0(m

2)−
(

1+
m2

p2

)

B0(p2,m2,0)+4B0(p2,m2,0)

}

div

=
g2

(4π)2
CF

{
1

p2
A0(m

2)+

(

3− m2

p2

)

B0(p2,m2,0)

}

div

=
g2

(4π)2
CF

{
m2

p2
+

(

3− m2

p2

)}

∆

= 3
g2

(4π)2
CF∆.

Therefore we find that at one-loop-order Zm is given by

Zm = 1−3CF
g2

R

(4π)2
∆+O(g4

R).

The anomalous dimension is defined by

γm =
µ

Zm

dZm

dµ

Expand γ in powers of as = αs/(4π):

γ = γ0
αs

4π
+ γ1

(αs

4π

)2

+ ...

= γ0as + γ1a2
s + ...
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The first coefficients is then given by

γm
0 = 6CF .

The running mass:

µ
d

dµ
m = 0.

Therefore

µ2 d

dµ2
mr = −1

2
γmmr =−1

2
γm

0

αs

4π
mr.

With

µ2 d

dµ2
= −β0

(αs

4π

)2 d

d αs

4π

we find

αs
d

dαs

mr =
γ0

2β0
mr.

Therefore

mr(µ) =

(
αs(µ)

αs(µ0)

) γ0
2β0

mr(µ0).

The on-shell scheme

Recall that we had for the resummed propagator

i

p/−m−Σ

with

Σ = A(p2)p/+B(p2)m

Note that A(p2) and B(p2) are functions of p2. Expand Σ:

Σ(p/) = Σ|p/=mr
+(p/−mr)

∂

∂p/
Σ

∣
∣
∣
∣

p/=mr
︸ ︷︷ ︸

Σ′

+...

Then

i

p/−m0 −Σ
=

i

p/−mr − (p/−mr)Σ′+mr −m0 −Σ|mr

=
i

(1−Σ′)(p/−mr)+(mr −m0 −Σ|mr
)

︸ ︷︷ ︸

=0

.
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On-shell condition:

mr −m0 −Σ|mr
= 0,

with m0 = Zmmr:

Zm = 1− 1

mr

Σ|mr

Then

i

p/−m0 −Σ
=

i(1+Σ′)
p/−mr

.

Calculation of Σ|p/=mr
:

Σ|p/=mr
= A(m2)m+B(m2)m, p/= m+(p/−m)

︸ ︷︷ ︸

can be neglected

=
g2

(4π)2
CF

{

(1− ε)

[
1

m2
A0(m

2)−2B0(m
2,m2,0)

]

m+4m

(

1− 1

2
ε

)

B0(m
2,m2,0)

}

With

A0(m
2) = m2

(

∆+1− ln
m2

µ2

)

,

B0(m
2,m2,0) = ∆+2− ln

m2

µ2
,

one finds

Σ|p/=mr
=

g2

(4π)2
CF

{(

−∆−2+ ln
m2

µ2

)

m+4m

(

∆+
3

2
− ln

m2

µ2

)}

= m
g2

(4π)2
CF

{

3∆+4−3ln
m2

µ2

}

.

Therefore

Zm = 1− 1

mr
Σ|mr

= 1− αs

4π
CF

(

3∆+4−3ln
m2

µ2

)

.

Calculation of Σ′:

Σ′ =
∂

∂p/
Σ

∣
∣
∣
∣

p/=mr

=
∂

∂p/

(
A(p2)p/+B(p2)m

)
∣
∣
∣
∣

p/=mr

= A(m2)+ p/
∂

∂p/
A(p2)

∣
∣

p/=mr
+m

∂

∂p/
B(p2)

∣
∣

p/=mr
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= A(m2)+2p/p/
∂

∂p2
A(p2)

∣
∣

p/=mr
+2mp/

∂

∂p2
B(p2)

∣
∣

p/=mr

= A(m2)+2m2 ∂

∂p2
A(p2)

∣
∣

p2=m2
r
+2m2 ∂

∂p2
B(p2)

∣
∣

p2=m2
r
+ ..., p/= m+(p/−m)

︸ ︷︷ ︸

can be neglected

= A(m2)+2m2 ∂

∂p2

(
A(p2)+B(p2)

)∣
∣

p2=m2
r

We keep the Feynman parameter integral, differentiate, do the integral and expand in the end in

ε:

Σ′ =
g2

(4π)2
CF

(

−3

ε
+3γE −3ln4π−4+3ln

m2

µ2

)

The propagator is a two-point Green function

G2(p) ∼ 〈0 |T ψψ|0〉

Under field renormalisation

ψ =
√

Z2ψr

we have

G2(p)bare =
(√

Z2

)2
G2(p)r

Therefore

G2(p)r =
iZ−1

2 (1+Σ′)
p/−mr

The residue of the propagator has to be 1, therefore

Z2 = 1+Σ′ = 1+
αs

4π
CF

(

−3∆−4+3ln
m2

µ2

)

.
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5.2 Renormalisation to all orders

5.2.1 Power counting

The superficial degree of divergence is given by

d · l+∑
v

δv −2nB −nF

where d is the dimension of space-time, l is the number of loops, δv is the number of momentum

factors at the vertex v in the diagram G, nB is the number of internal boson lines and nF is the

number of internal fermion lines.

Power counting theorem: The Feynman integral IG for the diagram G is absolutely convergent if

the superficial degree of divergence is negative for all subdiagrams H of G (including the case

H = G).

Nested, overlapping and disjoint

If a diagram H1 is completely included in H2 as a subdiagram (H1 ⊆ H2) we say that H1 is nested

in H2. If they are not included in each other but have common internal lines and vertices, they are

said to overlap. The union H1 ∪H2 is called the overlapping diagram. If they are neither nested

in each other nor overlapping (H1 ∩H2 = /0), they are said to be disjoint.

Renormalizability

The BPHZ-method (Bogoliubov and Parasiuk, Acta Math 97, 1957, 227; Hepp, Comm. Math.

Phys. 2, 1966, 301; Zimmermann, Comm. Math. Phys. 15, 1969, 208): In dimensional regular-

izion a Feynman diagram is given as a Laurent series

IG =
∞

∑
j=−l

a jε
j

where l is a positive integer less or equal the number of loops in G. Define an operator TG for a

diagram, which picks out the divergent part, by

TGIG =
−1

∑
j=−l

a jε
j

Define Bogoliubov’s R-operation by

RG = (1−TG) ∏
H∈Φ

(1−TH)

where Φ is a set of all one-particle irreducible subdiagrams H of G, which are superficially diver-

gent. A one-particle irreducible (or proper) subdiagram H of G, which is superficially divergent
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is also called a renormalisation part. If H1 ⊂ H2 the order is such that 1−TH1
comes to the right

of 1−TH2
.

Lemma on overlapping divergences: If two renormalisation parts H1 and H2 of G overlap with

each other, we have

(1−TH12
)TH1

TH2
= 0

for all suitable renormalisation parts H12 of G which includes both H1 and H2 as subdiagrams.

5.2.2 Hopf algebras

Let R be a commutative ring with unit 1. An algebra over the ring R is a R-module together with

a multiplication · and a unit e. We will always assume that the multiplication is associative. In

physics, the ring R will almost always be a field K (examples are the rational numbers Q, the

real numbers R or the complex number C). In this case the R-module will actually be a K-vector

space. Note that the unit can be viewed as a map from R to A and that the multiplication can

be viewed as a map from the tensor product A⊗A to A (e.g. one takes two elements from A,

multiplies them and gets one element out).

A coalgebra has instead of multiplication and unit the dual structures: a comultiplication ∆
and a counit ē. The counit is a map from A to R, whereas comultiplication is a map from A to A⊗
A. Note that comultiplication and counit go in the reverse direction compared to multiplication

and unit. We will always assume that the comultiplication is coassociative. The general form of

the coproduct is

∆(a) = ∑
i

a
(1)
i ⊗a

(2)
i ,

where a
(1)
i denotes an element of A appearing in the first slot of A⊗A and a

(2)
i correspondingly

denotes an element of A appearing in the second slot. Sweedler’s notation consists in dropping

the dummy index i and the summation symbol:

∆(a) = a(1)⊗a(2)

The sum is implicitly understood. This is similar to Einstein’s summation convention, except

that the dummy summation index i is also dropped. The superscripts (1) and (2) indicate that a

sum is involved.

A bialgebra is an algebra and a coalgebra at the same time, such that the two structures are

compatible with each other. Using Sweedler’s notation, the compatibility between the multipli-

cation and comultiplication is expressed as

∆(a ·b) =
(

a(1) ·b(1)
)

⊗
(

a(2) ·b(2)
)

.

A Hopf algebra is a bialgebra with an additional map from A to A, called the antipode S ,

which fulfills
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A

A⊗A A⊗A

AK

∆ ·

ε η

S⊗ id
id⊗S

a(1) ·S
(

a(2)
)

= S
(

a(1)
)

·a(2) = 0 for a 6= e.

Examples of Hopf algebras

The group algebra

Let G be a group and denote by KG the vector space with basis G. KG is an algebra with the

multiplication given by the group multiplication. The counit ē is given by:

ē(g) = 1.

The coproduct ∆ is given by:

∆(g) = g⊗g.

The antipode S is given by:

S (g) = g−1.

KG is a cocommutative Hopf algebra. KG is commutative if G is commutative.

Lie algebras

A Lie algebra g is not necessarily associative nor does it have a unit. To overcome this obstacle

one considers the universal enveloping algebra U(g), obtained from the tensor algebra T (g) by

factoring out the ideal

X ⊗Y −Y ⊗X − [X ,Y ] ,

with X ,Y ∈ g. The counit ē is given by:

ē(e) = 1, ē(X) = 0.

The coproduct ∆ is given by:

∆(e) = e⊗ e, ∆(X) = X ⊗ e+ e⊗X .

The antipode S is given by:

S(e) = e, S(X) =−X .
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Quantum SU(2)

The Lie algebra su(2) is generated by three generators H, X± with

[H,X±] =±2X±, [X+,X−] = H.

To obtain the deformed algebra Uq(su(2)), the last relation is replaced with

[X+,X−] =
qH −q−H

q−q−1
.

The undeformed Lie algebra su(2) is recovered in the limit q → 1. The counit ē is given by:

ē(e) = 1, ē(H) = ē(X±) = 0.

The coproduct ∆ is given by:

∆(H) = H ⊗ e+ e⊗H,

∆(X±) = X±⊗qH/2 +q−H/2 ⊗X±.

The antipode S is given by:

S(H) =−H, S(X±) =−q±1X±.

Shuffle algebras

Consider a set of letters A. A word is an ordered sequence of letters:

w = l1l2...lk.

The word of length zero is denoted by e. A shuffle algebra A on the vector space of words is

defined by

(l1l2...lk) · (lk+1...lr) = ∑
shuffles σ

lσ(1)lσ(2)...lσ(r),

where the sum runs over all permutations σ, which preserve the relative order of 1,2, ...,k and of

k+1, ...,r. The counit ē is given by:

ē (e) = 1, ē(l1l2...ln) = 0.

The coproduct ∆ is given by:

∆(l1l2...lk) =
k

∑
j=0

(
l j+1...lk

)
⊗
(
l1...l j

)
.

The antipode S is given by:

S (l1l2...lk) = (−1)k lklk−1...l2l1.
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Figure 4: An element of the shuffle algebra can be represented by a rooted tree without side-

branchings, as shown in the left figure. The right figure shows a general rooted tree with side-

branchings. The root is drawn at the top.

Rooted trees

Consider a set of rooted trees (fig. 4). An admissible cut of a rooted tree is any assignment of

cuts such that any path from any vertex of the tree to the root has at most one cut. An admissible

cut maps a tree t to a monomial in trees t1 × ...× tn+1. Precisely one of these subtrees t j will

contain the root of t. We denote this distinguished tree by RC(t), and the monomial delivered by

the n other factors by PC(t). The counit ē is given by:

ē(e) = 1, ē(t) = 0 for t 6= e.

The coproduct ∆ is given by:

∆(e) = e⊗ e,

∆(t) = t ⊗ e+ e⊗ t + ∑
adm. cuts C of t

PC(t)⊗RC(t).

The antipode S is given by:

S(e) = e,

S(t) = −t − ∑
adm. cuts C of t

S
(

PC(t)
)

×RC(t).

5.2.3 Renormalisation revisited

Short-distance singularities of the perturbative expansion of quantum field theories require renor-

malisation. The combinatorics involved in the renormalisation is governed by a Hopf algebra.

The model for this Hopf algebra is the Hopf algebra of rooted trees (fig. 5 and 6).

Recall the recursive definition of the antipode:

S(t) = −t − ∑
adm. cuts C of t

S
(

PC(t)
)

×RC(t).

The antipode satisfies

m [(S ⊗ id)∆(t)] = 0,
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Figure 5: Nested singularities are encoded in rooted trees.

�! +

Figure 6: Overlapping singularities yield a sum of rooted trees.

where m denotes multiplication:

m(a⊗b) = a ·b.

Let R be an operation which approximates a tree by another tree with the same singularity

structure and which satisfies the Rota-Baxter relation:

R (t1t2)+R (t1)R (t2) = R (t1R (t2))+R (R (t1) t2) .

For example, minimal subtraction (MS)

R

(
∞

∑
k=−L

ckεk

)

=
−1

∑
k=−L

ckεk

fulfills the Rota-Baxter relation. To simplify the notation, I drop the distinction between a Feyn-

man graph and the evaluation of the graph. One can now twist the antipode with R and define a

new map

SR (t) = −R

(

t + ∑
adm. cuts C of t

SR

(

PC(t)
)

×RC(t)

)

.

From the multiplicativity constraint it follows that

SR (t1t2) = SR (t1)SR (t2) .

If we replace S by SR we obtain

m
[(

SR ⊗ id
)

∆(t)
]

= finite,
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since by definition SR differs from S only by finite terms. The formula above is equivalent to the

forest formula. It should be noted that R is not unique and different choices for R correspond to

different renormalisation prescription.
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6 Mathematical structures of loop integrals

Recall: Shuffle algebras Consider a set of letters A. A word is an ordered sequence of letters:

w = l1l2...lk.

The word of length zero is denoted by e. A shuffle algebra A on the vector space of words is

defined by

(l1l2...lk) · (lk+1...lr) = ∑
shuffles σ

lσ(1)lσ(2)...lσ(r),

where the sum runs over all permutations σ, which preserve the relative order of 1,2, ...,k and of

k+1, ...,r. The counit ē is given by:

ē (e) = 1, ē(l1l2...ln) = 0.

The coproduct ∆ is given by:

∆(l1l2...lk) =
k

∑
j=0

(
l j+1...lk

)
⊗
(
l1...l j

)
.

The antipode S is given by:

S (l1l2...lk) = (−1)k lklk−1...l2l1.

Recall: Feynman- and Schwinger parameterisation.

n

∏
i=1

1

(−Pi)
νi

=
Γ(ν)

n

∏
i=1

Γ(νi)

1∫

0

(
n

∏
i=1

dxi x
νi−1
i

) δ

(

1−
n

∑
i=1

xi

)

(

−
n

∑
i=1

xiPi

)ν ,

ν =
n

∑
i=1

νi.

1

(−k2
1)(−k2

2)(−k2
3)

= 2

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3
δ(1− x1 − x2 − x3)

(
−x1k2

1 − x2k2
2 − x3k2

3

)3

= 2

1∫

0

dx1

1−x1∫

0

dx2
1

(
−x1k2

1 − x2k2
2 − (1− x1 − x2)k

2
3

)3
.

An alternative to Feynman parameters are Schwinger parameters. Here each propagator is rewrit-

ten as

1

(−P)ν
=

1

Γ(ν)

∞∫

0

dx xν−1 exp(xP).
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p1

k2

Figure 7: An example for irreducible scalar products in the numerator: The scalar product 2p1k2

cannot be expressed in terms of inverse propagators.

Therefore we obtain for our example

1

(−k2
1)(−k2

2)(−k2
3)

=

∞∫

0

dx1

∞∫

0

dx2

∞∫

0

dx3 exp
(
x1k2

1 + x2k2
2 + x3k2

3

)
.

Recall: Tensor reduction at one-loop with Passarino-Veltman algorithm:

2p · k = (k+ p)2 − k2 − p2.

The Passarino-Veltman algorithm is based on the observation, that for one-loop integrals a scalar

product of the loop momentum with an external momentum can be expressed as a combination

of inverse propagators. This property does no longer hold if one goes to two or more loops. Fig.

(7) shows a two-loop diagram, for which the scalar product of a loop momentum with an external

momentum cannot be expressed in terms of inverse propagators.

Recall: If U and F are functions, which are independent of the loop momentum, we have for

the integration over Minkowski space with dimension D = 2m−2ε:

∫
d2m−2εk

iπm−ε

(−k2)a

[−Uk2 +F ]
ν =

Γ(m+a− ε)

Γ(m− ε)

Γ(ν−m−a+ ε)

Γ(ν)

U−m−a+ε

F ν−m−a+ε
.

6.1 General tensor integrals

Let us now consider a tensor integral. After the change of variables for the diagonalisation of

the quadratic form, we have a polynomial in the Feynman or Schwinger parameters and the

loop momentum k in the numerator. Integrals with an odd power of a loop momentum in the

numerator vanish by symmetry, while integrals with an even power of the loop momentum can

be related by Lorentz invariance to scalar integrals:

∫
dDk

iπD/2
kµkν f (k2) =

1

D
gµν

∫
dDk

iπD/2
k2 f (k2),

∫
dDk

iπD/2
kµkνkρkσ f (k2) =

1

D(D+2)
(gµνgρσ +gµρgνσ +gµσgνρ)

∫
dDk

iπD/2
(k2)2 f (k2).
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The generalisation to arbitrary higher tensor structures is obvious. From the master formula:

a factor k2 in the numerator is equivalent (appart from prefactors) to a shift in the dimension

D → D+2. Let us introduce an operator D+, which shifts the dimension:

D+
∫

dDk

iπD/2
f
(
k2
)

=

∫
d(D+2)k

iπ(D+2)/2
f
(
k2
)

Shifting the loop momentum like in k′ = k− xp introduces the (Feynman or Schwinger) param-

eters x j in the numerator. For the tensor reduction it is convenient to work temporarily with

Schwinger parameters. Recall:

1

(−k2)ν
=

1

Γ(ν)

∞∫

0

dx xν−1 exp(xk2).

A Schwinger parameter x in the numerator is equivalent to raising the power of the original

propagator by one unit: ν → ν+1. It is convenient to denote by i+ the operator, which raises the

power of propagator i by one.

νii
+ 1
(
−k2

i

)νi
= νi

1
(
−k2

i

)νi+1
=

1

Γ(νi)

∞∫

0

dxi x
νi−1
i xi exp(xik

2).

All Schwinger integrals are rewritten in terms of these scalar integrals. Therefore, using an

intermediate Schwinger parametrisation, we have expressed all tensor integrals in terms of scalar

integrals. The price we paid is that these scalar integrals involve higher powers of the propagators

and/or have shifted dimensions. Each integral can be specified by its topology, its value for the

dimension D and a set of indices, denoting the powers of the propagators. In general the number

of different integrals is quite large.

6.2 Expansion of transcendental functions

To eliminate powers of the loop momentum in the numerator one can trade the loop momentum

in the numerator for scalar integrals (e.g. numerator = 1) with higher powers of the propagators

and shifted dimensions:

∫
d2m−2εk1

(2π)2m−2ε

1
(
k2

1

)ν1
(
k2

2

)ν2
(
k2

3

)ν3
.

In the second step an integral of type (1) is now converted into an infinite sum. Introducing

Feynman parameters, performing the momentum integration and then the integration over the

Feynman parameters one obtains

∫
d2m−2εk1

iπm−ε

1

(−k2
1)

ν1

1

(−k2
2)

ν2

1

(−k2
3)

ν3
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=
(
−p2

123

)m−ε−ν123 Γ(ν123 −m+ ε)

Γ(ν1)Γ(ν2)Γ(ν3)

1∫

0

da aν2−1(1−a)ν3−1

×
1∫

0

db bm−ε−ν23−1(1−b)m−ε−ν1−1 [1−a(1− x)]m−ε−ν123

=
(
−p2

123

)m−ε−ν123 1

Γ(ν1)Γ(ν2)

Γ(m− ε−ν1)Γ(m− ε−ν23)

Γ(2m−2ε−ν123)

×
∞

∑
n=0

Γ(n+ν2)Γ(n−m+ ε+ν123)

Γ(n+1)Γ(n+ν23)
(1− x)n ,

where x = p2
12/p2

123, ν23 = ν2 +ν3 and ν123 = ν1 +ν2 +ν3. To arrive at the last line of (1) one

expands [1−a(1− x)]m−ε−ν123 according to

(1− z)−c =
1

Γ(c)

∞

∑
n=0

Γ(n+ c)

Γ(n+1)
zn.

Then all Feynman parameter integrals are of the form

1∫

0

da aµ−1(1−a)ν−1 =
Γ(µ)Γ(ν)

Γ(µ+ν)
.

The infinite sum in the last line of (1) is a hypergeometric function, where the small parameter ε
occurs in the Gamma-functions:

2F1(ν2,−m+ ε+ν123;ν23;1− x) =

Γ(ν23)

Γ(ν2)Γ(−m+ ε+ν123)

∞

∑
n=0

Γ(n+ν2)Γ(n−m+ ε+ν123)

Γ(n+1)Γ(n+ν23)
(1− x)n ,

6.3 Nested Sums

In this section I review the underlying mathematical structure for the systematic expansion of

transcendental functions like the hypergeometric function in (1). I discuss properties of particular

forms of nested sums, which are called Z-sums and show that they form a Hopf algebra. This

Hopf algebra admits as additional structures a conjugation and a convolution product. Z-sums

are defined by

Z(n;m1, ...,mk;x1, ...,xk) = ∑
n≥i1>i2>...>ik>0

x
i1
1

i1
m1

. . .
x

ik
k

ik
mk
.

k is called the depth of the Z-sum and w = m1 + ...+mk is called the weight. If the sums go to

Infinity (n = ∞) the Z-sums are multiple polylogarithms:

Z(∞;m1, ...,mk;x1, ...,xk) = Lim1,...,mk
(x1, ...,xk).
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For x1 = ...= xk = 1 the definition reduces to the Euler-Zagier sums:

Z(n;m1, ...,mk;1, ...,1) = Zm1,...,mk
(n).

For n = ∞ and x1 = ...= xk = 1 the sum is a multiple ζ-value:

Z(∞;m1, ...,mk;1, ...,1) = ζ(m1, ...,mk).

The multiple polylogarithms contain as the notation already suggests as subsets the classical

polylogarithms Lin(x), as well as Nielsen’s generalised polylogarithms

Sn,p(x) = Lin+1,1,...,1(x,1, ...,1
︸ ︷︷ ︸

p−1

),

and the harmonic polylogarithms

Hm1,...,mk
(x) = Lim1,...,mk

(x,1, ...,1
︸ ︷︷ ︸

k−1

).

The usefulness of the Z-sums lies in the fact, that they interpolate between multiple polyloga-

rithms and Euler-Zagier sums.

In addition to Z-sums, it is sometimes useful to introduce as well S-sums. S-sums are defined

by

S(n;m1, ...,mk;x1, ...,xk) = ∑
n≥i1≥i2≥...≥ik≥1

x
i1
1

i1
m1

. . .
x

ik
k

ik
mk
.

The S-sums reduce for x1 = ...= xk = 1 (and positive mi) to harmonic sums:

S(n;m1, ...,mk;1, ...,1) = Sm1,...,mk
(n).

The S-sums are closely related to the Z-sums, the difference being the upper summation boundary

for the nested sums: (i−1) for Z-sums, i for S-sums. The introduction of S-sums is redundant,

since S-sums can be expressed in terms of Z-sums and vice versa. It is however convenient to

introduce both Z-sums and S-sums, since some properties are more naturally expressed in terms

of Z-sums while others are more naturally expressed in terms of S-sums.

The Z-sums form an algebra. The unit element in the algebra is given by the empty sum

e = Z(n).

The empty sum Z(n) equals 1 for non-negative integer n. Before I discuss the multiplication rule,

let me note that the basic building blocks of Z-sums are expressions of the form

xn
j

nm j
,
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which will be called “letters”. For fixed n, one can multiply two letters with the same n:

xn
1

nm1
· xn

2

nm2
=

(x1x2)
n

nm1+m2
,

e.g. the x j’s are multiplied and the degrees are added. Let us call the set of all letters the alphabet

A. As a short-hand notation I will in the following denote a letter just by X j = xn
j/nm j . A word is

an ordered sequence of letters, e.g.

W = X1,X2, ...,Xk.

The word of length zero is denoted by e. The Z-sums defined in (1) are therefore completely

specified by the upper summation limit n and a word W . A quasi-shuffle algebra A on the

vectorspace of words is defined by

e◦W = W ◦ e =W,

(X1,W1)◦ (X2,W2) = X1,(W1 ◦ (X2,W2))+X2,((X1,W1)◦W2)

+(X1 ·X2),(W1 ◦W2).

Note that “·” denotes multiplication of letters as defined in eq. (1), whereas “◦” denotes the

product in the algebra A , recursively defined in eq. (1). This defines a quasi-shuffle product for

Z-sums. The recursive definition in (1) translates for Z-sums into

Zm1,...,mk
(n)×Zm′

1,...,m
′
l
(n)

=
n

∑
i1=1

1

i
m1
1

Zm2,...,mk
(i1 −1)Zm′

1,...,m
′
l
(i1−1)

+
n

∑
i2=1

1

i
m′

1

2

Zm1,...,mk
(i2 −1)Zm′

2,...,m
′
l
(i2 −1)

+
n

∑
i=1

1

im1+m′
1

Zm2,...,mk
(i−1)Zm′

2,...,m
′
l
(i−1).

The proof that Z-sums obey the quasi-shuffle algebra is sketched in Fig. 8. The outermost sums

of the Z-sums on the l.h.s of (1) are split into the three regions indicated in Fig. 8. A simple

example for the multiplication of two Z-sums is

Z(n;m1;x1)Z(n;m1;x2) =

Z(n;m1,m2;x1,x2)+Z(n;m2,m1;x2,x1)+Z(n;m1+m2;x1x2).

The quasi-shuffle algebra A is isomorphic to the free polynomial algebra on the Lyndon

words. If one introduces a lexicographic ordering on the letters of the alphabet A, a Lyndon word

is defined by the property

W <V
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Figure 8: Sketch of the proof for the multiplication of Z-sums. The sum over the square is

replaced by the sum over the three regions on the r.h.s.

for any subwords U and V such that W =U,V . Here U,V means just concatenation of U and V .

The Z-sums form actuall a Hopf algebra. It is convenient to phrase the coalgebra structure in

terms of rooted trees. Z-sums can be represented as rooted trees without any sidebranchings. As

a concrete example the pictorial representation of a sum of depth three reads:

Z(n;m1,m2,m3;x1,x2,x3) =
n

∑
i1=1

i1−1

∑
i2=1

i2−1

∑
i3=1

x
i1
1

i1
m1

x
i2
2

i2
m2

x
i3
3

i3
m3

=

x1

x2

x3

The outermost sum corresponds to the root. By convention, the root is always drawn on the

top. Trees with sidebranchings are given by nested sums with more than one subsum, for exam-

ple:

n

∑
i=1

xi
1

im1
Z(i−1;m2,x2)Z(i−1;m3;x3) =

x1

x2 x3

Of course, due to the multiplication formula, trees with sidebranchings can always be reduced to

trees without any sidebranchings. The coalgebra structure is now formulated in terms of rooted

trees. I first introduce some notation how to manipulate rooted trees, following the notation of

Kreimer and Connes. An elementary cut of a rooted tree is a cut at a single chosen edge. An

admissible cut is any assignment of elementary cuts to a rooted tree such that any path from any

vertex of the tree to the root has at most one elementary cut. An admissible cut maps a tree t to a

monomial in trees t1 ◦ ...◦ tk+1. Note that precisely one of these subtrees t j will contain the root

of t. Denote this distinguished tree by RC(t), and the monomial delivered by the k other factors

by PC(t). The counit ē is given by

ē(e) = 1,

ē(t) = 0, t 6= e.

The coproduct ∆ is defined by the equations

∆(e) = e⊗ e,

64



∆(t) = e⊗ t + t ⊗ e+ ∑
adm. cuts C of t

PC(t)⊗RC(t),

∆(t1 ◦ ...◦ tk) = ∆(t1)(◦⊗◦)...(◦⊗◦)∆(tk).

The antipode S is given by

S(e) = e,

S(t) = −t − ∑
adm. cuts C of t

S
(

PC(t)
)

◦RC(t),

S(t1 ◦ ...◦ tk) = S(t1)◦ ...◦S(tk).

Since the multiplication in the algebra is commutative the antipode satisfies

S 2 = id.

Let me give some examples for the coproduct and the antipode for Z-sums:

∆Z(n;m1;x1) = e⊗Z(n;m1;x1)+Z(n;m1;x1)⊗ e,

∆Z(n;m1,m2;x1,x2) = e⊗Z(n;m1,m2;x1,x2)+Z(n;m1,m2;x1,x2)⊗ e

+Z(n;m2;x2)⊗Z(n;m1;x1),

SZ(n;m1;x1) = −Z(n;m1;x1),

SZ(n;m1,m2;x1,x2) = Z(n;m2,m1;x2,x1)+Z(n;m1 +m2;x1x2).

The Hopf algebra of nested sums has additional structures if we allow expressions of the form

xn
0

nm0
Z(n;m1, ...,mk;x1, ...,xk),

e.g. Z-sums multiplied by a letter. Then the following convolution product

n−1

∑
i=1

xi

im
Z(i−1; ...)

yn−i

(n− i)m′ Z(n− i−1; ...)

can again be expressed in terms of expressions of the form (1). An example is

n−1

∑
i=1

xi

i
Z1(i−1)

yn−i

(n− i)
Z1(n− i−1) =

xn

n

[

Z

(

n−1;1,1,1;
y

x
,
x

y
,
y

x

)

+Z

(

n−1;1,1,1;
y

x
,1,

x

y

)

+Z
(

n−1;1,1,1;1,
y

x
,1
)]

+(x ↔ y) .

In addition there is a conjugation, e.g. sums of the form

−
n

∑
i=1

(
n

i

)

(−1)i xi

im
S(i; ...)
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can also be reduced to terms of the form (1). Although one can easily convert between the

notations for S-sums and Z-sums, expressions involving a conjugation tend to be shorter when

expressed in terms of S-sums. The name conjugation stems from the following fact: To any func-

tion f (n) of an integer variable n one can define a conjugated function C ◦ f (n) as the following

sum

C ◦ f (n) =
n

∑
i=1

(
n

i

)

(−1)i f (i).

Then conjugation satisfies the following two properties:

C ◦1 = 1,

C ◦C ◦ f (n) = f (n).

An example for a sum involving a conjugation is

−
n

∑
i=1

(
n

i

)

(−1)i xi

i
S1(i) =

S

(

n;1,1;1− x,
1

1− x

)

−S (n;1,1;1− x,1) .

Finally there is the combination of conjugation and convolution, e.g. sums of the form

−
n−1

∑
i=1

(
n

i

)

(−1)i xi

im
S(i; ...)

yn−i

(n− i)m′ S(n− i; ...)

can also be reduced to terms of the form (1). An example is given by

−
n−1

∑
i=1

(
n

i

)

(−1)i
S(i;1;x) S(n− i;1;y) =

1

n

{

S(n;1;y)+(1− x)n

[

S

(

n;1;
1

1− 1
x

)

−S

(

n;1;
1− y

x

1− 1
x

)]}

+
(−1)n

n

{

S(n;1;x)+(1− y)n

[

S

(

n;1;
1

1− 1
y

)

−S

(

n;1;
1− x

y

1− 1
y

)]}

.

6.4 Expansion of hypergeometric functions

In this section I discuss how the algebraic tools introduced in the previous section can be used to

solve the problems outlined at the end of Sect. 6.2. First I give some motivation for the introduc-

tion of Z-sums: The essential point is that Z-sums interpolate between multiple polylogarithms

and Euler-Zagier-sums, such that the interpolation is compatible with the algebra structure. On
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the one hand, we expect multiple polylogarithm to appear in the Laurent expansion of the tran-

scendental functions (1), a fact which is confirmed a posteriori. Therefore it is important that

multiple polylogarithms are contained in the class of Z-sums. On the other the expansion param-

eter ε occurs in the functions (1) inside the arguments of Gamma-functions. The basic formula

for the expansion of Gamma-functions reads

Γ(n+ ε) = Γ(1+ ε)Γ(n)
[
1+ εZ1(n−1)+ ε2Z11(n−1)

+ε3Z111(n−1)+ ...+ εn−1Z11...1(n−1)
]
,

containing Euler-Zagier sums for finite n. As a simple example I discuss the expansion of

∞

∑
i=0

Γ(i+a1 + t1ε)Γ(i+a2+ t2ε)

Γ(i+1)Γ(i+a3+ t3ε)
xi

into a Laurent series in ε. Here a1, a2 and a3 are assumed to be integers. Up to prefactors the

expression in (1) is a hypergeometric function 2F1. Using Γ(x+1) = xΓ(x), partial fractioning

and an adjustment of the summation index one can transform (1) into terms of the form

∞

∑
i=1

Γ(i+ t1ε)Γ(i+ t2ε)

Γ(i)Γ(i+ t3ε)

xi

im
,

where m is an integer. Now using (1) one obtains

Γ(1+ ε)
∞

∑
i=1

(1+ εt1Z1(i−1)+ ...)(1+ εt2Z1(i−1)+ ...)

(1+ εt3Z1(i−1)+ ...)

xi

im
.

Inverting the power series in the denominator and truncating in ε one obtains in each order in ε
terms of the form

∞

∑
i=1

xi

im
Zm1...mk

(i−1)Zm′
1...m

′
l
(i−1)Zm′′

1...m
′′
n
(i−1)

Using the quasi-shuffle product for Z-sums the three Euler-Zagier sums can be reduced to single

Euler-Zagier sums and one finally arrives at terms of the form

∞

∑
i=1

xi

im
Zm1...mk

(i−1),

which are harmonic polylogarithms Hm,m1,...,mk
(x). This completes the algorithm for the expan-

sion in ε for sums of the form (1). Since the one-loop integral discussed in (1) is a special case

of (1), this algorithm also applies to the integral (1). In addition, this algorithm shows that in the

expansion of hypergeometric functions J+1FJ(a1, ...,aJ+1;b1, ...,bJ;x) around integer values of

the parameters ak and bl only harmonic polylogarithms appear in the result.
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Let me come back to the example of the one-loop Feynman integral discussed in Sect. 6.2.

For ν1 = ν2 = ν3 = 1 and m = 2 in (1) one obtains:

∫
d4−2εk1

iπ2−ε

1

(−k2
1)

1

(−k2
2)

1

(−k2
3)

=
Γ(−ε)Γ(1− ε)Γ(1+ ε)

Γ(1−2ε)

(
−p2

123

)−1−ε

1− x

∞

∑
n=1

εn−1H1, ...,1
︸ ︷︷ ︸

n

(1− x).

Here, all harmonic polylogarithms can be expressed in terms of Nielsen polylogarithms, which

in turn simplify to powers of the standard logarithm:

H1, ...,1
︸ ︷︷ ︸

n

(1− x) = S0,n(1− x) =
(−1)n

n!
(lnx)n .

This particular example is very simple and one recovers the well-known all-order result

Γ(1− ε)2Γ(1+ ε)

Γ(1−2ε)

(
−p2

123

)−1−ε

ε2

1− x−ε

1− x
,

which (for this simple example) can also be obtained by direct integration.

6.5 The integral representation of multiple polylogarithms

The multiple polylogarithms are special cases of Z-sums. They are obtained from Z-sums by

taking the outermost sum to infinity:

Z(∞;m1, ...,mk;x1, ...,xk) = Lim1,...,mk
(x1, ...,xk).

Being special cases of Z-sums they obey the quasi-shuffle Hopf algebra for Z-sums. Multiple

polylogarithms have been defined in this article via the sum representation (1). In addition, they

admit an integral representation. From this integral representation a second algebra structure

arises, which turns out to be a shuffle Hopf algebra. To discuss this second Hopf algebra it is

convenient to introduce for zk 6= 0 the following functions

G(z1, ...,zk;y) =

y∫

0

dt1

t1 − z1

t1∫

0

dt2

t2 − z2
...

tk−1∫

0

dtk

tk − zk

.

In this definition one variable is redundant due to the following scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk;xy)

If one further defines

g(z;y) =
1

y− z
,
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then one has

d

dy
G(z1, ...,zk;y) = g(z1;y)G(z2, ...,zk;y)

and

G(z1,z2, ...,zk;y) =

y∫

0

dt g(z1; t)G(z2, ...,zk; t).

One can sligthly enlarge the set and define G(0, ...,0;y) with k zeros for z1 to zk to be

G(0, ...,0;y) =
1

k!
(lny)k .

This permits us to allow trailing zeros in the sequence (z1, ...,zk) by defining the function G

with trailing zeros via (1) and (1). To relate the multiple polylogarithms to the functions G it is

convenient to introduce the following short-hand notation:

Gm1,...,mk
(z1, ...,zk;y) = G(0, ...,0

︸ ︷︷ ︸

m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸

mk−1

,zk;y)

Here, all z j for j = 1, ...,k are assumed to be non-zero. One then finds

Lim1,...,mk
(x1, ...,xk) = (−1)kGm1,...,mk

(
1

x1
,

1

x1x2
, ...,

1

x1...xk

;1

)

.

The inverse formula reads

Gm1,...,mk
(z1, ...,zk;y) = (−1)k Lim1,...,mk

(
y

z1
,
z1

z2
, ...,

zk−1

zk

)

.

Eq. (1) together with (1) and (1) defines an integral representation for the multiple polyloga-

rithms. To make this more explicit I first introduce some notation for iterated integrals

Λ∫

0

dt

t −an
◦ ...◦ dt

t −a1
=

Λ∫

0

dtn

tn −an

tn∫

0

dtn−1

tn−1−an−1
× ...×

t2∫

0

dt1

t1 −a1

and the short hand notation:

Λ∫

0

(
dt

t
◦
)m

dt

t −a
=

Λ∫

0

dt

t
◦ ...dt

t
︸ ︷︷ ︸

m times

◦ dt

t −a
.
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The integral representation for Limk,...,m1
(xk, ...,x1) reads then

Lim1,...,mk
(x1, ...,xk) = (−1)k

1∫

0

(
dt

t
◦
)m1−1

dt

t −b1

◦
(

dt

t
◦
)m2−1

dt

t −b2
◦ ...◦

(
dt

t
◦
)mk−1

dt

t −bk

,

where the b j’s are related to the x j’s

b j =
1

x1x2...x j
.

From the iterated integral representation (1) a second algebra structure for the functions G(z1, ...,zk;y)
(and through (1) also for the multiple polylogarithms) is obtained as follows: We take the z j’s as

letters and call a sequence of ordered letters w= z1, ...,zk a word. Then the function G(z1, ...,zk;y)
is uniquely specified by the word w = z1, ...,zk and the variable y. The neutral element e is given

by the empty word, equivalent to

G(;y) = 1.

A shuffle algebra on the vector space of words is defined by

e◦w = w◦ e = w,

(z1,w1)◦ (z2,w2) = z1,(w1 ◦ (z2,w2))+ z2,((z1,w1)◦w2).

Note that this definition is very similar to the definition of the quasi-shuffle algebra (1), except

that the third term in (1) is missing. In fact, a shuffle algebra is a special case of a quasi-shuffle

algebra, where the product of two letters is degenerate: X1 ·X2 = 0 for all letters X1 and X2 in

the notation of Sect. 6.3. The definition of the shuffle product (1) translates into the following

recursive definition of the product of two G-functions:

G(z1, ...,zk;y)×G(zk+1, ...,zn;y) =
y∫

0

dt

t − z1
G(z2, ...,zk; t)G(zk+1, ...,zn; t)

+

y∫

0

dt

t − zk+1

G(z1, ...,zk; t)G(zk+2, ...,zn; t)

For the discussion of the coalgebra part for the functions G(z1, ...,zk;y) we may proceed as

in Sect. 6.3 and associate to any function G(z1, ...,zk;y) a rooted tree without sidebranchings as

in the following example:

G(z1,z2,z3;y) =

z1

z2

z3
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The outermost integration (involving z1) corresponds to the root. The formulae for the coproduct

(1) and the antipode (1) apply then also to the functions G(z1, ...,zk;y).
A shuffle algebra is simpler than a quasi-shuffle algebra and one finds for a shuffle alge-

bra besides the recursive definitions of the product, the coproduct and the antipode also closed

formulae for these operations. For the product one has

G(z1, ...,zk;y) G(zk+1, ...,zk+l;y) = ∑
shu f f le

G
(
zσ(1), ...,zσ(k+l);y

)
,

where the sum is over all permutations which preserve the relative order of the strings z1, ...,zk

and zk+1, ...,zk+l. This explains the name “shuffle product”. For the coproduct one has

∆G(z1, ...,zk;y) =
k

∑
j=0

G(z1, ...,z j;y)⊗G(z j+1, ...,zk;y)

and for the antipode one finds

SG(z1, ...,zk;y) = (−1)kG(zk, ...,z1;y).

The shuffle multiplication is commutative and the antipode satisfies therefore

S 2 = id.

From (1) this is evident.

6.6 The antipode and integration-by-parts

Integration-by-parts has always been a powerful tool for calculations in particle physics. By

using integration-by-parts one may obtain an identity between various G-functions. The starting

point is as follows:

G(z1, ...,zk;y) =

y∫

0

dt

(
∂

∂t
G(z1; t)

)

G(z2, ...,zk; t)

= G(z1;y)G(z2, ...,zk;y)−
y∫

0

dt G(z1; t)g(z2; t)G(z3, ...,zk; t)

= G(z1;y)G(z2, ...,zk;y)−
y∫

0

dt

(
∂

∂t
G(z2,z1; t)

)

G(z3, ...,zk; t).

Repeating this procedure one arrives at the following integration-by-parts identity:

G(z1, ...,zk;y)+(−1)kG(zk, ...,z1;y)

= G(z1;y)G(z2, ...,zk;y)−G(z2,z1;y)G(z3, ...,zk;y)+ ...

−(−1)k−1G(zk−1, ...z1;y)G(zk;y),
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which relates the combination G(z1, ...,zk;y)+(−1)kG(zk, ...,z1;y) to G-functions of lower depth.

This relation is useful in simplifying expressions. Eq. (1) can also be derived in a different way.

In a Hopf algebra we have for any non-trivial element w the following relation involving the

antipode:

∑
(w)

w(1) ·S(w(2)) = 0.

Here Sweedler’s notation has been used. Sweedler’s notation writes the coproduct of an element

w as

∆(w) = ∑
(w)

w(1)⊗w(2).

Working out the relation (1) for the shuffle algebra of the functions G(z1, ..., zk;y), we recover

(1).

We may now proceed and check if (1) provides also a non-trivial relation for the quasi-shuffle

algebra of Z-sums. This requires first some notation: A composition of a positive integer k is a

sequence I = (i1, ..., il) of positive integers such that i1 + ...il = k. The set of all composition of

k is denoted by C (k). Compositions act on Z-sums as

(i1, ..., il)◦Z(n;m1, ...,mk;x1, ...,xk)

= Z
(
n;m1 + ...+mi1,mi1+1 + ...+mi1+i2, ...,mi1+...+il−1+1 + ...

+mi1+...+il ;x1...xi1,xi1+1...xi1+i2, ...,xi1+...+il−1+1...xi1+...+il

)
,

e.g. the first i1 letters of the Z-sum are combined into one new letter, the next i2 letters are

combined into the second new letter, etc.. With this notation for compositions one obtains the

following closed formula for the antipode in the quasi-shuffle algebra:

SZ(n;m1, ...,mk;x1, ...,xk) = (−1)k ∑
I∈C (k)

I ◦Z(n;mk, ...,m1;xk, ...,x1)

From (1) we then obtain

Z(n;m1, ...,mk;x1, ...,xk)+(−1)kZ(n;mk, ...,m1;xk, ...,x1)

= − ∑
adm. cuts

PC(Z(n;m1, ...,mk;x1, ...,xk))

·S
(

RC(Z(n;m1, ...,mk;x1, ...,xk))
)

−(−1)k ∑
I∈C (k)\(1,1,...,1)

I ◦Z(n;mk, ...,m1;xk, ...,x1).

Again, the combination Z(n;m1, ...,mk;x1, ...,xk)+(−1)kZ(n;mk, ...,m1;xk, ...,x1) reduces to Z-

sums of lower depth, similar to (1). We therefore obtained an “integration-by-parts” identity for

objects, which don’t have an integral representation. We first observed, that for the G-functions,
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which have an integral representation, the integration-by-parts identites are equal to the iden-

tities obtained from the antipode. After this abstraction towards an algebraic formulation, one

can translate these relations to cases, which only have the appropriate algebra structure, but not

necessarily a concrete integral representation. As an example we have

Z(n;m1,m2,m3;x1,x2,x3)−Z(n;m3,m2,m1;x3,x2,x1) =

Z(n;m1;x1)Z(n;m2,m3;x2,x3)−Z(n;m2,m1;x2,x1)Z(n;m3;x3)

−Z(n;m1 +m2;x1x2)Z(n;m3;x3)+Z(n;m2 +m3,m1;x2x3,x1)

+Z(n;m3,m1+m2;x3,x1x2)+Z(n;m1+m2 +m3;x1x2x3),

which expresses the combination of the two Z-sums of depth 3 as Z-sums of lower depth. The

analog example for the shuffle algebra of the G-function reads:

G(z1,z2,z3;y)−G(z3,z2,z1;y) = G(z1;y)G(z2,z3;y)−G(z2,z1;y)G(z3;y).

Multiple polylogarithms obey both the quasi-shuffle algebra and the shuffle algebra. Therefore

we have for multiple polylogarithms two relations, which are in general independent.

6.7 Numerical evaluation of multiple polylogarithms

The real part of the dilogarithm Li2(x) is numerically evaluated as follows: Using the relations

Li2(x) = −Li2(1− x)+
π2

6
− ln(x) ln(1− x),

Li2(x) = −Li2

(
1

x

)

− π2

6
− 1

2
(ln(−x))2 ,

the argument is shifted into the range −1 ≤ x ≤ 1/2. Then

Li2(x) =
∞

∑
i=0

Bi

(i+1)!
zi+1

= B0z+
B1

2
z2 +

∞

∑
n=1

B2n

(2n+1)!
z2n+1,

with z =− ln(1−x) and the Bi are the Bernoulli numbers. The Bernoulli numbers Bi are defined

through the generating function

t

et −1
=

∞

∑
i=0

Bn
tn

n!
.

It is also convenient to use the Clausen function Cl2(x) as an auxilary function.
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6.8 Mellin-Barnes integrals

(A1 +A2)
−a =

1

2πi

i∞∫

−i∞

dσ
Γ(−σ)Γ(α+σ)

Γ(α)
Aσ

1 A−α−σ
2

with |arg A1 − arg A2| < π. The contour is such that the poles of Γ(−σ) (UV-poles) are to the

right and the poles of Γ(α+σ) (IR-poles) are to the left.

Closing the contour to the left:

1

2πi

∫
dσ... = ∑

res

...

Closing the contour to the right (negative “umlauf” number):

1

2πi

∫
dσ... = −∑

res

...

Barnes first lemma:

1

2πi

i∞∫

−i∞

dzΓ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) =
Γ(a+ c)Γ(a+d)Γ(b+ c)Γ(b+d)

Γ(a+b+ c+d)

if none of the poles of Γ(a+ z)Γ(b+ z) coincides with the ones from Γ(c− z)Γ(d− z) and if the

contour separates the increasing series of poles from the decreasing ones.

Barnes second lemma:

1

2πi

i∞∫

−i∞

dz
Γ(a+ z)Γ(b+ z)Γ(c+ z)Γ(d− z)Γ(e− z)

Γ(a+b+ c+d + e+ z)

=
Γ(a+d)Γ(b+d)Γ(c+d)Γ(a+ e)Γ(b+ e)Γ(c+ e)

Γ(a+b+d+ e)Γ(a+ c+d + e)Γ(b+ c+d + e)
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7 From differential geometry to Yang-Mills theory

Additional textbooks:

- O. Forster, Analysis 3, Vieweg, (differential forms)

- M. Schottenloher, Geometrie und Symmetrie in der Physik, Vieweg,

- M. Nakahara, Geometry, Topology and Physics, Institute of Physics

7.1 Manifolds

M is an n-dimensional differentiable manifold if

• M is a topological space

• M is provided with a family of open sets {Ui} together with corresponding mappings ϕi,

such that the family {Ui} covers M, that is,

∪Ui = M

and where ϕi is a homeomorphism from Ui onto an open subset Vi ⊆ Rn.

• Given Ui and U j with Ui ∩U j 6= /0, the map ϕi j = ϕiϕ
−1
j from ϕ j(Ui ∩U j) to ϕi(Ui ∩U j) is

infinitely differentiable.

The pair (Ui,ϕi) is called a chart, while the whole family {(Ui,ϕi)} is called an atlas. The subset

Ui is called the coordinate neighbourhood while ϕi is the coordinate function or simply the coor-

dinate. Note that M is locally Euclidean and in each coordinate neighbourhood M looks like an

open subset of Rn. But note that we do not require that M be Rn globally.

A map f : X → Y between two topological spaces X and Y is called a homeomorphism if it

is continous and has an inverse f−1 : Y → X which is also continous. In that case X and Y are

said to be homeomorphic to each other.

A map f : X → Y is called a diffeomorphism if it is a homeomorphism and f i ∈C∞.

Let I ⊂ R be an interval and γ : I → M ⊂ Rn a differentiable map. A tangent vector to M at

the point γ(t0) is defined by

d

dt
γ(t)

∣
∣
∣
∣
t0

∈ Rn.

The set of all tangent vectors to M at the point p is denoted by TpM. We denote by T ∗
p M the dual

vector space of TpM, i.e. the set of all linear forms

φ : TpM → R.
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Elements of φ ∈ T ∗
p M are called co-tangent vectors.

A vector field is a map

X : M →Rn

X associates to each point p ∈ M a tangent vector X(p) ∈ Rn.

7.2 Differential forms

A differential form of order one is a map

ω : M →
⋃
p

T ∗
p M

with ω(p) ∈ T ∗
p M. The differential form ω associates to each point p ∈ M a co-tangent vector

ω(p) ∈ T ∗
p M. We denote the value of ω(p) applied to the tangent vector v ∈ TpM by

〈ω(p),v〉

Example: Let U ⊂Rn and let f : U →R be a differentiable function. The total differential d f of

f is defined by

〈d f (p),v〉 =
n

∑
i=1

∂ f (p)

∂xi

vi.

Coordinate representation: Every differential form of order one can be written as

ω =
n

∑
i=1

fi(x)dxi.

Integrals along a curve: Let γ : [a,b]→U be a curve . The the integral of ω along γ is defined by

∫

γ

ω =

b∫

a

〈ω(γ(t),γ′(t)〉dt.

Wedge product of linear forms: Let ω1, ..., ωK ∈V ∗ denote linear forms. The wedge product is

a map

ω1 ∧ ...∧ωk : V k → R

defined by

(ω1 ∧ ...∧ωk)(v1, ...,vk) = det





〈ω1,v1〉 ... 〈ω1,vk〉
... ... ...

〈ωk,v1〉 ... 〈ωk,vk〉




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Coordinate representation of differential forms of order k:

ω =
1

k!
∑ fi1...ikdxi1 ∧ ...∧dxik.

Pull-back of differential forms: Let U ⊂ Rn and let

ω =
1

k!
∑ fi1...ikdxi1 ∧ ...∧dxik.

be a k-form in U . Further assume that an open set V ⊂ Rm and a differential map

ϕ = (ϕ1, ...,ϕn) : V →U

are given. Then it is possible to define a k-form ϕ∗ω in V by

ϕ∗ω =
1

k!
∑( fi1...ik ◦ϕ)dϕi1 ∧ ...∧dϕik.

Remark: k-forms can be integrated over k-dimensional (sub-) manifolds.

Example:

A = i
e

~c
Aµ(x)dxµ,

defines a one-form. Further

dA = d
(

i
e

~c
Aνdxν

)

= i
e

~c
∂µAνdxµ ∧dxν

= i
e

~c

1

2

(
∂µAν−∂νAµ

)
dxµ ∧dxν.

This motivates the definition of the field strength two-form

F = dA = i
e

~c

1

2
Fµνdxµ ∧dxν.

7.3 Riemannian geometry

We consider the transformation from a coordinate system x0, x1, x2, x3 to the coordinate system

x′0, x′1, x′2, x′3:

xµ = f µ(x′0,x′1,x′2,x′3).

Under this transformation the differentials of the coordinates transform according to

dxµ =
∂xµ

∂x′ν
dx′ν.

77



A contra-variant four-vector Aµ is a set of four quantities, which transforms under a coordinate

transformation as these differentials:

Aµ =
∂xµ

∂x′ν
A′ν.

Let φ be a scalar function. The derivatives ∂φ/∂xµ transform under a change of coordinate sys-

tems as

∂φ

∂xµ
=

∂φ

∂x′ν
∂x′ν

∂xµ
.

A co-variant four-vector Aµ is a set of four quantities, which transforms under a coordinate

transformation as the derivatives of a scalar function:

Aµ =
∂x′ν

∂xµ
A′

ν

A tangent vector can be expressed at every point as a linear combination of basis vectors êµ:

V = V µêµ.

For the basis vectors the notation

∂µ = êµ.

is often used. A vector field associates to every point of a manifold a vector.

The dual of a vector field is a one-form. A one-form associates at every point of the mani-

fold to a vector a (real or complex) number. A basis for the space of one-forms is given by the

differentials dxµ:

ω = ωµdxµ.

The duality between vector fields and one-forms implies

dxµ (∂ν) = δ
µ
ν.

A tensor field with r contra-variant and s co-variant indices maps at the point x ∈ M r co-tangent

vectors and s tangent vectors to a real (or complex) number.

(T r
s )x : (T ∗

x M)r × (TxM)s → R,

ω1, ...,ωr,V1, ...,Vs → (T r
s )x

(
ω1, ...,ωr,V1, ...,Vs

)
.

Coordinate representation:

t
µ1,...,µr
ν1,...,νs

(x) = (T r
s )x (dxµ1 , ...,dxµr ,∂ν1

, ...,∂νs
) .
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Representation of the tensor field in the basis:

T r
s =

D−1

∑
µ1,...,µr=0

D−1

∑
ν1,...,νs=0

t
µ1,...,µr
ν1,...,νs

(x)
(
∂µ1

⊗ ...⊗∂µr

)
⊗ (dxν1 ⊗ ...⊗dxνs) .

Example: A (0,2)-tensor field is defined by

g =
D−1

∑
µ,ν=0

gµν(x)dxµ ⊗dxν.

Definition of a Riemannian manifold: Let M be a differentiable manifold. A Riemannian metric

g on M is a type (0,2)-tensor field on M which satisfies the following axioms at each point x ∈M:

gx(U,V ) = gx(V,U)

gx(U,U) ≥ 0 where the equality holds only when U = 0

Here U,V ∈ TxM and gx = g|x.

In short, gx is a symmetric positive-definite bilinear form.

A metric is called semi-Riemannian metric, if

gx(U,V) = gx(V,U),

and if gx(U,V) = 0 holds for all U ∈ TxM, then V = 0.

A manifold with a semi-Riemannian metric is called a semi-Riemannian manifold.

Remark: Since the metric is symmetric, all eigenvalues of gµν are real. For a Riemannian man-

ifold all eigenvalues are positive. A semi-Riemannian manifold may have in addition also neg-

ative eigenvalues. A manifold with exactly one positive eigenvalue of gµν (and (D−1) negative

eigenvalues) is called Lorentz manifold.

Let (U,ϕ) be a chart in M and {xµ} the coordinates. The metric is written as

gp = gµν(p)dxµ ⊗dxν

where Einstein’s summation convention has been used.

The inverse of gµν is denoted by gµν.

gµρgρν = gνρgρµ = δν
µ

The metric gives rise to an isomorphism between TxM and T ∗
x M expressed by

ωµ = gµνUν Uµ = gµνων

where Uµ ∈ TxM and ωµ ∈ T ∗
x M.
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Summary

Differential form:

ω = ωµdxµ

Vector field:

X = Xµ∂µ

Differential forms of order r:

ω = ωµ1µ2...µr
dxµ1 ∧ ...∧dxµr

In general: tensor fields:

T r
s =

D−1

∑
µ1,...,µr=0

D−1

∑
ν1,...,νs=0

t
µ1,...,µr
ν1,...,νs

(x)
(
∂µ1

⊗ ...⊗∂µr

)
⊗ (dxν1 ⊗ ...⊗dxνs) .

Metric: (0,2)-tensor field

g =
D−1

∑
µ,ν=0

gµν(x)dxµ ⊗dxν.

The metric induces an isomorphism between TxM and T ∗
x M expressed by

ωµ = gµνXν

Example for a differential form:

A = i
e

~c
Aµ(x)dxµ,

This defines a one-form. We have further

dA = d
(

i
e

~c
Aνdxν

)

= i
e

~c
∂µAνdxµ ∧dxν

= i
e

~c

1

2

(
∂µAν−∂νAµ

)
dxµ ∧dxν.

This motivates to define the field strength two-form as

F = dA = i
e

~c

1

2
Fµνdxµ ∧dxν.
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7.4 Hodge theory

Let M be a m-dimensional manifold. If M is endowed with a metric, there is a natural iso-

morphism between the space of all r-forms and the space of all (m− r) forms, given by the

Hodge-operator ∗.

∗ : Ωr(M)→ Ωm−r(M)

∗(dxµ1 ∧ ...∧dxµr) =

√

|g|
(m− r)!

ε
µ1...µr

νr+1...νm
dxνr+1 ∧ ...∧dxνm

Remark:

∗∗ω = ±ω.

The sign depends on the signature of the metric. In particular

∗∗ω =

{
(−1)r(m−r)ω Euclidean manifold

(−1)r(m−r)+1ω Lorentz manifold

With the help of the Hodge operator one defines a scalar product between two r-forms. Let

ω =
1

r!
ωµ1...µr

dxµ1 ∧ ...∧dxµk ,

η =
1

r!
ηµ1...µr

dxµ1 ∧ ...∧dxµk .

We define

(ω,η) =
∫

M

ω∧∗η

=
1

r!

∫

M

ωµ1...µr
ηµ1...µr

√

|g|dx1 ∧ ...∧dxm

This scalar product is symmetric:

(ω,η) = (η,ω)

Example:

∗F = ∗
(

i
e

~c

1

2
Fµνdxµ ∧dxν

)

=
1

4
i

e

~c
Fµνεµνρσdxρ ∧dxσ =

(

i
e

~c

) 1

2
F̃µνdxµ ∧dxν.

We have further

(F,F) =
1

2

(

i
e

~c

)2
∫

d4xFµνFµν

and therefore

∫
d4x L =

1

8π

(
~c

e

)2

(F,F) .
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7.5 The covariant derivative

Motivation: In flat space-times the derivatives of a vector

∂

∂xν
Aµ

form a tensor. However, in curved space-times this is no longer true: The derivatives of a vector

do not transform as a rank two tensor. Taking the derivative implies comparing a vector field at

two different points.

Definition of an affine connection: An affine connection ∇ is a map

∇ : Vect(M)×Vect(M)→ Vect(M)

(X ,Y )→ ∇XY,

which satisfies the following conditions

∇(X+Y )Z = ∇XZ +∇Y Z

∇( f X)Y = f ∇XY

∇X(Y +Z) = ∇XY +∇X Z

∇X( fY ) = X( f )Y + f ∇XY

where f ∈ F(M) and X ,Y,Z ∈ Vect(M).
Take a chart (U,ϕ) with the coordinate x = ϕ(p) and define D3 functions called the connection

coefficients C
µ

νλ
by

∇eµ
eν = eλCλ

µν

where {eµ}= {∂/∂µ} is the coordinate basis in TpM. For functions f ∈ F(M) one defines

∇X f = X( f ) = Xµ

(
∂ f

∂xµ

)

Then ∇X( fY ) looks exactly like the Leibnitz rule,

∇X( fY ) = (∇X f )Y + f (∇XY )

We further set for tensors

∇X(T1 ⊗T2) = (∇X T1)⊗T2 +T1 ⊗ (∇XT2)

In the following we use the notation

∇µ = ∇eµ

82



We have

∇XY = Xµ∇µ (Y
νeν) = Xµ

(
∂Y ν

∂xµ
eν +Y ν∇µeν

)

= Xµ

(

∂Y λ

∂xµ
+Y νCλ

µν

)

eλ.

∇XY is independent of the derivative of X .

∇µ = ∇êµ

is called the covariant derivative.

Parallel transport: A vector X is said to be parallel transported along a curve given through

V if

∇V X = 0

holds.
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Summary

Recall: We already formulated electro-dynamics in the language of differential geometry. There

we associated to the gauge potential Aµ(x) the one-form

A = i
e

~c
Aµ(x)dxµ,

This one-form defines the covariant derivative

DA = d +A = d + i
e

~c
Aµdxµ

and the field strength / curvature by

F = D2
A = dA+A∧A = dA = i

e

~c

1

2
Fµνdxµ ∧dxν.

Fµν is the usual field strength tensor:

Fµν = ∂µAν−∂νAµ.

If we introduce the Hodge operation for differential forms

∗(dxµ1 ∧ ...∧dxµr) =

√

|g|
(m− r)!

ε
µ1...µr

νr+1...νm
dxνr+1 ∧ ...∧dxνm,

we can write the action for electromagnetic fields as

S =
1

8πc

(
~c

e

)2∫
F ∧∗F.

7.6 Fibre bundles

Recall: We already considered manifolds. For every point X of a manifold M we considered the

tangent space TxM. For a D-dimensional manifold we have

TxM ∼ RD.

It is therefore tempting to consider the product space

E = M×RD,

together with a projection

π : M×RD → M,

(x,V )→ x.
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Let

∂

∂xµ
and

∂

∂yµ

be two bases of the tangent space at point x. Then we have for the transformation matrix

∂yν

∂xµ
∈ GL(D,R).

The group GL(D,R) is called in this context the structure group of E.

This construction can be generalised in the following points:

- Instead of the tangent space, which is attached to every point of the base space, we can consider

an arbitrary manifolds attached to every point of the base space.

- The structure group need not be GL(D,R), but can be any Lie group.

- The requirement of a global product structure is very restrictive. This can be relaxed towards a

requirement, that this holds only locally, i.e. in a neighbourhood of every point.

A differentiable fibre bundle (E,π,M,F,G) consists of the following elements :

• a differentiable manifold E called the total space

• a differentiable manifold M called the base space

• a differentiable manifold F called the fibre

• a surjection π : E → M called the projection. The inverse image π−1(p) = Fp is called the

fibre at p.

• a Lie group G called the structure group, which acts on F from the left.

• a set of open coverings {Ui} of M with a diffeomorphism

φi : Ui ×F → π−1(Ui)

such that πφi(p, f ) = p.

The map φi is called the local trivialisation, since φ−1
i maps π−1(Ui) onto the direct product

Ui ×F .

• If we write φi(p, f ) = φi,p( f ), the map φi,p : F → Fp is a diffeomorphism. On Ui ∩U j 6= /0
we require that

ti j(p) = φ−1
i,p φ j,p : F → F

be an element of G, satiesfying the consistency conditions

tii = id, ti j = t−1
ji , ti jt jk = tik.

The {ti j} are called the transition functions.

85



Remark: The product structure Ui ×F is required only locally. Therefore a fibre bundle can be

twisted (example: Möbius strip).

Special cases of fibre bundles: A vector bundle is a fibre bundle, whose fibre is a vector space.

A principal bundle has a fibre, which is identical with the structure group G. A principal bundle

is also often called a G bundle over M and denoted P(M,G).

A section σ : M → E is a smooth map, which satiesfies πσ = idM .

7.7 Connections on fibre bundles

If we consider as fibre the tangent space, we obtain a bundle which is known as tangent bundle.

A point in the total space is denoted by (x,V ), where x is a point of the base space and V denotes

a tangent vector. We already considered the problem of comparing tangent vectors V and W

attached to the points x and y, respectively. The problem was solved with the introduction of

an affine connection. The affine connection was used to define the parallel transport of tangent

vectors.

We now consider the corresponding situation for a principal bunlde. First we note, that in this

case the fibre is not a vector space, but a Lie group. Never the less, we face the same problem:

We consider a point (x,g0) in the total space. If we move in the base space from x to y, to which

point (y,g1) does this correspond in the total space ?

In order to answer this question we again define parallel transport through a connection.

We consider the tangent space T P of the total space P. Let u = (x,g0) be a point in the total

space of the principal bundle P(M,G) and let Gx be the fibre at x = π(u). The vertical subspace

VuP is a subspace of the tangent space TuP, which is tangent to Gx at u.

A connection one-form ω ∈ g⊗ T ∗P, which takes values in the Lie algebra g of G, is a pro-

jection of TuP onto the vertical component VuP ∼= g.

We require further

ωug(Rg∗X) = g−1ωu(X)g.

The horizontal subspace HuP is defined to be the kernel of ω. Thus ω defines a unique separation

of the tangent space TuP into the vertical subspace VuP and the horizontal subspace HuP such

that

TuP = HuP⊕VuP.

Horizontal lift : Let P(M,G) be a principal bundle and let γ : [0,1]→ M be a curve in M. A curve

γ̃ : [0,1]→ P is said to be a horizontal lift of γ if πγ̃ = γ and the tangent vector to γ̃(t) always
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belongs to Hγ̃(t)P.

A point u1 is said to be parallel transported from u0, if there exists a horizontal lift γ̃ between u1

and u0.

Remark: Therefore the connection defines the horizontal lift and parallel transport.

Pull-back of differential forms: Let U ⊂ Rn and let

ω =
1

k!
∑ fi1...ikdxi1 ∧ ...∧dxik.

be a k-form in U . Further consider an open set V ⊂ Rm and a smooth map

ϕ = (ϕ1, ...,ϕn) : V →U.

Then one defines a k-form ϕ∗ω in V through

ϕ∗ω =
1

k!
∑( fi1...ik ◦ϕ)dϕi1 ∧ ...∧dϕik.

Remark: k-forms can be integrated over k-dimensional (sub-) manifolds.

With the help of a section σ : M → P we can pull-back the connection form ω to M:

A = σ∗ω.

We use the notation

A = −
( g

~c

)

iT aAa
µdxµ =

( g

i~c

)

T aAa
µdxµ

Here, g is the coupling constant. In electro-dynamcis g equals the elementary charge e.

Remark: For two sections σ1 and σ2 we always have

σ2(x) = σ1(x)U(x),

where U(x) is a x-dependent element of the Lie group G. Then we obtain for the local expressions

of the connection one-form

A2 = U−1A1U +U−1dU

This is nothing else than a gauge transformation.

The connection one-form defines now the covariant derivative

DA = d+A = d −
( g

~c

)

iT aAa
µdxµ.
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Remark: This holds for any Lie group G. For electro-dynamics we have the group U(1). In this

case the group has only one generator, which we can take as 1. The formula reduces to

DA = d +A = d −
( e

~c

)

iAµdxµ,

This formula we encountered already previously.

With the help of the connection one-form and the covariant derivative we define the curvature

two-form of the fibre bundle by

F = DAA = dA+A∧A.

Remark: This definition is in close analogy with the definition of the Riemannian curvature ten-

sor. Also the Riemannian curvature tensor can be calculated through the covariant derivative of

the affine connection.

Note that with

Aµ =
g

i
T aAa

µ

we have

dA = d (Aνdxν) = ∂µAνdxµ ∧dxν

=
1

2

(
∂µAν −∂νAµ

)
dxµ ∧dxν

A∧A = Aµdxµ ∧Aνdxν =
1

2

(
AµAν −AνAµ

)
dxµ ∧dxν

=
1

2

[
Aµ,Aν

]
dxµ ∧dxν

and therefore

F =
1

2

(
∂µAν −∂νAµ +

[
Aµ,Aν

])
dxµ ∧dxν

=
1

2
Fµνdxµ ∧dxν

in agreement with the previous notation.

Fµν =
g

i
T aFa

µν

In local coordinates one has

F = −1

2

( g

~c

)

iT aFa
µνdxµ ∧dxν,
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where

Fa
µν = ∂µAa

ν −∂νAa
µ +
( g

~c

)

f abcAb
µAc

ν.

In this context we also introduce the dual field strength

F̃µν =
1

2
εµνρσFρσ

or equivalently, the dual field strength two-form

∗F = ∗
(

1

2
Fµνdxµ ∧dxν

)

=
1

4
εµνρσFµνdxρ ∧dxσ

=
1

2
F̃µνdxµ ∧dxν

Then the action can be written as

S = −1

4

∫
d4x Fa

µνFa µν =
1

g2

∫
Tr F ∧∗F

Substituting the explicit expressions, we recover the previous result:

S =
1

2g2

∫
Tr FµνFµνdx0 ∧dx1 ∧dx2 ∧dx3

With the Hodge inner product the action can be written as

S =
1

g2

∫
Tr F ∧∗F =

1

g2
Tr (F,F) =

1

g2
Tr ||F| |2

Fa
µν = ∂µAa

ν −∂νAa
µ +
( g

~c

)

f abcAb
µAc

ν.

The Lagrange density is invariant under the following gauge transformation:

T aAa
µ(x) → U(x)

(

T aAa
µ(x)+ i

~c

g
∂µ

)

U(x)†

where

U(x) = exp(−iT aθa(x)) .

The Bianchi identity reads

∂µF̃µν +
[
Aµ, F̃

µν
]

= 0

The (classical) Yang-Mills field equations read

∂µFµν +
[
Aµ,F

µν
]

= 0

Summary:
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Maxwell Yang-Mills

Bianchi ∂µF̃µν = 0 ∂µF̃µν +
[
Aµ, F̃

µν
]
= 0

Euler-Lagrange ∂µFµν = 0 ∂µFµν +
[
Aµ,F

µν
]
= 0
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7.8 Instantons

Recall from the last lecture:

S =
1

g2

∫
Tr F ∧∗F =

1

2g2

∫
d4x Tr FµνFµν

F =
1

2
Fµνdxµ ∧dxν, Fµν =

g

i
T aFa

µν,

A = Aµdxµ, Aµ =
g

i
T aAa

µ.

F = dA+A∧A.

Dual field strength:

∗F =
1

2
F̃µνdxµ ∧dxν, F̃µν =

1

2
εµνρσFρσ

Bianchi identity:

∂µF̃µν +
[
Aµ, F̃

µν
]

= 0

Euler-Lagrange equations:

∂µFµν +
[
Aµ,F

µν
]

= 0

Gauge transformations:

A′
µ = U−1AµU +U−1∂µU.

In this lecture: SU(2) Yang-Mills theory in euclidean space. The generators of SU(2) are pro-

portional to the Pauli matrices:

I1 =
1

2

(
0 1

1 0

)

I2 = 1
2

(
0 −i

i 0

)

I3 =
1

2

(
1 0

0 −1

)

Let us look at classical solutions for the Yang-Mills theory, such that the action is finite

S =
1

2g2

∫
d4x Tr FµνFµν

In Euclidean space this implies

lim
|x|→∞

Fµν(x) = 0.
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One is tempted to conclude that this implies

lim
|x|→∞

Aµ(x) = 0.

But this condition is too strong. In fact, the vanishing of the field strength implies only

lim
|x|→∞

Aµ(x) = U−1(x)∂µU(x),

which is obtained from Aµ(x)= 0 by a gauge transformation. A field configuration like U−1(x)∂µU(x)
is called “pure gauge”. Therefore we look at classical solutions, which approach a pure gauge

configuration at infinity.

For four-dimensional Euclidean space the points at infinity form a three-sphere. The gauge-

transformation U at infinity represents therefore a mapping from S3 to SU(2). Since SU(2) is

topologically equivalent to a three-sphere, we look at mappings

S3 → S3.

These mappings are characterized by a topological winding number.

Simple example:

U(1) → U(1),

eiφ → eniφ.

The winding number is given by

n =
1

16π2

∫
d4x Tr FµνF̃µν

In Euclidean space we have the positivity condition

∫
d4x Tr

(
Fµν ± F̃µν

)(
Fµν ± F̃µν

)
≥ 0.

Since further

F̃µνF̃µν = FµνFµν

we have

(
Fµν ± F̃µν

)(
Fµν ± F̃µν

)
= 2FµνFµν ±2FµνF̃µν

and therefore

∫
d4x Tr FµνFµν ≥

∣
∣
∣
∣

∫
d4x Tr FµνF̃µν

∣
∣
∣
∣
= 16π2 |n| .
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Thus the action satisifes

S ≥ 8π2|n|
g2

.

The action is minimized for

Fµν = ±F̃µν.

These solutions are called – depending on the sign – self-dual and anti-self-dual solutions.

Remark: Self-dual and anti-self-dual configurations are automatically solutions of the Euler-

Lagrange euqation. From the Bianchi identity

∂µF̃µν +
[
Aµ, F̃

µν
]

= 0

and Fµν =±F̃µν it follows immediately

∂µFµν +
[
Aµ,F

µν
]

= 0.

The instanton solution of Belavin, Polyakov, Schwartz and Tyuplin (Phys. Lett. 59 B, 1975, 85):

Aµ =
x2

x2 +ρ2
U−1(x)∂µU(x)

where ρ is the instanton radius and

U(x) =
1√
x2

(x0 + i~x~σ)

With the identity

(~a~σ)(~b~σ) = (~a~b)1+ i(~a×~b)~σ
we obtain

(x0 + i~x~σ)(x0 − i~x~σ) = x2
0 +~x2

Therefore one shows for

U†(x) =
1√
x2

(x0 − i~x~σ)

that

U−1(x) = U†(x).

Further

det(x0 + i~x~σ) = x2,

and therefore

U(x) ∈ SU(2).

In the limit x2 ≫ ρ2 the gauge field reduces to a pure gauge configuration

Aµ ≈U−1(x)∂µU(x)
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7.9 Chern classes and Chern characters

Invariant polynomials: Let N be a complex k× k matrix and P(N) a polynomial in the compo-

nents of N. P(N) is called an invariant polynomial if

P(N) = P
(
g−1Ng

)

for all g ∈ GL(k,C).

Examples for invariant polynomials:

det(1+N) ,

Tr expN.

Remark: If A has eigenvalues {λ1, ...,λk}, P(A) is a symmetric function of the eigenvalues.

For a principal bundle we consider invariant polynomials as a function of

i

2π
F

The total Chern class is defined by

c(F) = det

(

1+
iF

2π

)

Since F is a two-form, c(F) is a direct sum of forms of even degrees,

c(F) = 1+ c1(F)+ c2(F)+ ...

where c j(F) ∈ Ω2 j(M) is called the jth Chern class.

In an m-dimensional manifold M, the Chern class c j(F) with 2 j > m vanishes trivially.

Irrespective of dimM, the series terminates at ck(F) = det(iF/2π) and c j(F) = 0 for j > k.

Example: SU(2) over a four-dimensional manifold with

F = FaIa, Fa =
1

2

g

i
Fa

µνdxµ ∧dxν.

c(F) = det

(

1+
iF

2π

)

= det

(

1+
i

2π
FaIa

)

= det

(
1+ i

4πF3 i
4π

(
F1 − iF2

)

i
4π

(
F1 + iF2

)
1− i

4πF3

)

= 1+
1

16π2

(
F1 ∧F1 +F2 ∧F2 +F3 ∧F3

)

= 1+
1

8π2
Tr F ∧F.
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Working out the first few Chern classes we find

c0(F) = 1,

c1(F) =
i

2π
Tr F,

c2(F) =
1

8π2
[Tr F ∧F −Tr F ∧Tr F ] .

Remark: For a SU(n) bundle we have Tr F = 0 and therefore the Chern classes simplify to

c0(F) = 1,

c1(F) = 0,

c2(F) =
1

8π2
Tr F ∧F.

The total Chern character is defined by

ch(F) = Tr exp

(
iF

2π

)

The jth Chern character ch j(F) is

ch j(F) =
1

j!
Tr

(
iF

2π

) j

If 2 j > dimM, ch j(F) vanishes, hence ch(F) is a polynomial of finite order. The first few Chern

characters in terms of Chern classes are

ch0(F) = k,

ch1(F) = c1(F),

ch2(F) =
1

2

(
c1(F)

2 −2c2(F)
)
.

For a SU(n) bundle we obtain

ch0(F) = k,

ch1(F) = 0,

ch2(F) = − 1

8π2
Tr F ∧F.

An important property of the Chern classes and Chern characters is the fact that they topologi-

cally invariant integrals. An example of such an integral we encountered for the winding number:

n =
1

16π2

∫
d4x Tr FµνF̃µν =

1

8π2

∫
Tr F ∧F =

∫
c2(F).
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8 Supersymmetry

8.1 Groups and symmetries of space-time

8.1.1 The Poincaré group

The symmetry properties of four dimensional space-time are described by the Poincaré group.

The group elements act on four vectors according to the following transformation law :

xµ′ = Λ
µ
ν xν +aµ.

Λ describes rotations in four dimensional space-time (e.g. ordinary rotations on the spacial

components plus boosts) whereas a describes translations.

The group multiplication law is given by

{a1,Λ1}{a2,Λ2} = {a1 +Λ1a2,Λ1Λ2}.
The generators of the Poincaré group can be realised as differential operators :

Pµ = i∂µ,

Mµν = i
(
xµ∂ν − xν∂µ

)
.

The algebra of the Poincaré group is given by
[
Mµν,Mρσ

]
= −i

(
gµρMνσ −gνρMµσ +gµσMρν −gνσMρµ

)
,

[
Mµν,Pσ

]
= i

(
gνσPµ −gµσPν

)
,

[
Pµ,Pν

]
= 0.

The Poincaré algebra is a Lie algebra, but it is not semi-simple, since it has an Abelian non-trivial

ideal (Pµ).
Casimir operators are M2 and W 2 where

M2 = PµPµ, W µ =
1

2
εµνρσPνMρσ.

W µ is called the Lubanski-Pauli vector.

8.1.2 The homogeneous Lorentz group

With the notation

(Bi) = (M01,M02,M03),

(Ri) = (M23,M31,M12),

the algebra of the homogeneous Lorentz group is given by
[
Bi,B j

]
= −iεi jkRk,

[
Ri,R j

]
= iεi jkRk,

[
Bi,R j

]
= iεi jkBk.
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If one defines

Ji =
1

2
(Ri + iBi) ,

Ki =
1

2
(Ri − iBi) ,

the algebra can be writen as direct product of two SU(2) algebren :

[
Ji,J j

]
= −iεi jkJk,

[
Ki,K j

]
= iεi jkKk,

[
Ji,K j

]
= 0

8.2 Mixing internal symmetries with space-time symmetries

No-go theorem by Coleman and Mandula1: Any Lie group containing the Poincaré group and

an internal symmetry group as maximal subgroups is the trivial product of both. In other words,

internal symmetry transformations always commute with the Poincaré transformations.

Extended by Haag, Lopuszański and Sohnius2 to superalgebras, e.g. some generators of the

symmetry obey anticommutation rules instead of commutation rules.

8.3 Grassmann algebra

Ordinary number commute:

[
xi,x j

]
= 0.

The Grassmann algebra consists of anti-commuting numbers

{
θi,θ j

}
= 0.

A Grassmann algebra of n anti-commuting variables {θ1, ...,θn} can be regarded as a vectorspace

over C or R with basis

θi, θiθ j, θiθ jθk, ..., θ1...θn,

(with i < j < k, etc.) and dimension

∑
i

(
n

i

)

= 2n.

The differentiation is defined by

∂

∂θ j

(
θ1...θ j...θm

)
= (−1) j−1θ1...θ̂ j...θm,

1S. Coleman and J. Mandula, Phys. Rev. 159 (1967), 1251
2R. Haag, J. Lopuszański and M. Sohnius, Phys. Lett. B88 (1975), 257
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where the hat indicates that the corresponding variable has to be omitted. Note that

∂

∂θi

∂

∂θ j
F = − ∂

∂θ j

∂

∂θi
F.

The Taylor expansion of a function F(θ) depending on a Grassmann variable θ is given by

F(θ) = F0 +F1θ.

The differential dθ is also a Grassmann variable:

{θ,dθ} = 0.

Integration over a Grassmann variable is defined by
∫

dθ = 0,

∫
dθθ = 1.

Multiple integrals are defined by iteration:

∫
dθ1dθ2F(θ1,θ2) =

∫
dθ1

(∫
dθ2F(θ1,θ2)

)

.

8.4 Sign conventions

The convention for the metric tensor is

gµν = diag(+1,−1,−1,−1)

2-dimensional antisymmetric tensor :

εAB =

(
0 1

−1 0

)

, εBA =−εAB

Furthermore:

εAB = εȦḂ = εAB = εȦḂ.

Pauli matrices

σx =

(
0 1

1 0

)

σy =

(
0 −i

i 0

)

σz =

(
1 0

0 −1

)

4-dimensional σµ-matrices

σ
µ

AḂ
= (1,−~σ) σ̄µȦB = (1,~σ)

Weyl representation for the Dirac matrices

γµ =

(
0 σµ

σ̄µ 0

)

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
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Raising and lowering of indices:

pA = εABpB, qȦ = εȦḂqḂ,

pḂ = pȦεȦḂ, qB = qAεAB.

Note that raising an index is done by left-multiplication, whereas lowering is performed by right-

multiplication.

Spinor products:

〈pq〉 = pAqA

[pq] = pȦqȦ

The spinor product is anti-symmetric: If pA and qB are Weyl spinors (two-component spinors

with complex valued entries), then

〈pq〉=−〈qp〉, [pq] =−[qp].

Spinor products of Grassmann valued spinors are often denoted as

ψχ = ψAχA,

ψ̄χ̄ = ψ̄Ȧχ̄Ȧ.

Note that we have

ψχ = χψ, ψ̄χ̄ = χ̄ψ̄.

Here we have one sign from the anti-symmetry of the spinor product and another sign from

exchanging two Grassmann variables.

Useful relations:

σ̄µȦB = εȦḊεBCσ
µ

CḊ
,

σ
µ

AḂ
= σ̄µĊDεĊḂεDA.

8.5 Superspace

The superspace coordinates are z = (xµ,θA, θ̄Ȧ) where the θA and θ̄Ȧ (A, Ȧ ∈ {1,2}) are Grass-

mannian coordinates:

{θA,θB} = 0,

θ2 = θAθA = θBεABθA,

θAψB = −ψBθA.
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The supersymmetric transformations are generated by

QA =
∂

∂θA
+ iσ

µ

AȦ
θ̄Ȧ∂µ,

Q̄Ȧ =
∂

∂θ̄Ȧ

+ iθAσ
µ

AḂ
εḂȦ∂µ =

∂

∂θ̄Ȧ

+ iσ̄µ ȦBθB∂µ.

They satisfy the supersymmetry algebra:

{
QA, Q̄Ȧ

}
=−2iσ

µ

AȦ
∂µ =−2σ

µ

AȦ
Pµ,

{QA,QB}=
{

Q̄Ȧ, Q̄Ḃ

}
= 0,

[
Pµ,QA

]
=
[
Pµ, Q̄Ȧ

]
= 0.

The covariant derivatives are given by

Dµ = ∂µ,

DA =
∂

∂θA
− iσ

µ

AȦ
θ̄Ȧ∂µ,

D̄Ȧ =
∂

∂θ̄Ȧ

− iθAσ
µ

AḂ
εḂȦ∂µ =

∂

∂θ̄Ȧ

− iσ̄µ ȦBθB∂µ.

By construction they anticommute with the supersymmetry generators

{QA,DB}=
{

Q̄Ȧ, D̄Ḃ

}
= {QA, D̄Ḃ}=

{
Q̄Ȧ,DB

}
= 0.

Further

{DA, D̄Ȧ}= 2iσ
µ

AȦ
∂µ,

{DA,DB}= {D̄Ȧ, D̄Ḃ}= 0.

8.6 Supersymmetric fields

A superfield F(x,θ, θ̄) is expanded according to

F(x,θ, θ̄) = f (x)+θφ(x)+ θ̄φ̄(x)

+θ2m(x)+ θ̄2n(x)+θσµθ̄vµ(x)

+θ2θ̄ψ̄(x)+ θ̄2θψ(x)+ θ̄2θ2d(x)

It contains four scalars ( f , m, n and d), four spinors (φ, φ̄, ψ and ψ̄) and one complex vector vµ.

8.6.1 Chiral super-fields

Chiral superfields are defined by

D̄α̇Φ(x,θ, θ̄) = 0, DαΦ̄(x,θ, θ̄) = 0.
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Let

yµ = xµ − iθσµθ̄, ȳµ = xµ + iθσµθ̄ = xµ − iθ̄σ̄µθ.

Then

D̄Ȧyµ = 0, DAȳµ = 0.

Therefore a chiral superfield D̄α̇Φ = 0 depends only on yµ = xµ − iθσµθ̄ and θ:

Φ = Φ(y,θ) = φ(y)+
√

2θψ(y)+θ2F(y).

Use Taylor expansion:

f (y) =
∞

∑
n=0

1

n!
(y− x)n ∂n

x f (x), (yµ − xµ) =−iθσµθ̄.

Therefore

Φ = φ(x)− i
(
θσµθ̄

)
∂µφ(x)− 1

4
θ2θ̄2∂µ∂µφ(x)

+
√

2θψ(x)− i
√

2
(
θσµθ̄

)
θA∂µψA(x)+θ2F(x).

Then

Φ̄ = φ̄(x)+ i
(
θσµθ̄

)
∂µφ̄(x)− 1

4
θ2θ̄2∂µ∂µφ̄(x)

+
√

2ψ̄(x)θ̄+ i
√

2
(
θσµθ̄

)
∂µψ̄Ȧ(x)θ̄

Ȧ + θ̄2F̄(x).

8.6.2 Vector super-fields

A vector superfield is defined by

V = V ∗

The general form of a vector superfield (after expansion in the Grassmann variables) is given by

V = C(x)+ iθη(x)− iθ̄η̄(x)+θσµθ̄Vµ(x)

+
i

2
θθ(M(x)+ iN(x))− i

2
θ̄θ̄(M(x)− iN(x))

+iθθθ̄

(

λ̄(x)+
i

2
σ̄µ∂µη(x)

)

− iθ̄θ̄θ

(

λ(x)+
i

2
σµ∂µη̄(x)

)

+
1

2
θθθ̄θ̄

(

D(x)+
1

2
✷C(x)

)

In the Wess-Zumino gauge we have

C = η = η̄ = M = N = 0

The vector superfield reduces then to

V =
(
θσµθ̄

)
Vµ + iθ2

(
θ̄λ̄
)
− iθ̄2 (θλ)+

1

2
θ2θ̄2D.
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8.7 Transformation of the fields

Infinitessimal susy-transformations are given by

δη = ηAQA + η̄ḂQ̄Ḃ

A finite susy-transformation is given by

exp i
(
ηQ+ η̄Q̄

)

Useful relations

D̄Ȧyµ = 0, DAȳµ = 0,

QAyµ = 0, Q̄Ȧȳµ = 0.

as well as

QA = DA +2iσ
µ

AḂ
θ̄Ḃ∂µ,

Q̄Ḃ = D̄Ḃ +2iσ̄µ ḂCθC∂µ.

For a chiral superfield

Φ(y,θ) = φ(y)+
√

2θψ(y)+θ2F(y).

we have

δηΦ = (ηQ)Φ+2i(η̄σ̄µθ)∂µΦ

=
√

2ηψ(y)+2ηθF(y)+2i(η̄σ̄µθ)∂µΦ

=
√

2ηψ(y)+2θηF(y)−2iθσµη̄∂µφ(y)−
√

2iθ2η̄σ̄µ∂µψ(y).

Therefore

φ′ =
√

2ηψ,

ψ′ = −
√

2iσµη̄∂µφ+
√

2ηF,

F ′ = −
√

2iη̄σ̄µ∂µψ.

The vector superfield transforms as

V a
µ
′ = i

(
η̄σ̄µλa − λ̄aσ̄µη

)
=−i

(
λ̄aσ̄µη+λaσµη̄

)
= i
(
ησµλ̄a + η̄σ̄µλa

)

λa′ =
1

2
σµσ̄νηFa

µν + iηDa,

Da′ = ησµ∂µλ̄a +∂µλaσµη̄.
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8.8 Lagrange density for supersymmetric QCD

To construct supersymmetric Lagrange densities one uses the highets component fields of a su-

perfield, e.g. the F-terms for chiral superfields and the D-terms for vector superfields. Note

that the projection onto these components can be written as a differentiation or integration with

respect to the Grassmann coordinates:

∫
d4θ =

∂2

∂θ2

∂2

∂θ̄2

The Lagrange densitiy for supersymmetric QCD:

L =
1

8g2
Tr WW |F +

1

8g2
Tr W̄W̄ |F̄

+ Φ̄+e2gV Φ+

∣
∣
D
+ Φ̄−e−2gV T

Φ−
∣
∣
∣
D
+ mΦ−Φ+|F + mΦ̄+Φ̄−

∣
∣
F̄
.

The function

W (Φ+,Φ−) = mΦ−Φ+

is often called the superpotential. In the Lagrange density we have

WA = −1

4
(D̄D̄)

(
e−2gV DAe2gV

)
,

W̄Ȧ = −1

4
(DD)

((
D̄Ȧe2gV

)
e−2gV

)
,

V = T aV a,

and V a is given in the Wess-Zumino gauge by

V a =
(
θσµθ̄

)
V a

µ + iθ2
(
θ̄λ̄a
)
− iθ̄2 (θλa)+

1

2
θ2θ̄2Da.

We further have

V aV b =
(
θσµθ̄

)(
θσνθ̄

)
V a

µ V b
ν ,

V aV bV c = 0.

Therefore

e2gV = 1+2g
(
θσµθ̄

)
V a

µ T a +2giθ2
(
θ̄λ̄a
)

T a −2giθ̄2 (θλa)T a

+θ2θ̄2
(

gDaT a +g2V a
µ V µ bT aT b

)

and

Φ̄+e2gV Φ+

∣
∣
D

=
(
Dµφ+

)†
(Dµφ+)+ iψ̄+σ̄µDµψ++ i

√
2g
[
φ̄+λaT aψ+− ψ̄+λ̄aT aφ+

]

+gφ̄+DaT aφ++ F̄+F+,
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where the covariant derivative is given by

Dµ = ∂µ + igT aV a
µ .

For the vector field we find

e−2gV DAe2gV = 2gσµθ̄Vµ +4giθ
(
θ̄λ̄
)
−2giθ̄2λ− igθ̄2σµσ̄νθ

(
∂µVµ −2igVνVµ

)

+2θθ̄2
(
gD+g2VµV µ

)
−gθ2θ̄2σµ∂µλ̄+4g2iθ2σµθ̄

[
Vµ, θ̄λ̄

]
,

(
D̄Ȧe2gV

)
e−2gV = εȦḂ

{
2gσ̄µθVµ +4giθ̄(θλ)−2giθ2λ̄− igθ2σ̄µσνθ̄

(
∂µVν +2giVµVν

)

−2θ2θ̄
(
gD+g2VµV µ

)
−gθ2θ̄2σ̄µ∂µλ+4g2iσµθθ̄2

[
Vµ,θλ

]}
.

DADA = −εAB ∂

∂θA

∂

∂θB
+2iεABσ

µ

AĊ
θ̄Ċ ∂

∂θB
∂µ + θ̄2

✷,

D̄ȦD̄Ȧ = εȦḂ

∂

∂θ̄Ȧ

∂

∂θ̄Ḃ

−2iεȦḂσ̄µȦCθC
∂

∂θ̄Ḃ

∂µ +θ2
✷.

We obtain for the Lagrange density

L = −1

4

(
Fa

µν

)2
+ iλ̄aσ̄µ

(
Dµλ

)a
+

1

2
DaDa

+
(
Dµφ+

)†
(Dµφ+)+ iψ̄+σ̄µDµψ++ i

√
2g
[
φ̄+λaT aψ+− ψ̄+λ̄aT aφ+

]

+gφ̄+DaT aφ++ F̄+F+

+
(
D̃µφ−

)† (
D̃µφ−

)
+ iψ̄−σ̄µD̃µψ−− i

√
2g
[

φ̄−λa T a T ψ−− ψ̄−λ̄a T a T φ−
]

−gφ̄−Da T a T φ−+ F̄−F−
+m

[
−ψ−ψ+− ψ̄+ψ̄−+ φ̄+F̄−+ φ̄−F̄++φ+F−+φ−F+

]
,

where

D̃µ = ∂µ − ig T a T V a
µ

Elimination of the D-terms and F-terms:

∂L

∂D
=

∂L

∂F
= 0

LD =
1

2
DaDa +gφ̄+DaT aφ+−gφ̄−Da T a T φ− =−1

2
g2
(

φ̄+T aφ+− φ̄− T a T φ−
)2

LF+ = F̄+F++mφ−F++mφ̄−F̄+ =−m2φ̄−φ−
LF− = F̄−F−+mφ+F−+mφ̄+F̄− =−m2φ̄+φ+

The relations are

Da = −g
(

φ̄+T aφ+− φ̄− T a T φ−
)

,
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F+ =−mφ̄− F̄+ =−mφ−
F− =−mφ̄+ F̄− =−mφ+

Finally:

L = −1

4

(
Fa

µν

)2
+ iλ̄aσ̄µ

(
Dµλ

)a

+
(
Dµφ+

)†
(Dµφ+)+ iψ̄+σ̄µDµψ++ i

√
2g
[
φ̄+λaT aψ+− ψ̄+λ̄aT aφ+

]

+
(
D̃µφ−

)† (
D̃µφ−

)
+ iψ̄−σ̄µD̃µψ−− i

√
2g
[

φ̄−λa T a T ψ−− ψ̄−λ̄a T a T φ−
]

−mψ−ψ+−mψ̄+ψ̄−−m2φ̄+φ+−m2φ̄−φ−− 1

2
g2
(

φ̄+T aφ+− φ̄− T a T φ−
)2

Note that (after one partial integration)

iψ̄−σ̄µ∂µψ− = iψ−σµ∂µψ̄−

Eliminating T a T we obtain

L = −1

4

(
Fa

µν

)2
+ iλ̄aσ̄µ

(
Dµλ

)a

+
(
Dµφ+

)†
(Dµφ+)+ iψ̄+σ̄µDµψ++ i

√
2g
[
φ̄+λaT aψ+− ψ̄+λ̄aT aφ+

]

+
(
Dµφ̄−

)† (
Dµφ̄−

)
+ iψ−σµDµψ̄−+ i

√
2g
[
φ−λ̄aT aψ̄−−ψ−λaT aφ̄−

]

−mψ−ψ+−mψ̄+ψ̄−−m2φ̄+φ+−m2φ̄−φ−− 1

2
g2
(
φ̄+T aφ+−φ−T aφ̄−

)2

With

Ψ̄ = (ψ−, ψ̄+) , Ψ =

(
ψ+

ψ̄−

)

,

Λ̄ =
(

iλA,−iλ̄Ȧ

)

, Λ =

(
iλA

−iλ̄Ȧ

)

,

we obtain

L = −1

4

(
Fa

µν

)2
+

i

2
Λ̄aγµ

(
DµΛ

)a
+ iΨ̄γµDµΨ−mΨ̄Ψ

+
(
Dµφ+

)†
(Dµφ+)−m2φ̄+φ++

(
Dµφ̄−

)† (
Dµφ̄−

)
−m2φ̄−φ−

+
√

2g
[
φ̄+Λ̄aT aP+Ψ+ Ψ̄P−ΛaT aφ+−φ−Λ̄aT aP−Ψ− Ψ̄P+ΛaT aφ̄−

]

−1

2
g2
(
φ̄+T aφ+−φ−T aφ̄−

)2
.

8.9 Supersymmetry breaking

Qα and Q̄α̇ can be considered as creation (Q̄α̇) and annihilation (Qα) operators. The vacuum is

defined by

Qα |0〉 = 0.
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Take the trace over
{

Qα, Q̄α̇

}
= 2σ

µ
αα̇Pµ.

Then

H = P0 =
1

4

(
Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2

)

=
1

4

[(
Q1 + Q̄1̇

)(
Q1 + Q̄1̇

)
+
(
Q2 + Q̄2̇

)(
Q2 + Q̄2̇

)]

where H = P0 is the Hamiltonian. The operator on the right-hand side is positive semi-definite.

(The operator Qα + Q̄α̇ is a hermitian operator, due to Q̄α̇ = Qα
†. A hermitian operator has real

eigenvalues and the square of these eigenvalues is a non-negative number.) Therefore the linear

combination Qα + Q̄α̇ annihilates the vacuum
(
Qα + Q̄α̇

)
|0〉 = 0,

if and only if the Hamiltonian does as well,

〈0|H|0〉= 0.

Therefore the vacuum energy serves as an order parameter: If 〈0|H|0〉 6= 0 then the supersymme-

try is broken. On the other hand, if supersymmetry is unbroken, then the supercharge annihilates

the vacuum. Since the vacuum is defined by Qα |0〉 = 0, we conclude that if supersymmetry is

unbroken, all supercharges annihilate the vacuum :

Qα |0〉 = 0,

Q̄α̇ |0〉 = 0.

8.10 Supersymmetric relations

After removing the colour factors, QCD at tree-level may be viewed as an effective supersym-

metric theory, where the quarks and the gluons form a super-multiplet (a N = 1 vector super-

multiple). In an unbroken supersymmetric theory, the supercharge

Q =

(
Qα

Qβ̇

)

annihilates the vacuum, and therefore

〈0 |[Q,Φ1Φ2...Φn]|0〉=
n

∑
i=1

〈0 |Φ1... [Q,Φi] ...Φn|0〉= 0

where the field Φi denotes either a gauge boson g or a fermion Λ. It is convenient to multiply the

supercharge Q by a Grassmann spinor η̄. η̄ is usually chosen to be a Grassmann number θ times

a spinor ū(q) for an arbitrary null-vector q. It is convenient to define

Q(q) = θū(q)Q.
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The commutators are then given by

[
Q(q),g±(k)

]
= ∓Γ±(k,q)Λ±(k),

[
Q(q),Λ±(k)

]
= ∓Γ∓(k,q)g±(k),

with

Γ+(k,q) = θ〈q+ |k−〉= θ[qk], Γ−(k,q) = θ〈q−|k+〉= θ〈qk〉.

The simplest case is the all-equal helicity one. Using the supersymmetric relation

0 =
〈
0
∣
∣
[
Q,Λ+

1 g+2 ...g
+
n

]∣
∣0
〉

= −Γ−(p1,q)A(g
+
1 ,g

+
2 , ...,g

+
n )+Γ+(p2,q)A(Λ

+
1 ,Λ

+
2 , ...,g

+
n )

+...+Γ+(pn,q)A(Λ
+
1 ,g

+
2 , ...,Λ

+
n ).

Note that Γ(p,q) anticommutes with the fermion operators Λ due to the Grassmann nature of

θ. Since massless gluinos, like quarks, have only helicity-conserving interactions, all of the

amplitudes but the first one must vanish. Therefore so must the like-helicity amplitude

A(g+1 ,g
+
2 , ...,g

+
n ) = 0.

Similar, with one negative helicity one gets

0 =
〈
0
∣
∣
[
Q,Λ+

1 g−2 g+3 ...g
+
n

]∣
∣0
〉

= −Γ−(p1,q)A(g
+
1 ,g

−
2 ,g

+
3 , ...,g

+
n )−Γ−(p2,q)A(Λ

+
1 ,Λ

−
2 ,g

+
3 ...,g

+
n ).

Choosing q = p2 one shows that

A(g+1 ,g
−
2 ,g

+
3 , ...,g

+
n ) = 0.

Setting q = p1 one obtains

A(Λ+
1 ,Λ

−
2 ,g

+
3 ...,g

+
n ) = 0.

With two negative helicities one starts to relate non-zero amplitudes:

0 =
〈

0

∣
∣
∣

[

Q,Λ+
1 g+2 ...g

−
j ...g

+
n−1g−n

]∣
∣
∣0
〉

= −Γ−(p1,q)A(g
+
1 ,g

+
2 , ...,g

−
j , ...,g

+
n−1,g

−
n )−Γ−(p j,q)A(Λ

+
1 ,g

+
2 , ...,Λ

−
j , ...,g

+
n−1,g

−
n )

−Γ−(pn,q)A(Λ
+
1 ,g

+
2 , ...,g

−
j , ...,g

+
n−1,Λ

−
n ).

setting the reference momentum equal to q = p j and using the expression for the maximally

helicity violating gluon amplitudes one obtains the expression for an amplitude with a pair of

quarks:

Atree
n (q+1 ,g

+
2 , ...,g

−
j , ...,g

+
n−1, q̄

−
n ) = i

(√
2
)n−2 〈1 j〉〈 jn〉3

〈12〉〈23〉...〈n1〉.
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8.11 Spontaneous breaking of supersymmetry

8.11.1 The mechanism of O’Raifeartaigh

The simplest model consists of three chiral superfields. In this model the superpotential is given

by

W (Φ1,Φ2,Φ3) = λΦ1 +mΦ2Φ3 +gΦ1Φ2Φ2

8.11.2 The mechanism of Fayet and Iliopoulos

Fayet and Iliopoulos considered a model of two chiral superfields Φ1 and Φ2 and a vector super-

field V corresponding to an abelian gauge group. The potential in this model is given by

2κ

(

F1F∗
1 +F2F∗

2 +
1

2
D2

)

.

8.12 The minimal supersymmetric standard model

The supersymmetric part of the minimal supersymmetric standard model (MSSM) reads:

LSUSY =
1

8g2
Tr WSU(2)WSU(2)

∣
∣
F
+

1

8g′2
Tr WU(1)WU(1)

∣
∣
F
+

1

8g2
s

Tr WSU(3)WSU(3)

∣
∣
F
+h.c.

+ Q̄e−2g′V ′T−2gV T−2gsV
T
s Q

∣
∣
∣
D
+ Ūe2g′V ′+2gV+2gsVsU

∣
∣
∣
D
+ D̄e2g′V ′+2gV+2gsVsD

∣
∣
∣
D

+ L̄e−2g′V ′T−2gV T

L

∣
∣
∣
D
+ N̄e2g′V ′+2gV N

∣
∣
∣
D
+ Ēe2g′V ′+2gV E

∣
∣
∣
D

+ H̄1e2g′V ′+2gV H1

∣
∣
∣
D
+ H̄2e2g′V ′+2gV H2

∣
∣
∣
D

+[(λdH1QD+λuH2QU +λeH1LE +λνH2LN −µH1H2)|F +h.c.]

Remarks: The Higgs boson is in a chiral superfield and has a spin 1/2 partner, the higgsino.

Anomaly cancellation in the fermion triangle loop requires that there are two Higgs superfields.

The supersymmetric part alone would predict equal masses for all particles in a super-multiplet.

This is not observed. Therefore one adds additional terms to the Lagrange density, which ex-

plicitly break supersymmetry. As these are rather arbitrary, one usually requires that the SUSY-

breaking terms

- generate no quadratic divergences,

- are gauge-invariant,

- conserve R-parity
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These three conditions define the “soft-breaking-terms”.

Lso f t = −m2
q̃ |q̃L|2 −m2

ũ |ũR|2 −m2
d̃

∣
∣d̃R

∣
∣2 −m2

l̃

∣
∣l̃L
∣
∣2 −m2

ν̃ |ν̃R|2 −m2
ẽ |ẽR|2

−m2
1 |H1|2 −m2

2 |H2|2 +
1

2

(
M1λ′λ′+M2λaλa +M3λa

s λa
s

)

−εi j

(

λdAdH i
1q̃

j
Ld̃

†
R +λuAuH i

2q̃
j
Lũ

†
R +λeAeH i

1l̃
j
Lẽ

†
R +λνAνH i

2l̃
j
Lν̃†

R −m2
3H i

1H
j

2 +h.c.
)

R-parity: Consider a transformation, which transforms the Grassmann coordinates as

θA → e−iϕ θ̄Ȧ → eiϕθ̄Ȧ

Furthermore, require that each superfield has a well-defined transformation law under this trans-

formation, like

Φ → eiqΦϕΦ.

qΦ is called the R-charge of the superfield. Writing out the superfield in components

Φ = φ(y)+
√

2θψ(y)+θ2F(y),

it is clear that the component fields transform with R-charge

φ : qΦ,

ψ : qΦ +1,

F : qΦ +2.

Assign the R-charge +1 to all quark and lepton superfields, and R-charge 0 to the vector super-

fields and the two Higgs superfields.

R-parity: Restrict eiϕ to ±1.

It then follows with the assignment of the R-charges above, that all standard model-like par-

ticles have R-parity +1, whereas all superpartners have R-parity −1.

Conservation of R-parity implies that at each vertex the product of the R-parities of the involved

particles evaluates to +1. This implies that the supersymmetric particles do always occur in pairs.

Corollar: The lightest supersymmetric particle is stable.
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