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1 Introduction

1.1 Literature
e Introductory texts:
- J.P. Elliot and P.G. Dawber, Symmetry in Physics, MacmiPaess, 1979

- W. Fulton and J. Harris, Representation theory, Sprintgd1
- B. Hall, Lie groups, Lie Algebras and Representationsirtgyar, 2003

Physics related:

- D.B. Lichtenberg, Unitary symmetry and elementary p&scAcademic Press, 1970

- H. Georgi, Lie Algebras in Particle Physics, Benjamin/Quimgs Publishing Company,
1982

- M. Schottenloher, Geometrie und Symmetrie in der Physigweg, 1995
- M. Nakahara, Geometry, Topology and Physics, IOP, 1990

Classics:

- N. Bourbaki, Groupes et algebres de Lie, Hermann, 1972
- H. Weyl, The classical groups, Princeton University Pr&84¢6

Differential geometry:

- S. Helgason, Differential Geometry, Lie Groups and Symim&paces, AMS, 1978

Hopf algebras:
- Ch. Kassel, Quantum Groups, Springer, 1995

Specialised topics:

- Ch. Reutenauer, Free Lie Algebras, Clarendon Press, 1993
- V. Kac, Infinite dimensional Lie algebras, Cambridge Unsity Press, 1983

1.2 Motivation

Symmetries occur in many physical systems, from molecualgstals, atoms, nuclei to elemen-
tary particles. Symmetries occur in classical physics dsageén quantum physic# symmetry

is expressed by a transformation, which leave the physicalystem invariant. Examples for
such transformations are translations, rotations, imvess particle interchanges. The symmetry
transformations form a group and we are led to study groupryhe



A few examples:

Example 1: One classical particle in one dimension.
Consider a particle of mass moving in one dimension under the influence of a poteimtiai.
Newton’s law gives the equation of motion

d
——V(X).

Y )
Suppose now, that (x) is constant, in other words that it is invariant under tratishs. Then
we have

mX =

mX = 0
and integrating this equation we obtain
mXx = const

showing that the momentum= mx is conserved.

Example 2: One classical particle in two dimensions.
In two dimensions the motion of the particle is governed leyttho equations

. 0
mx = _a_XV(Xay>7
9y
my = dy v Y)-

Suppose now that (x,y) is invariant with respect to rotations about the origin, they words
thatV is independent of the angd@f expressed in terms of the polar coordinateg rather than
the cartesian coordinatgsandy. In this case we have

0
apV = 0.
From
X = rcosy,
y = rsing
we obtain
oy _ XNV v v v
0p  0pox O0@Qoy Y ox oy’
and therefore
ov ov d

ap” ~ Vox TXoy = Y(m) Fx(=my) = mg (=)



This shows that the angular momentum is conserved:
m(yx—xy) = const

Example 3: Noether theorem.

The two examples above are a special case of the Noetheethedn classical mechanics we
can describe a physical system by generalised coordigagesl a Lagrange functioln(d, g, t).
We consider the case of a family of coordinate transformatio

g = fi@ta), 1<i<n,

depending on a real parameter such that all functiong; are continously differentiable with
respect tax and sucht thatt = O corresponds to the identity transformation

g = fi (q7t70)7 1§|§n

If there exists ar > 0, such that for alla| < € we have

L' (d.,d,t) = L(q,a,t)+%/\(q,t,a)+o(az),
with

A(G,t,0) = 0,

i _OA
40 oa

N 0f
<i; ' dat

is conserved. This is Noether’s theorem. It states the es@nyinuously symmetry of the La-
grange function leads to a conserved quantity. Note thatahly required that the transformed
Lagrange function agrees with the original one only up towggaransformation.

then it follows, that the quantity

a=0

Example 4: Two particles connected by springs.
Consider two particles of equal massonnected to each other and to fixed supports by springs
with spring constank. The kinetic and potential energies are

1 5 .
T = ém(x§+x§) ,
1
V = é)\ (x%+x%+ (Xl—I—Xz)Z) .
This system is symmetric under the intercharge» x,. The equations of motion are

My = —AX1—A(X1+X2),
M = —AXe—A(X1+X2).

6



This suggests new coordinates

gL = X1+Xo,
02 = X1—Xo.

Adding and subtracting the two equations above we obtain
md; = —3Ads,
mi; = —AQe.

In terms of the coordinates andqp the solutions are harmonic oscillations with frequencies

o — 1/ _\ﬁ
1 — m7 Wy = m'

Let us denote the symmetry transformatiar— x2 by 0. The new coordinateg; andgy are
even and odd, respectively, under the symmetry transfaomat

oqy = (Qu,
002 = —Q2.

Example 5: Parity transformations in quantum mechanics.
Consider a quantum mechanical particle in an energy eigengiith energ\E. Let us assume
that this eigenstate is non-degenerate. If the potentgatheareflection symmetry

V) = V(=%),

it follows that also the Hamilton operator has this propeHyX) = H(—X). Now, if Y(X) is an
eigenfunction of the Hamilton operator with eigenvakie

HU(X) = EW(),
it follows that alsap(—X) is an eigenfunction with eigenvalie
HY(-X) = EY(=X).
Since we assumed that the energy state is non-degeneratasvéane
Y(-%) = cY().

Repeating the symmetry operation twice we obtain

YR = Y,

and thus



Hence,y(X) is either even or odd. This leads to selection rules in quarmechanics: The
transition probability for a decay from some initial stgteto a final stateps is proportional to
the square of hte integral

= [dxui o um

whereO (X) depends on the particular decay process) () is an even function df, the integral
is non-zero only ify; andy; are both even or both odd.

Example 6: Particle physics

In particle physics one often observes that certain padithrm a pattern (mathematically we
say they form a representation of a group). If some partiatesalready discovered and the
pattern is known, one is able to predict the remaining pagiof the pattern.

e Thet® meson in the isospin triplat", 0, 117).

e TheQ™ in the baryon decuplet.

e The charm quark as partner of the strange quark.
e The top quark as partner of the bottom quark.

e TheZ-boson as a third mediator of the weak force.

Summary: Understanding the symmetry properties of a physical systaiseful for the follow-
ing reasons:

e Gives insight (origin of selection rules in quantum mechaji
e Simplifies calculations (conserved quantities)
e Makes predictions (new particles)

e Gauge symmetries are the key ingredient for the understgrafithe fundamental forces.



2 Basics of group theory

2.1 Definition of a group

A non-empty seG together with a compositiort G x G — G is called a grougG, ) if
G1: The compositionis associative a- (b-c) = (a-b)-c
G2: There exists a neutral elemer-a=a-e=aforallac G
G3: Forallac Gthere existsaninverse!:al.a=a-al=e
One can actually use a weaker system of axioms:
G1’: The composition is associativea- (b-c) = (a-b)-c
G2': There exists a left-neutral elemerg-a=aforallac G
G3': For alla € G there exists an left-inverse! : a1.a=e

The first system of axioms clearly implies the second systeamioms. To show that the second
system also implies the first one, we show the following:

a) If eis a left-neutral element, ar&lis a right-neutral element, then= €.

Proof:

d=e¢d eis left-neutral
€ is right-neutral

= y

b) If bis a left-inverse t@, andb’ is a right-inverse t@, thenb = b'.

Proof:
b=Db-e eis right-neutral
=b-(a-b) b’ is right-inverse of
=(b-a)-b associativity
=e-b bis left-inverse ofa
=b eis left-neutral

c) If bis a left-inverse t@, i.e. b-a= e, thenb is also the right-inverse ta.
Proof:

(a-b)-(a-b)=a-(b-a)-b
—a-e-b
—=a-b



Thereforea-b=e.
d) If eis the left-neutral element, thexis also right-neutral.
Proof:

e
This completes the proof that the second system of axiomgus/a&ent to the first system of

axioms. To verify that a given set together with a given cosiijgan forms a group it is therefore
sufficient to verify axioms (G2’) and (G3’) instead of axioif@32) and (G3).

More definitions:
A group(G,-) is calledAbelian if the operation is commutative a-b=b-a.

The number of elements in the g8tis called theorder of the group. If this number is fi-
nite, we speak of a finite group. In the case where the ordafirste, we can further distinguish
the case where the set is countable or not. For Lie groups evimgrarticular interested in the
latter case. For finite groups we can write down all possibl@mositions in acomposition
table. In such a composition table each element occurs exactly imneach row and column.

Examples

a) The trivial example: LeG = {e} ande-e=e. This is a group with one element.

b) Z,: Let G = {0,1} and denote the composition by. The composition is given by the
following composition table:

P o+
P olo
=

Zo is of order 2 and is Abelian.

C) Zn: We can generalise the above example and take {0,1,2,....n—1}. We define the
addition by

a+b = a+bmodn,

where on the I.h.s. “+” denotes the compositiorZif whereas on the r.h.s. “+” denotes the
usual addition of integer numbeli®; is a group of orden and is Abelian.
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d) The symmetric grouf,: Let X be a set with distinah elements and set
G = {o]o: X — X permutation oiX}

As composition law we take the composition of permutatidriee symmetric group has order

Forn > 3 this group is non-Abelian:
1 3 12 3\ 1 3
3 2 2 13) 1 2 )’
1 3 12 3\ 1 3
2 3 312 a 3 1)

e) (Z,+): The integer numbers with addition form an Abelian groupe Dinder of the group is
infinite, but countable.

PN PN
NN WODN

f) (R,+): The real numbers with addition form an Abelian group. Theeorof the group is
not countable.

g) (R*,-): Denote byR* = R\{0} the real numbers without zero. The &t with the mul-
tiplication as composition law forms an Abelian group.

h) Rotations in two dimensions: Consider the set gfZ2matrixes

cosp —sind
sing cosp )’
together with matrix multiplication as composition. To ckehis, one has to show that
cosa —sina | ([ cosB —sinf
sino cosa sinB cosP
can again be written as
cosy —siny
siny cosy /°

Using the addition theorems of sin and cos one fipesa + 3. The elements of this group are
not countable, but they form a compact set.

11



2.2 Group morphisms

Let a andb be elements of a grou(ss, ) with composition« and leta’ andb’ be elements of a
group(G’, o) with compositioro. We are interested in mappings between groups which peserv
the structure of the compositions.

Homomorphism: We call a mapping : G — G’ a homomorphism, if
f(axb) = f(a)of(b).

Isomorphism: We call a mappindg : G — G’ an isomorphism, if it is bijective and a homomor-
phism.

Automorphism: We call a mappingf : G — G from the groupG into the groupG itself an
automorphism, if it is an isomorphism.

We consider an example for an isomorphism: We take
G = (Zn+),
and
¢ = ({eunen, el

This is the group of the-th roots of unity. These two groups are isomorphic. The imghism
is given by
f : GG,
k — 21,

2.3 Subgroups

A non-empty subsdtl C G is said to be aubgroup of a groupG, if H is itself a group under
the same law of composition as that®f

Every group has two trivial subgroups:
e The group consisting just of the identity elemés}.
e The whole grouss.

A subgroupH is called gproper subgroup if H # G.

Example: Consider the group

Ze = {0,1,2,3,4,5}.

12



The set
H={0,24}
is a subgroup o¥g, isomorphic tdZs. The isomorphism is given by

f : H—>Z3
2n—n.

Generating set Let G be a group an&C G. The group
(S =nN{U|U subgroup ofcwith SCU}
is called the subgroup generated®y\e say thaG is generated b, if
G = (9.
We say thatG is finitely generatedif there is a finite se6= {ay, ...,an} such that
G = (a,...,an).

Note that “finitely generated” does not imply that the groag h finite number of elements. The
group(Z,+) is generated by the element 1, but has an infinite number ofegits.

A groupG is calledcyclic, if it is generated by one element
G = (a

Remark: Cyclic groups are always Abelian.

We define therder of an elemena € G as
orda = |[(a)|.

The order of an elemeiatis either infinity or equal to the smallest positive numbsuch that

where

a = ao...oa
N—_——

stimes

The orders of the elements of a group give us useful infounatbout the group: Let us consider
the following example. Assume that we are considering agseith four elementge, a, b, c}.
Assume further that the elemer@andb are of order two:

aZ=p=e

Based on this knowledge we know the following entries in thiposition table:

13



O T 9O o
O T O D0
® D
o NV oT|lo
(@]

In the place with the question mark we must putotherwisec would occur in the last col-
umn twice. All other entries can be figured out with similansmlerations and we obtain the

composition table

e a b c
ele a b c
ala e c b
bilb ¢c e a
c|c b a e

2.4 Cosets
Consider a subgroud of a groupG. Leta e G. The set
aH = {ah,amh,ahs,...}

is called deft cosetof H in G. The number of distinct left cosets Bifin G is called thandex
of H in G and is denoted by

|G:H|
Theorem (Lagrange):

1.

G = [JaH

acG

2. Two left cosets oH in G are either identical or have no common element.

3. If two of the number$G|, |H| and|G : H| are finite, then also the third one is and we have
the relation

Gl = [G:H[[H].

Proof:

1. H contains the neutral element. We therefore have

JaH2 |Jae=Ja=6G.

acG acG acG

14



On the other hand it is obvious that

JaHCG

acG

and the claim follows.

2. Assume thatyH andaoH have one element in common. Then

a1h1 = a2h2
a,'ay = hph;teH
a,tayH = H

agH = azH,

which shows that the two cosets are identical.

3. The proof follows from
laH| = [H|.
The theorem of Lagrange has some important consequencisitergroups: LeiG be a finite
group.
e The orderiH| of each subgroup divides the ord&j of the group.
e The order of each elemeativides the ordefG| of the group.

e For each elemerat we have

acl = e

As a further consequence we have the followindz i a finite group, where the order is a prime
number, therG is cyclic.

2.5 Conjugacy classes

Let G be a group. An elemetitis conjugate to an elemeatif there is an elemerg € G sucht
that

b = gag®.

Remark:b = gag™? is equivalent ta = g~ bg.
This defines aequivalence relation

e alis conjugated to itself.

15



e If ais conjugated td, thenb is conjugated t@.
e If ais conjugated td andb is conjugated ta@, thena is conjugated ta.

The set of all elements conjugatedds called theconjugacy clasof a. The set of all elements
of a group can be decomposed into disjoint conjugacy classes

It is often useful to consider conjugacy classes insteadl ofdividual elements, because group
elements of the same conjugacy class will behave similar.

2.6 Normal subgroups

Let G be a group anél a subgroup of5. We have already considered the left cosgisa € G.
We may ask under which conditions do the left cosets formragaroup ?

We start with a definition: We call a subgroipof G anormal subgroup if for all ae G
aNal C N.

Remark: This means that for @il € N and for alla € G there exists anp € N such that
ama ! = n.

For a proper normal subgrotbof G one writesN < G.

For a normal subgroup the left and right cosets are equal

aN = Na

This is exactly the property we need such that the left cdsate a well-defined composition
law:

(aN)(bN) = (ab)N,
or in more detail

(am) (bmp) = a(mb)ny=a(br})ny= ab@: (ab) ng.

n3
We summarise: IN is a normal subgroup @, then
G/N = {aNjae G}
together with the composition law

(aN)(bN) = (ab)N

16



is a group, called th&actor group of G by N.

Remark: We have

IG/N| = |G:N].

Remark 2: Supposl; is a normal subgroup d&; and suppose thad, is a normal subgroup
of G,. Let us further assume thal; and N, as well as the corresponding factor groups are
isomorphic:
N1
Gl/Nl

No,
G2/Na.

11

This doesnot imply that G; and G, are isomorphic, as the counter-exam@e = Z4 and
Gy = Zp x Zp shows.

Example: Let us consider the dihedral grddp for n > 3. This is the symmetry group of a
regular polygon. The symmetry operations are rotationsuidin an angle 2/n and reflexions.
In mathematical terms, this group is generated by two elés@esndb with

a"=b’=e  ab=ba"l

The element corresponds to a rotation through the angtg'i hencea” = e, the elemenb
corresponds to a reflexion, henog= e. This group is non-Abelian and one easily convinces
oneself thagb = ba"! (note thata~! = a"1). The elemena generates a cyclic subgroya)

of ordern. We can writeD,, as left cosets ofa):

Dh = (a) U b(a).
This shows thab,, has(2n) elements. The subgroyp) is a normal subgroup:
balb~! = balb = bal “2ab= bal ?ba" ! = bbal (" = al (™ ¢ (a).
The factor grou,/(a) is of order 2 and hence
Dn/(a) = Zp.

The elemenb generates a cyclic subgrouyp) of order 2. This subgroup is not a normal sub-
group:

(bal)b(bal) " = balba b= balbZa™ )1 = pal 0" -n-inti — b2l

Let us now look more specifically &t4, the dihedral group witin = 4. We work out the conju-
gacy classes and find

{e}.{a,a’},{a"}, {b,ba’}, {ba ba’}.

17



2.7 Direct product
Let Gy, ...,Gp be groups. In the set

G = G1x..xGy={(ag,..,an) @ € Gj,1<i<n}
we define a composition by
(al,...,an)(bl,...,bn) = (albl,...,anbn).

G is called thedirect product of the groupsGy, ..., G,. The neutral element i@ is given by
(e1,...,en), the inverse element @y, ..., an) iS given by(al’l, L.agh).

For the order of the grou@ we have

n
Gl = T]lGil.
I

Let us denote the trivial group iy = {e} and

G = Ex..xExGxEx..xE
—— ——
(i—1) times (n—i) times

We can show tha®; is a normal subgroup i6 and that
éi N (él...éifléprl...én) = {e}
We call a groupG theinner direct product of normal subgrouphl, 1 <i <n, if

G = N1Nb...Np,
NN (Nl...Ni_lNi+1...Nn> = {e}

Furthe properties of inner direct products@f= N;...N, is an inner direct product, then we have

e The elements oi; commute with the elements bl for i # j:
aa; = aja.
e Each elemend € G can be represented uniquely (up to ordering) as

a = 4ajp...an,

with g; € Ni.

18



The converse is also true: G; (1 <i < n) are subgroups 0B, such that the elements &
commute with the elements ¢fj (fori # j) and each elememtc G has a unique representation

a = aj.an

with g € G;, then theG;’s are normal subgroups & andG is an inner direct product of thg;’s.

Consequence: li andmare two positive numbers, which share no common divison the

Without a proof we state the following theorem, which chéggses completely the finitely gen-
erated Abelian groups:

Theorem on finitely generated Abelian groups Every finitely generated Abelian group
is a direct product of finitely many cyclic groups, in otherrd®

G =2 ZX...XlyXLX..xX1L,
pl pl'
with (not necessarily distinct) prime numbegs ..., pr.

An example where direct products occur in physics is givethieygauge symmetry of the Stan-
dard Model of particle physics. The gauge group is given by

U (1) x SU(2) x SU(3),

whereU (1) is the gauge group corresponding to the hypercha®yk?) is the gauge group
corresponding to the weak isospin aBd(3) is the gauge group corresponding to the colour
charges.

2.8 The theorems of Sylow

In this section we state without proof the three theoremsybdv& These theorems are very
helpful to discuss the structure of finite groups. From tle®tem of Lagrange we know, that the
order of a subgroup must divide the order of the group. Buthleerem of Lagrange does not
make any statement on the existence of a subgroup for a givesioid This situation is clarified
with the theorems of Sylow.

First theorem of Sylow. Let G be a finite group of orden = p"m, wherep is a prime num-
ber and gc@p, m) = 1. Then there exists for eaghwith 1 < j <r a subgroupd of G with order

pl.

Corollary: Let G be a finite group and legb be a prime number, which divides the order of
G. ThenG contains an element of ordpr

19



Definition: Let p be a prime number and |& be a group. We calc a p-group, if the or-
der of every element is a power pf

Definition: Let G be a group and |e be a subgroup os. We call P a p-Sylow group of
G, if

e Pisap-group
e Pis maximal, i.e. ifP’ is anothemp-subgroup ofG with P C P/, thenP = P'.

It can be shown that i is a p-Sylow subgroup of5, then alsaPa ! is a p-Sylow subgroup of
Gforallae G.

Second theorem of SylowLet G be a finite group of ordar= p"m, wherep is a prime number
and gcdp,m) = 1. LetP be ap-Sylow group ofG and letH be ap-subgroup ofG. Then there
exists an elemera such that

aHal c P

Corollary: Assume that for a given prime numberthere is only ong-Sylow groupP of G.
ThenP is a normal subgroup.

Third theorem of Sylow: Let G be a finite group and assume that the prime nunber a
divisor of the order of the group. Then the number of ph8ylow groups ofG is also a divisor
of the order of the group and of the form

1+kp,

with k > 0.

2.9 The group rearrangement theorem
Let G be a group and € G. Consider the set
aG = {aggeG}.
We have
aG = G.

Proof: We shovwaG C G andaG D G.

Let us start with C”: Take an arbitranp € G. We haveab € G and thereforaG C G.

We then show ®": Take an arbitraryc € G. The elementaic) is again inG and therefore
a(a~'c) = c. This showsaG D G.

20



An important application of the group rearrangement theaeethe following: Consider a func-
tion

f : G=R

defined on the grou@®. Then

;f(a) = %f(ab)

forallb e G.

21



3 Lie groups

3.1 Manifolds
3.1.1 Definition

A topological spaces a setM together with a familyZ” of subsets oM satisfying the following
properties:

1.0e T, MeT
2. U U e T =UiNUpeT

3. Foranyindex seAwe havely € 7;0 c A= | Uqg e T
acA

The setd) € 7 are calledopen

A topological space is calleHausdorff if for any two distinct pointsps, p2 € M there exists
open setd)q,Us € T with

preU, p2eUz, UinU; =0.

A map between topological spaces is calbehtinousif the preimage of any open set is again
open.

A bijective map which is continous in both directions is edlahomeomorphism

An open chartonM is a pair(U,¢), whereU is an open subset ™ and¢ is a homeomorphism
of U onto an open subset &".

A differentiable manifold of dimensiom is a Hausdorff space with a collection of open charts
(Ua, da)aca such that

M1:

M2: For each pai, 3 € A the mapping:pBoq)gl is an infinitely differentiable mapping of

A differentiable manifold is also often denoted aS®amanifold. As we will only be concerned
with differentiable manifolds, we will often omitt the wofdifferentiable” and just speak about
manifolds.

The collection of open chartd)q, ¢q)aca is called aratlas.
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If pe Uy and
ba(p) = (Xa(p),--%(P)),

the setUy is called thecoordinate neighbourhoodof p and the numbers;(p) are called the
local coordinatesof p.

Note that in each coordinate neighbourhdbdboks like an open subset &". But note that we
do not require thal beRR" globally.

Consider two manifold$1 andN with dimensionan andn. Let x; be coordinates oM and
yj be coordinates oN. A mappingf : M — N between two manifolds is callehalytic, if for
each poinfp € M there exits a neighbourho&tiof p andn power serie®;j, j = 1,...,nsuch that

yi(f(a)) = Pj(xa(d) —xa(p),-..,Xm(d) —Xm(P))
forallgeU.

An analytic manifold is a manifold where the mappirng o bt is analytic.

3.1.2 Examples

a)R"™: The spacé" is a manifold.R" can be covered with a single chart.

b) St: The circle
St = {XeR?||%?=1}

is a manifold. For an atlas we need at least two charts.
c) The set of rotation matrices in two dimensions:
cosp —sind
sing cosp )’
The set of all these matrices forms a manifold homeomorjhtle circleS'.

3.1.3 Morphisms

Homeomorphism A map f : M — N between two manifold81 andN is called a homeo-
morphism if it is bijective and both the mappirfg M — N and the inverséd 1 : N — M are
continous.

Diffeomorphism: A map f : M — N is called a diffeomorphism if it is a homeomorphism and
both f and f~* are infinitely differentiable.

Analytic diffeomorphism: The mapf : M — N is a diffeomorphism and analytic.
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3.2 Lie groups
3.2.1 Definition

A Lie groupG is a group which is also an analytic manifold, such that thppirays

GxG — G,
(a,b) — a-b,
and
G — G,
a — at
are analytic.

Remark: Instead of the two mappings above, it is sufficiemetpire that the mapping

GxG — G,
(a,b) — a-b?

is analytic.

3.2.2 Examples

The mostimportant examples of Lie groups are matrix grougsmatrix multiplication as com-
position. In order to have an inverse, the matrices must besirmgular.

a) GL(n,R), GL(n,C): The group of non-singular x n matrices with real or complex entries.
GL(n,R) hasn? real parameterssL(n,C) has 21 real parameters.

b) SL(n,R), SL(n,C): The group of non-singulam x n matrices with real or complex entries
and

detA=1.

SL(n,R) hasn® — 1 real parameters, whiL(n,C) has 2Zn? — 1) real parameters.

¢) O(n) : The group of orthogonal x n matrices defined through
RR =1.

The groupO(n) hasn(n— 1)/2 real parameters. The gro@yn) can also be defined as the
transformation group of a reatdimensional vector space, which preserves the inner gtodu



d) SQ(n): The group of special orthogonalx n matrices defined through
RR =1 and deR=1.

The groupSQ(n) hasn(n—1)/2 real parameters.

e)U (n): The group of unitary x n matrices defined through
uut=1.

The grougJ (n) hasn? real parameters. The groufgn) can also be defined as the transformation
group of a complex-dimensional vector space, which preserves the inner jgtodu

n
z'z
2
f) SU(n): The group of special unitanyx n matrices defined through
UUT=1 and det =1

The groupSU(n) hasn? — 1 real parameters.

g) Spn,R): The symplectic group is the group of 2 2n matrices satisfying

(S e - (58)

The groupSp(n,R) has(2n+ 1)nreal parameters. The gro@pn,R) can also be defined as the
transformation group of a reahlimensional vector space, which preserves the inner gtodu

n
(Xi¥j+n = Xj+nYj) -
=1

J

3.3 Algebras
3.3.1 Definition

Let K be a field andA a vector space over the fiell. A is called an algebra, if there is an
additional composition

AxA — A
(a,a2) — a1a

such that the algebra multiplicationKslinear.

(a1 +roaz)az = ri(a1az) +ra(axaz)
ag(ras+raa) = ri(asay)+ra(asaz)
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Remark: Itis not necessary to require tKais a field. It is sufficient to have a commutative ring
Rwith 1. In this case one replaces the requiremenifto be a vector space by the requirement
thatA is an unitalR-modul. The difference between a fidfldand a commutative ring with 1
lies in the fact that in the rin& the multiplicative inverse might not exist.

An algebra is called associative if
(aa)as = ai(azas)
An algebra is called commutative if
aia = axay
An unit elementla € A satisfies
lp,a = a

Note that it is not required th#t has a unit element. If there is one, note that difference &éetw
1a € Aand k € K: The latter always exists and we have the scalar multipinatith one:

lka = a

3.3.2 Examples

a) Consider the set of x n matrices oveR with the composition given by matrix multiplication.
This gives an associative, non-commutative algebra withigelement given by the unit matrix.

b) Consider the set af x n matrices ovelR where the composition is defined by
[a,b] = ab—ba

This defines a non-associative, non-commutative algelirar€lis no unit element.

3.4 Lie algebras
3.4.1 Definition

For a Lie algebra it is common practice to denote the comiposiif two elements andb by
[a,b]. An algebra is called a Lie-algebra if the composition $iaiss

[a7a] = 0,
[a,[b,c]] +[b,[c,a]] +[c,[a,b]] = O.

Remark: Consider again the example above of the setxafi matrices oveiR where the com-
position is defined by the commutator

[a,b] = ab—ba
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Clearly this definition satisfielg, a] = 0. It fullfills the Jacobi identity:

[a, [b,c]] + [b, [c,a]] +[c, [a, b]] =
= abc— acb— bca+ cba+ bca— bac— cab+ acb+ cab— cbha— abc+ bac
= 0.

Matrix algebras with the commutator as composition arectfoee Lie algebras.

Let A be a Lie algebra anidy,..., X, a basis ofA as a vector spacgX;,X|] is again inA and
can be expressed as a linear combination of the basis vegtors

XX] = Y G
X, %] k; ik

The coefficents;jx are called the structure constants of the Lie algebra. Ftixradgebras the
Xi's are anti-hermitian matrices.

The notation above is mainly used in the mathematical bieea In physics a slightly differ-
ent convention is often used: Denotey..., T, a basis oA as a (complex) vector space. Then

n
[Ta,Tb] - iz fabcTc-
c=1

For matrix algebras th&,’s are hermitian matrices.

We can get from one convention to the other one by letting
Ta — |Xa
In this case we have

fabc = Cabc

3.4.2 The exponential map

In this section we focus on matrix Lie groups. Let us first deefime matrix exponential. For an
n x n matrix X we define exiX by

Ooxn

expX = o

n

Theorem: For anyn x nreal or complex matriX the series converges.

A few properties:
1. We have

exp(0) = 1.
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2. expX is invertible and
(expX) ™t = exp(—X).
3. We have
exp[(a + B) X] = exp(aX) exp(BX).
4. If XY =Y Xthen
exp(X+Y) = expXexpy.
5. If Ais invertible then

exp(AXAY) = Aexp(X)A ™.

6. We have
(;jt exp(tX) = Xexp(tX)=exp(tX)X
In particular
d
X = X
dtexp(t )t:O

Point 1 is obvious. Points 2 and 3 are special cases of 4. heoint 4 it is essential tha¢

andY commute:
) XI ) Y] © N Xl Yn i i( )Xiyni

expXepY = 5 5 Z)J' 53 i i

= i:l(x—i—Y) =exp(X+Y).

1
n!

Proof of point 5:

=1
exp(AXA™ = (AXA! L axna-t = Aexp(X)A~ L.
- e g
Proof of point 6:
d o d o1 _ 1 n—1y/n
dtexp tX) = dtZ)n' = ; —1)t X" = Xexp(tX) = exp(tX) X.

Computation of the exponential of a matrix:
Case 1X is diagonalisable.
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If X = ADA~1 with D = diag(A1, A2, ...) we have
expX = expADA !=Aexp(D)A1l= Adiag(e?‘l,em, ) AL
Case 2X is nilpotent.

A matrix X is called nilpotent, ifX™ = 0 for some positivan. In this case the series termi-
nates:

m—1y/n
X
expX =

n’
& nl

Case 3X is arbitrary.

A general matrixX may be neither diagonalisable nor nilpotent. However, aayrimnX can
uniquely be written as

X = S+N,
whereSis diagonalisable anl is nilpotent andSN= NS Then
expX = expSexpN

and exgBsand expN can be computed as in the previous two cases.

3.4.3 Relation between Lie algebras and Lie groups

Let G be a Lie group. Assume that as a manifold it has dimensidais also a group. Choose
a local coordinate system, such that the identity eleragngiven by

e = ¢(0,...,0).

A lot of information onG can be obtained from the study Gfin the neighbourhood & Let
9(64,...,6n)

denote a general point in the local chart contairenget us write

9(0,...,0,,...,0) = g(0,...,0,...,0) + 8:X®+ O(6?)
= 9¢(0,...,0,...,0) —i8,T3+ 0(8?).

We also have

X2 = i
e;To 0, ’
-I-a _ |||m 9(7 s Yay 70)_9(07 707 70)
93%0 ea



TheT%s (and theX®s) are called thgeneratorsof the Lie groupG.

Theorem: The commutators of the generator8 of a Lie group are linear combinations of
the generators and satisfy a Lie algebra.

n
TR = iy feere,
cgl
We will often use Einstein’s summation convention and sinvplite
TaTE| = ifebere

In order to proove this theorem we have to show that the commuis again a linear combina-
tion of the generators. We start with the definition of a oaeameter subgroup @L(n,C): A
mapg: R — GL(n,C) is called a one-parameter sub-groupzf(n, C) if

1. g(t) is continous.

2.9(0)=1.
3. Forty,t> € R we have

g(ti+t2) = g(t1)g(tz).

If g(t) is a one-parameter sub-group®E(n,C) then there exists a uniquex n matrix X such
that

g(t) = exp(tX).
X is given by

d
X = ag(U

t=0

There is a one-to-one correspondence between linear catrdis of the generators
X — —ieaTa

and the one-parameter sub-groups

g(t) = exp(tX) with X:%g(t)

t=0

If Ac G and ifY defines a one-parameter sub-groupGyfthen alsoAY A~ defines a one-
parameter sub-group @. The non-trivial point is to check that e*p(AYA*l)} is again inG.
This follows from

exp[t (AYA)] = Aexp(tY)A L.
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ThereforeAY A1 is a linear combination of the generators. Now we takeXer exp(AX). This
implies that

exp(AX)Y exp(—AX)

is a linear combination of the generators. Since the vegace spanned by the generators is
topologically closed, also the derivative with respechtbelongs to this vector space and we
have shown that

iexp()\X)Yexp(—)\X) = XY=-YX=[X,Y]
dA A—0

is again a linear combination of the generators.

We have seen that by studying a Lie grdsjin the neighbourhood of the identity we can obtain
from the Lie groupG the corresponding Lie algebga We can now ask if the converse is also
true: Given the Lie algebrg, can we reconstruct the Lie gro@? The answer is that this can
almost be done. Note that a Lie group need not be connectedLdiientz group is an example
of a Lie group which is not connected. Given a Lie algebra weshiaformation about the con-
nected component in which the idenity lies. The exponentah takes us from the Lie algebra
into the group. In the neighbourhood of the identity we have

n
9(01,...,6n) = exp(—i Z eaTa> )
a=1

3.4.4 Examples

As an example for the generators of a group let us study tresaSU(2) andSU(3), as well
as the groupbl (2) andU (3). A common normalisation for the generators is

:_Léab‘

TrTaT? =
2

a) The groupSU(2) is a three-paramter group. The generators are proporttontle Pauli

matrices:
1/0 1 1/0 —i 1/71 0
1_ 4 2_ 2 3_+
T_2<1 o)’T 2<i o)’T 2(0—1)'
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b) The groupSU(3) has eight parameters. The generators can be taken as thel&wilmatri-
ces:

(010 1[0 -0 (1 00
Tl_E 100 ,TZ_E i 0 O ,T3_E 0 -1 0 |,
000 0 0 0 0 0 O
(001 1[0 0 —i (000
T“_é 000 ,T5_é 00 O ,T6_é 00 1],
100 i 0 0 010
(000 . (100
T7_é 00 —i |, T8 =—([01 o0
0i 0 23\ g 0 -2

c) For the groupd) (2) andU (3) add the generator

1/10
0_ =
! _2(0 1)

for U (2), respectively the generator

. [100
T°=—1010
v6\o 0 1

for U(3).

3.4.5 The Fierz identity

Problem: Denote b¥ @ the generators d8U(n) or U (n). Evaluate traces like
L Bl I B
where a sum ovex andb is implied.

We first consider the case f&U(N). The Fierz identity reads f@U(N):
1 1
T = 5 (5n Sjk — Néuém) :

Proof: T2 and the unit matrix form a basis of tiNex N hermitian matrices, therefore any hermi-
tian matrixA can be written as

A = col+caT2
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The constantsy andc, are determined using the normalization condition and thetfeat the
T2 are traceless. We first take the trace on both sides:

Tr(A) = coTri+ca TrT®=cgN,

therefore

1
= ZTr(A).
Co Nf()

Now we multiply first both sides witir? and take then the trace:
Tr(AT?) = cTrTPcaTrToT® = ca%esab,
therefore
Ca = 2Tr(T2A).

Putting both results together we obtain

1
A = STr(A)142Tr(ATY)T?

Let us now write this equation in components

1

Aj = STr(A) L +2Tr(AT) TS,
1

Aj = AL 2ATAT,

Therefore
1
Ak <2-|-i?-|-ka|1_|_ N5ij5k| — &j 6jk) = 0.

This has to hold for an arbitraiy, therefore the Fierz identity follows. Useful formulaeahving
traces:

Tr(T2X) Tr(TaY) = [Tr(XY) — %Tr(X)Tr (Y)] ,

1
2
Tr(TaXTaY) = %[Tr(X)Tr(Y)—%Tr(XY)].

In the case of & (N)-group the identity matrix is part of the generators and tleezHdentity
takes the simpler form

1
TTa = 55” Ojk-
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As a consequence we have fad@N)-group for the traces

Tr(T2X)Tr(TaY) = %Tr(XY),
Tr(T2XTaY) = %Tr(X)Tr(Y).

It is also useful to know, that the structure constaiff€ can expressed in terms of traces over
the generators: From

[T2,TP] = ifabere
one derives by multiplying witiT9 and taking the trace:
i1 — 2 |Tr (TATETE) —Tr (TPTRTC) |

This yields an expression of the structure constants ingerithe matrices of the fundamental
representation. We can now calculate for the gr@ufN) the fundamental and the adjoint
Casimirs:

N2 -1
(TaTa)ij = CFéij: 2N

fabCfdbc _ CA5ad:N6ad.

6ij7

For the grougSU(N) we define the symmetric tensd?°C through

{Ta,Tb} _ dabel-c_F%éab_

{A,B} = AB+BA
With the same steps as above one finds that
@ — 2[Tr (TeT5TC) 4 Tr (70T |

From this expression and the fact that the trace is cyclicaeessplicitly thaid2’¢ is symmetric
in all indices.

3.5 Gauge symmetries

Lie groups play an essential role in describing internal syatmies in physics. The simplest
example is given by electrodynamics. We denotéjx) the gauge potential of electrodynamics
and by

Fv = 0uAY(X) = 0vAL(X)
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the field strength tensor. We denote furtherbix) an element of & (1)-Lie group, smoothly
varying withx. We may write

UX) = exp(—iB(x).

whereB(x) is a real smooth function. Recall that the grduipl) has one generator, which is
the 1x 1 unit matrix. This is simply one and we don't write it exptigi We then consider the
transformation

A = UK (Au<x> N ieau) U

Here, e denotes the electric charge. Working out the expressioAfor) in terms off(x) we
find

A = A~ 2,804

This is nothing else than a gauge transforma#g(x) = Au(x) —dux(x) with x(x) = 8(x)/e.
The field strength transforms as

1.
Fv = URU™
For aU (1)-groupU andU ' commute withF,, and we get
Fl.,/lV — Fu\).

Therefore for &J (1)-transformation the field strength is invariant. As a consere, also the
Lagrange density

1

is invariant:
= L.

Now let us see if this can be generalise®td(N). In electrodynamics we can interpret the gauge
potential as a quantity, which takes values in the Lie algelf (1). There is only one generator
for theU (1)-group. In the grouBU(N) there are more generatotd{— 1 to be precise), and
we start from the following generalisation of the gauge poé:

ToALX),

where theT s are the generators of the Lie algebraSbf(N) andaranges from 1 ttN®> — 1. We
consider again a transformation of the form

TAY(X) = U®) (TaAa<x> n éau) U,
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whereU (x) is now an element d8U(N). (g is a coupling constant replacing the electromagnetic
couplinge). U (x) can be written in terms of the generators as

U(x) = exp(—iBa(x)T?),

The groupSU(N) is non-Abelian and the generataré do not commute. As a consequence the
expression

O (TAS) — 0y (TAY)
does not transform nicely. As a short-hand notation we vimitee following
Ay = ToAR.
We have
) L \ut] - t 0 f
A = 8, {u (AV+ gav) u } —9, {UA\,U g (owu )}
= U (0A)UT+ (9U) AUT+UA, (3,07) L) (ou™) + iy (0,0,0")
g g
SinceUU T = 1 we have
0 = au(uu') = (@u)uT+u (auT)
and hence
(Ut = —u ().
We can use this relation to rewrite
A = U (3A)UT— (Uaut) (UAUT) + (UAUT) (UauT)
o f AP t
; (Uau?) (vaw') + ;U (a,0007)
We then find that
auAV/ - aVA“/ - U (auAv - avA“) U T
. [UA“u*,uavuT] _ [uauuT,UAVUT] —lg [uauuT,uavuT] .
If we now define the field strength in the non-Abelian case by
Fo = 0uA — AL —ig [ALA]
we obtain the transformation law

F/

1.
v = URuUT
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We now define the Lagrange density as

1
L= 5 TrRyFY.

This Lagrange density is invariant und&ld(N)-gauge transformations:

1 1 1

L= TR = 2T (u FWUT> (u FWUT) = > TrRuFW = L.

Going back from our short-notation to the more detailed tnata
Av = T
one denotes the field strength also by
Fo = 0uAS—0uAR+g T AN,
Obviously, we have the relation
Fv = TR
In terms ofFj}, the Lagrange density reads

1 ar-aw
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4 Representation theory

4.1 Group actions

An action of a grougs on a setX is a correspondence that associates to each elege a
map@, : X — X in such a way that

Po19: = Po1 P,
@ is the identity map oiX,

wheree denotes the neutral element of the group. Insteagy©f) one often writegx.

A group action ofG on X gives rise to a natural equivalence relationark; € X andx, € X are
equivalent, if they can be obtained from one another by thieraof some group elemegte G.
The equivalence class of a poin€ X is called theorbit of x.

G is said to acteffectively on X, if the homomorphism from G into the group of transforma-
tions of X is injective.

G is said to actransitively on X, if there is only one orbit. A seX where a grougs acts
transitively is called a homogeneous space. Every orbit (@& necessarily transitive) group
action is a homogeneous space.

The stabilizer (or the isotropy subgroup or the little grptig of a pointx € X is the subgroup
of G that leavex fixed, e.g.h € Hy if hx=x. WhenHy is the trivial subgroup for atk € X, we
say that the action d& on X is free.

If G acts onX and onY, then a mapp : X — Y is said to beG-equivariant if yog=go
forallge G.

4.2 Representations

LetV be a finite-dimensional vector space &d(V) the group of automorphisms ®f. Typi-
callyV=R"orV =C"andGL(V) = GL(n,R) or GL(V) = GL(n,C).

Definition: A representation of a goupis a homomorphisrp from G to GL(V)

g — p(9).

The composition irGL(V) is given by matrix multiplication. Since is a homomorphism we
have

P(d102) = P(91)P(Q2)-
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This implies

p(gh) = [p(@) ™
The trivial representation:
p(g9) = 1, Vo

Remark: In general more than one group element can be mappéeé alentity. If the mapping
p:G— GL(V) is one-to-one, i.e.

p(g)=p(d) = g=d

then the representation is calldthful .

Strictly speaking a representation is a set of (non-sinutetrices, e.g. a sub-set GiL(V).
Very often we will also speak about the vector spe¢®n which these matrices act, as a repre-
sentation ofG.

In this sense aub-representationof a representatio¥ is a vector sub-spad® of V, which is
invariant undeiG:

p(g)weW VYge G andw e W.

A representatioV is calledirreducible if there is no proper non-zero invariant sub-spécef
V. (This excludes the trivial invariant sub-spatés= {0} andW =V.)

If V1 andV, are representations @, thedirect sum Vi1 @&V, and thetensor product V; ® Vo
are again representations:

gvidVe) = (gvi) ©(gve),
gvi®ve) = (gvi)®(gw),

Two representationp; and p, of the same dimension are calleduivalent, if there exists a
non-singular matriXS such that

p1(g) = Sp2(9)St, VgeG.

For finite groups and compact Lie groups it can be shown thatepresentation is equivalent to
a unitary representation.

For finite groups the proof goes as follows: Suppose we stiéitan arbitrary (i.e. not neces-
sarily unitary) representatigup(g). We would like to find aSsuch thap;(g) = Sp2(g)Stis a
unitary matrix for allg. We setSto be a hermitian matrix which satisfies

g = ZG P2 (9’) f P2 (9’) .
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Then

p2(9)'Sp2(0) = p2(0)" ¥ p2(d) p2(9)p2(0) = ¥ p2(d'9) p2(d)
geG geG

We therefore have

p2(9)' Sp2(g) = &
p2(9)'S = Fpo(g) !,
S'm(g)'s = Spa(g) st
(Sp2(@)s ™))" = (Sp2(@)SH) T,
This shows thap; (g) = Sp2(g)S ! satisfies
p1(@)" = pi(g) 7

in other wordsps(g) is a unitary matrix.

This proof carries over to the case of compact Lie groups pblaoing the sum in the defini-
tion of Sby an integration over all group elements.

The goal of representation theory: Classify and study gfegentations of a grou@ up to
equivalence. This will be done by decomposing an arbitrapregsentation into direct sums of
irreducible representations.

4.3 Schur’'s lemmas

Lemma 1: Any matrixM which commutes with all the matricggg) of an irreducible represen-
tation of a groupgs must be a multiple of the unit matrix:

M = cl
Proof: We have

p(@M = Mp(g) VgeG.

If p(g) is of dimensiomn, thenM must be square of dimensian Let us assume that(g) is
unitary. Then

M'p(@)" = p(g)'M".
Multiply by p(g) from left and right:
p@M" = M'p(g).
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Therefore alst™ commutes with alp(g), and so do the hermitian matrices
Hi = M+MT,
He = i(M-M").
Any hermitian matrix may be diagonalised by a unitary transfation:
D = U 'HU.

If we define now

we have

p'(9D = Dp'(9).
Let D =diag(A1,...,An) @and consider now thie j element of this matrix equation:
[p,(g)]ij Ajo= A [P,(g)]ij ;
Ai—2) [P'(@]; = o

Suppose that a certain eigenvaluef D occursk times and that, by a suitable ordering the first
k positions ofD are occupied byx. Then

M=..=A#A\, k+1<1<n.
This implies that

[P(@];;=0 forl<i<k k+l<j<n,
orl<j<k, k+1<i<n.

.. 0
0o ..
and is thus reducible, contrary to the initial assumptiohud’if and only if all the eigenvalues

of D are the same’(g) will be irreducible. In other wordd) and henceM must be a multiple
of the unit matrix.

Hencep'(g) is of the form

Lemma 2: Ifp1(g) andpz(g) are two irreducible representations of a grdaf dimensions
n; andn, respectively and if a rectangular matNk of dimensiomn; x np exists sucht that

p1(@M = Mpo(g), Vge G
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then either
(@M =0or
(b) n1 = nz and deM # 0, in which case1(g) andpz(g) are equivalent.

Proof: Let us assume without loss of generality thglg) andp2(g) are unitary representations.

Mipi(g)" = pa(g)'™T,
Mipi(g™l) = pa(gHMT.

Multiply by M from the right:

MTpa(gHM = pa(g HM™™.
By assumptiomps(g~1)M = Mp»(g~1) and therefore

M™Mp2(g™) = pa(g MM,
By lemma 1 we conclude

MM = AL

Consider the case, = np = n:

detM™ = detM'detM =\".
If A # 0 then detM # 0 and therefordl—* exists. Frompy(g)M = Mp2(g) it follows that

p1(9) = Mp2(g)M

andpi(g) andp,(g) are equivalent.

If on the other hand = O we have

Z |\/|i-|r(|\/|ki = 0,

Z |Mki|2 = 0.
This is only possible foMy; = 0 and hence
M = 0.

To complete the proof we consider the cage“ n,. Let us assume; < ny. ConstructM’ from
M by addingn, — n1 rows of zeros:
M
1o
v = (%)
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MT = (M' o)
We have
MM = MM
and thus
detM™™M = detM"M’ = detM"TdetM’ = 0.
Hence\ = 0 andM™™ = 0. It follows M = 0 as before.

Application: Orthogonality theorem for finite groups. L@tbe a finite group and lgt; and
p2 be irreducible representations of dimensimgrandn,. Then

%pl(g)i ip2(g
ge

Proof: Assume thagt; andp, are inequivalent. Consider

— é > PrgXpa(g™),
ge

whereX is an arbitraryn; x np matrix. Then

%5“ &; p1andp; are identical,

{ 0 p1 andp, are inequivalent,
p1 andpy are equivalent, but not identical.

1
p1(g)M = pl(g’)@ %pl(g)sz(g |G| %pl g'g)Xp2(g™Y)
= P1(9)Xp2(g'd) P1(9)Xp2(g™)p2(g) = Mp2(g).
P2 e (9] =Mpald)
By Schur’s second lemma we have= 0, therefore
=3 1@ Xjpa(g D = O
G| ge%pl 9)ij’ Ay P209 Tkt = L.

SinceX was arbitrary we can take = §;j:dy and we have

;Pl(g>ij Pz(g_l)m = 0.
ge

Now consider the case whepe andp, are identicalp; = p2 = p. Take again

— % > POXPO™).
ge
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One shows again

P(@M = Mp(g).
Therefore by Schur’s first lemma

1 —1
|G|g€§p(g)lj’xj’k’p(g ki = COj.
Again takeX = 0;;j/dk:
1 1
@gép(g)ijp(g )i = Cdj.

To find c take the trace on both sides:
6kj = Ch,

and therefore
G|

— & 0j -
Ny kj Ol

%p(gmp(g‘lm =

ge
Another consequence of Schur’s first lemma: All irreduciigleresentation of an Abelian group
are one-dimensional.

4.4 Representation theory for finite groups

A finite groupG admits only finitely many irreducible representatidfisip to isomorphism.

Example: Consider the symmetric gro&p the permutation group of three elements, which
is the simplest non-abelian group. This group has two onesdsional representations: The
trivial onel and the alternating representatidnlefined by

gv = signg)v.
There is a natural representation, in wh&hacts onC3 by

9- (22,78 = (ngl<1>’zgfl<2>’zgfl<3>>
This representation is reducible: The line spanned by the su
e+ +e
is an invariant sub-space. The complementary sub-space
V = {(a,2,3)|z1+ 20+ 23 =0}

defines an irreducible representation. This representéicalled the standard representation.
It can be shown that any representationSgpfcan be decomposed into these three irreducible
representations

W = |69n1 EBAEBHZ @V@ng.
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4.4.1 Characters

Definition:If V is a representation d@, its charactely is the complex-valued function on the
group defined by

xv(@) = Tr(p(g).
In particular we have
xv (hgh™) = xv(9).

LetV andW be representation @. Then

Xvaw = Xv +Xw,
Xvew = XV XW;
Xv+ = (XV)*7

Xaav(9) = %[XV(Q)Z—Xv(gzﬂ,
Xsyntv(@) = %[XV(9)2+Xv(92>}

Orthogonality theorem for characters: For finite groups \&d the orthogonality theorem. If
we consider unitary representations and if we make the agreethat if two representations are
equivalent, we take them to be identical, the orthogon#tiéprem can be written as

Gl

— &j &0,
ny il OkjCaf

%pa(g)ijpﬁ(g)l*k =
ge

(Note that for an unitary representation we hayg 1) = p(9);,.) Now we sef = j and sum,
and we set = kand sum:

%xa(g)xs(gf‘ = |G| g
ge

Since the character is a class function we can write

Soo Yo
ge classeg

wheren, denotes the number of elements in the classTherefore
S NeXa(GXp(C)™ = (G Bag
K

Character table:
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mC  mC  mG;
P1 | X1(C1) Xx1(C2) Xa(Cy)
P2 | X2(C1) X2(C2) X2(Cs)
P3| X3(C1) X3(C2) X3(Cs)

The number of orthogonal vectors corresponds to the numbi@equivalent representations.
The dimension of the space is given by the number of classesgelore the number of inequiv-
alent representations is smaller or equal to the numbeassek. In fact equality holds. To show
this, we consider one specific (reducible) representatialied theregular representation. The
regular representation is defined by

Gadb = 3 Pob(Ya) Yo
Cc

Note that the matripffb(ga) has in each column exactly one 1 and all other entries in thisen
are zero. This defines a representation: We have

Gd0adb = Od Pb(Ga)Ge =Y Pec(9a) Y PG (Ta) Ge
C e Cc

=2 (Z P5:(90) pffb(ga)) Ge.

e

On the other hand we have

0d0a0b = (9a0a)Tb = Y PEb(TaTa) Ge-
e

Therefore it follows
pf;b(gdga) = ZpeRc(gd) p§b<ga)7
C

or in matrix notation

PR(9aga) = P"(ga) PR(a)-

We have already seen that the 1 appears in each column of thi& pf¥g) exactly once. The 1
appears always on the diagonad i e, otherwise it appears never on the diagonal. This implies

for the character
R - 0 g#e
X(9) = { Gl g=e

In general, the regular representation is reducible. Waewri

pR(9) = Paapa(9),
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where the sum is over all irreducible representationsangives the number of times the irre-
ducible representatiopy is contained irpR. For the characters we have then

R

X(@ = > aaXa(9)-

The numbery we can obtain from the orthogonality theorem as follows
l R * l *
€] Z MNXaX™ (9)" = (€] Z NkXa %aBXB (9" = %aBBaB = aa-

Using the fact thagR (g) = 0 for all g # e we have on the other side

1

1
= 5 X XR(Q) = =X () |G| =Xq (€) = nq,
‘G‘ZKxax (9) ‘G‘Xa()|| Xa (€) = Ng

whereny is the dimension of the irreducible representajgn Thus

dg = Ng.

The irreducible representatipg appears exactlgy times in the decomposition ef. In partic-
ular, each irreducible representation appears in the deesition of the regular representation.
We also have

Gl = Sawa=3Yn;
o o
From the orthogonality theorem for finite groups it followst we can viewpq(9)ij for fixed
a and fixedi, j as a vector in aG|-dimensional space. The orthogonality theorem tells e, th
there are

Pe

a
orthogonal vectors. On the other hand we have just showrttiisatumber equalss|, therefore
the vectorgq(g)ij span the full space. Therefore any vector in this space camritien as a
linear combination of these basis vectors. In particulardbmponent/, with respect to the
standard bases is given by

Va = Z.C((Livj)pd (ga)ij :

ol ]
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Let us now focus on vectors which are constant on classes.thbse vectors we have with
-1
Jc = 9, "%a%

1 |G|
Va = 7= ) Vi
o Gl&
= ; c(a,i, j)p (g‘lgg)
T s 1y b)..
Gl &1 AT EEER
1 |G o B
1
= cla,i,j)— &ijd
a%j ( J>nag ij OlkPa (Ta)ki
c(a,i,i
= Z ( )Xa(9a>
Na

al

These vectors span a subspace of dimension equal to the noimtlassesass The above
equations show that the characters of the irreducible septations span this subspace. Hence
there must be exactlyasssuch characters, which is the desired result.

Criteria for reducibility: Assume that
Then

Conisder now

1 . 2 = 1 pirreducible
@%X(g))«g) - Z'a“‘ {> 1 preducible

This gives a criteria to check if a representation is irrelolec

Let us consider again the orthogonality theorem for charact

anXa(COXB(CK)* = |G| dyp

a _ /M
Cx ‘G‘Xa(cﬁ

48

If we define



we have
S = o
K
We can view({ as an entry of @cjassX Nelassmatrix. In matrix notation we can write
=1
It follows thatZ 1 = ¢T and also
=1

In other words
Ziz*ii’ = 6K)\-
a

Converting back to our original notation we have

) Gl
ZXa(CK) Xa (@) = O

This defines an orthogonality relation between the colunfitiseocharacter table.

4.4.2 Application: Molecular vibration

As an application of representation theory of finite grougswill study the vibration modes of
molecules. We will treat the atoms of the molecules clafigies point particles moving in a
potential which has a minimum when they are in their equilifor position. We will consider
small displacements from the equilibrium position.

Let us assume that the molecules hagoms. We will denote the positions of the atoms by
(X]_, ceey Xn)
and the equilibrium position byz(f), ...,XSIO)). It is convenient to introducerBcoordinatesy;,

i =1,...,3n, describing the displacement from the equilibrium positidhe Lagrange function
of the system reads

L = T-V,
13

T = —Z\Tijr]ir]j
2£

13n
Vo= 5 ) Vijnin;.
22,
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From classical mechanics we know that by suitable changemfimates we can achive that the
Lagrange function reads

13n_

3n
L= o3 8 gyee

Thewy’s are called the frequencies of the normal modes. The chafingmordinates involves the
diagonalisation of3n) x (3n) matrices.

We will now discuss how the task of obtaining the normal moches be simplified using group
theory. As an example we will discuss the water moleéipl®. Let us agree that the equilibrium
position of the water molecule is in tixe- z plane, with theD-atom along the-axis and the two
H-atoms along the-axis. We assume that the twb-atoms cannot be distinguished. We first
determine the symmetry group, which leaves the equilibjpasition invariant. We can rotate
the system by 180along thez-axis, since the twél-atoms are not distinguished, we obtain the
same configuration again. This defineZagroup. We denote the element, which generates
the group bya. Secondly, we have a reflection in tRe- z plane: Changiny — —y will not
affect the equilibrium position. This defines anotifergroup. We denote the element, which
generates the group liy In summary we find the symmetry grodp x Z,, with the generators
aandb. This group has four elemengs, a, b,ab} and is Abelian. We therefore have four classes
(each element is in a class of its own) and as a consequencerimucible representations,

..., P4a. The character table is easily obtained:

e a b ab
p1 |1 1 1 1
p2 |1 -1 1 -1
p3 | 1 1 -1 -1
pa|l -1 -1 1

The (3n) coordinates); define a(3n)-dimensional representatiqrof this group. This represen-
tation is in general reducible. We will now discuss how oféegiven irreducible representation
occurs in thg3n)-dimensional one, i.e. we look for the decomposition

p = Paupa.
a
To this aim let us group thé8n)-coordinates in tuples of 3:

(N1,--,N3n) = (N1.1,N12,N13,N2.1,---,Nn3) -

p acts on this representation as



or writing this alternatively
3

n
ni; = P(D)ikjINkl-
EEP PR

We can think ofp(g)i kj, as an x n-matrix, whose entries are>33-matrices. For the character
of this representation we have

n 3

x(@) = Z\_le(g)u;j,j-
I=1]=

In particular we observe that for the trace only the 3-matrices on the diagonal of thmex n-
matrix contribute. In other words: Only the displacemeritthe atoms which are left unmoved
by the symmetry operation are relevant. Let us now considet@mi which is not moved by
a symmetry operation. The effect of a rotation by an arfigterough thez-axis on the three
displacements; 1, ni 2, Ni 3 is given by

cos® —sin6 O
sin@ cos® O
0 0 1

The trace of this matrix is

For6 = 180 we find

X = —1
The reflection in thex— z plane is described by
1 0 O
0O -1 0|,
0 0 1
its character is
X = 1
Finally, the combined operation of a rotation ®y= 180° and a reflection is given by
-1 00
0O 10|,
0 01
with character
X = 1

We can now obtain the characters of the representation

51



le a b ab
p[9 -1 3 1

Not all irreducible representations in the decompositibp oorrespond to true vibrations: The
9 generalised coordinatgs contain 6 coordinates desribing the centre-of-mass meainahthe
rigid rotation of the molecule. The centre-of-mass motedescribed by the vector

%_im%,

with M = Z m;. Thisis a three-dimensional representation of the symngetrup with character

le a b ab
Prans| 3 -1 1 1

The rigid rotation can be described by the three quantities

(0) (0)
1N . 10 X|1r]|2—X|2r]|1
M-Zimixi xXnNi = lem X.zr]|3 X|3r]|2

- X|3r1|1 X|1r1|3

This transforms as a three-dimensional vector under ootatibut as a pseudo-vector under re-
flections. Indeed, for the symmetry transformatjor —y we have the transformation matrix

-1 00

0O -1 0

0O 01
and the character

X = —1

We therefore find the character of rigid rotations as

le a b ab
prot‘3 -1 -1 -1

We are not so much interested in the centre-of-mass motidhenrigid rotation. We subtract
these characters from the charactep @ind obtain

e a b ab
P — Ptrans— Prot ‘ 313 1
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We can now find the decomposition@f- pyans— Prot IN terms of the irreducible representations.
We make the ansatz

P — Ptrans— Prot = EB Ao Pa -
(o}
The multiplicity ay we obtain from the orthogonality theorem for characters
1 *
g = Gl Z Nk XaX3n—trans-rot-
Gl 4

For the water moleculgs| = 4 and all classes have exactly one elemagt= 1. We find

ap = %(1-3+1.1+1-3+1~1):2,

& = %(1-3+(—1)-1+1-3+(—1)-1):1,
ag = %(1-3+1-1+(—1)-3+(—1)-1):0,
as = %(1-3+(—1)-1+(—1)-3+1-1):0.

Therefore

P —Ptrans— Prot = 2P1+ P2

We therefore find three vibrational modes. Two transformhasttivial representatiop;. The
displacements in these modes are left invariant under thengtry grouZ, x Z,. One of these
two modes is given by the vibration, where bdihatoms move along theaxis in the same
direction, while theD-atom moves along theaxis in the opposite direction. The other mode is
given by an oscillation, where thH@-atom is at rest, and thd-atoms move along theaxis in
opposite directions.

The third mode transforms as the representghnt transforms trivially under reflections,
therefore the motion is in the— z plane. It has however a non-trivial transformation under th
rotation of 180 around thez-axis. This is oscillation is given by a motion, where tBeatom
moves along the-axis in one direction, the twbl-atoms have both a component along xhe
axis in the opposite direction. In addition the tieatoms have opposite components along the
z-axis.

4.4.3 Application: Quantum mechanics

A quantum mechanical system is described by the Schrodetgeation

9 .
=) = AR
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If the Hamilton operatoH is time-independent we can make the ansatz

WERY = W exp(—iﬁEt)
and we obtain the time-independent Schrédinger equation
HY® = EV(X).
Consider now a group of transformations acting on the coatdsX:
X = g% geG.
This induces a transformation on the wave function by
YE® = pOUE =w(g ).
An operator transforms as
O = p(g)Op(g ).

We are in particular interested in transformations, whedve the Hamilton operator invariant:

A

H = p(g)Hp(g™h).

Multiplying this equation by (g) from the right we obtaitdp(g) = p(g)H, and we see that this
is equivalent to the statement tipdy) commutes with the Hamilton operator

[H.p(g)] = O.

Remark: Usually the Hamiltonian of a quantum mechanicalesyss given by the sum of the
kinetic and potential energy operator. As symmetry tramségions we will usually consider
translations, rotations and reflections. The kinetic epegerator is invariant under these trans-
formations, therefore the full Hamiltonian is invarianthie potential energy operator is:

A

V(X = V(oX).

Let us now consider a quantum mechanical system with a HamilperatoH , which is invari-
ant under a finite symmetry gro@ In this case :

e The eigenfunctions for a given eigenvaladorm a representation of the symmetry group
G.

e The energyEy corresponding to an irreducible representapgrwill be at leastng-fold
degenerate, wherg is the dimension of the irreducible representapgn
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Proof: The set of all degenerate eigenfunctions for thermigleeE form a vectorspac¥. If Y
andg are two eigenfunctions with the eigenvaldeso is any linear combination of them. This
vector space defines a representation of the symmetry @otfpp € V andy/ = p(g)y then

HY = Hp(g)y=p(g)HY =p(g)EY =E (p(g)y) = EY.

Thereforey/ € V. V is either irreducible or reducible. In the latter casenay be decomposed
into irreducible components. In both casesyitontains the irreducible representatidy it
follows that

dmV > dimVy =ng.

Example: We consider the quantum mechanical harmoniclatxilin one dimension. The
Hamilton operator is

A2
L mo? 2.
2m 2
We define the characteristic length
_
X = mw’

Obviously, the Hamilton operator is invariant under theewfbnx — —x. The reflectiona
generates a symmetry grodp. The character table of this group is

e a
pp|1 1
p2 |1 -1

It is well-known that the eigenvalues are given by

1

and the eigenfunctions are given by

it = T 30 )G

with the Hermite polynomials

> dn 2

nx Y X
e?‘d)@e )

We see that the eigenfunctiogs, for evenn transform as the trivial representatipn of Z,
while the eigenfunctions for oddtransform as the representatipnof Z..

Hh(x) = (=1)
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4.5 Representation theory for Lie groups

4.5.1 Irreducible representation ofSU(2) and SQ(3)

The groupsSU(2) andSQ(3) have the same Lie algebra:
[la,Ip) = i€apdc-

For SU(2) we can take thé?'s proportional to the Pauli matrices

Loy | _1/0 L /10
1=5\ 10/ 272\ i o) B 2\0 -1/

This defines a representation®(2) which is called the fundamental representation. (It is not
a representation $Q(3).)

Quite generally the structure constants provide a reptasen known as the adjoint or vector
representation:

(Mp)ae = ifabe
For SU(2) andSQ(3):
00 O 0 O i 0 - O
M= 00 —i |, Mq=| 0 00], Mg=[ i 0 0
Oi O -1 00 0O 0 O

The dimension of the adjoint representation equals the kima of the parameter space of the
group and the numbers of generators.

Let us now discus more systematically all irreducible reprgations.
Definition: A Casimir operator is an operator, which commutes with all the generators of the

group.
Example: FoiSU(2)

is a Casimir operator:
[1%,1a] = o.

Example 2: Let us conside3U(3), with the generator§?, a=1,...,8. Here we find two
independent Casimir operators, which we €allandCs. The first one is given by

C, = TaT?

and is called the quadratic Casimir operator. The symmegrisord2’¢ is defined forSU(3)
through

{Ta7-|-b} _ dabc-rc_i_%éab‘
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{A,B} = AB+BA
We then defin€; by
Cs = dPeraTPhre,
Cs is called the cubic Casimir operator. Sir@éeandCs are Casimir operators, we have
[Co, T =0, [C3T¥=0.

Continuing in this line, it can be shown th8U(n) has(n— 1) independent Casimir operators
Cy, C3, ...,Ch—1. The grougJ (n) hasn independent Casimir operatds, Cp, ...,Cn_1.

Definition: Therank of a Lie algebra is the number of simultaneously diagonalisable gen-
erators.

Example 1:SU(2) has rank one, the convention is to tdkeliagonal.

Example 2:SU(3) has rank two, in the Gell-Mann representatiarandTg are diagonal.

Theorem: The number of independent Casimir operators is equal toahle of the Lie alge-
bra. The proof can be found in many textbooks.

The eigenvalues of the Casimir operators may be used totlad@reducible representations.
The eigenvalues of the diagonal generators can be useddiaiedbasis vectors within a given
irreducible representation.

ExampleSU(2):
1ZA,m) = AA,m),
I3A,m) = m|A,m).
Consider
(E+12) Am) = (12=15) A m) = (A —n?) A, m).
Further

AmIZA M) = (A m{1fla A, m) = [I2[A,m)>> 0.
A similar consideration applies t@, m|12 |A,m). Therefore
A—m? > 0.
For a given\ the possible values of are bounded:

—VA<m< VA
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Define

. = (I £il7)

Sl

I3, ==+, [I%1]=0.
The last relation implies

(1Pl — 115 \,m) = 0,
2 Am) = A(IL|A,m).

Therefore the operatots don’t change\. From the commutation relation witg we obtain

(|3|i—|i|3)‘)\,m> = j:li|)\,m),
I3(le A, m) = (m=+1) (e [A,m).

Thereforel . |A,m) is proportional to|]A,m=+1) unless zero. Recall that the valuesrofare
bounded, therefore there is a maximal valg,x and a minimal valu@min:

|+ |)\7mma><> - 07

[ |A,Mmin) = O.
Now
1IZ=124124+12 = 21,01 +13—13
= 211, +12+13
Therefore
12N My = (201 +15+13) [A, Mnay ,
AN Mmay = Mmax(Mmax+ 1) [A, Mmax) ,
and
A = Mmax(Mmax+1).
Similar:
12N, Mmin) = (201= 415 —13) [\, Miin) ,
AN, Mimin) = Miin (Mimin — 1) [, Mimin) ,
and

A= mmin(mmin— 1) .
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From

nﬁ]ax'i' Mmax = mﬁﬂn—mmin,
(Mmax+ Mmin) (Mmax— Mmin+1) = 0

. J/
-~

>0

it follows

Since the ladder operators raise or loweby one unit we must have thaiynax andmy, differ
by an integer, therefore

2mnax = integer

Let us writemmax= j. Then 3 is an integer and

Normalisation:

With Il = |+ we have
1
|Ai|2 = ()\,m|llli|)\,m):<)\,m|l¢li|)\,m>:é()\,m|lz—l3(l3il)|)\,m>
and therefore

AL = S(i(j+1)-m(m=1))

NI =

Condon-Shortley convention:

jd+Y—m(m+1)
N e

The representation @U(2) corresponding tg = 0,1,2, ... are also representations $03),
but the one corresponding fo=1/2,3/2, ... are not.
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45.2 The Cartan basis

Definition: Suppose a Lie algebfehas a sub-algebBsuch that the commutator of any element
of A (T2 say) with any element @& (TP say) always lies ifB, thenB is said to be aideal of A:

[T{Tb] € B.
Every Lie algebra has two trivial ideals:and{0}.

A Lie algebra is callegimpleif it is non-Abelian and has no non-trivial ideals.
A Lie algebra is calledgemi-simpleif it has no non-trivial Abelian ideals.

A Lie algebra is calledeductive if it is the sum of a semi-simple and an abelian Lie alge-
bra.

A simple Lie algebra is also semi-simple and a semi-simpéedlgebra is also reductive.

Examples: The Lie algebras

su(n),sa(n),sp(n)

are simple.
Semi-simple Lie algebras are sums of simple Lie algebras:

su(ny) @su(ng).
Reductive Lie algebras may have in addition an abelian part:
u(l) &su2) &su3).

From Schur’'s lemma we know that abelian Lie groups have onbra@imensional irreducible
representations. Therefore let us focus on Lie groups sporeding to semi-simple Lie algebras.
A Lie group, which has a semi-simple Lie algebra, is for obgioseasons called semi-simple.
We first would like to have a criterion to decide, whether adlgebra is semi-simple or not: If

[Ta7-|-b] _ ifabo-rc,
define

gab - f acd f bcd.

A criterion due to Cartan say that a Lie algebra is semi-senfdnd only if

detg # O.
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For SU(n) we find
gab _ CA5ab.

Let us now define the Cartan standard form of a Lie algebra. dtvate the Cartan standard
form let us as an example suppose that we have

[TLT?] =0, [TLT%]#0, [T%T3 0.
If we now make a change of basis
T1/:T1+T3 T2/:T2 T3/:T3

none of the new commutators vanishes. It is certainly delita pick a basis, where a maximum
number of commutators vanish and the non-vanishing onestrer simple. This will bring us
to the Cartan standard form. Let us assume that

n

_ a
A = aZlcaT,
_ A a
APl
such that
AX] = pX.

p is called aroot of the Lie algebra. We then have
[AX] = icaXpfPTC = px T,
(cari t2°—pxc) = 0.
<cai fabe_ pest) X, = O.
For a non-trivial solution we must have
det(cai fabe_ pest) _—

In general the secular equation will givendah order polynomial ig. Solving forp one obtains
nroots. One root may occur more than once. The degree of deggrie called the multiplicity
of the root.

Theorem (Cartan): 1A is chosen sucht that the secular equation has the maximunberum
of distince roots, then only the ropt= 0 is degenerate. Furtherrifis the multiplicity of that
root, there exist linearly independent generatdfis, which mutually commute

[Hi,Hj] = 0, i,j=1,...,r.
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r is the rank of the Lie algebra.

Notation: Latin indices for 1..,r, e.g. Hi and greek indices for the remainitig—r) gener-
atorsky (a=1,...,n—r).

ExampleSU(2):

131 = igte
TakeA = 13

[13X] = pX.
Secular equation:

det<i83bc—p6bc> = 0,

—-p i 0

—i —-p O = 0,

0O 0 -—p
—p°+p = 0,
p(p?~1) = 0

Therefore the roots are &1. We have
p=0 [I3X]=0 =X=13=H;,

p=1 [I3,X] =X :>X:%2(|1+i|2):|51,

p=-1 [I®X]=-X ;»xz\%(ll—nz):Ez.

Theorem: For any compact semi-simple Lie group, non-zestsroccur in pairs of opposite sign
and are denotefly andE_q (0 =1,...,(n—r)/2).

We thus have the Cartan standard form:
Hi.Hi] =0,
[Hi,Ea] = p(a,i)Eq.
As a short-hand notation the last equation is also oftertemis
[Hi,Eq] = aiEa.
The standard normalisation for the Cartan basis is

(n—r)/2
p(a7i)p(a7 J) = 6Ij

a=1
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Cartan standard form &U(2):
1/1 0 1 /01 1 /00
Hl_é(o —1)’ El__2<o o)’ El_ﬁ(l o)‘

[H,E1] = Ey, [H,E_1] = —E3.

The roots are

Cartan standard form &U(3):

m-L(o10) m-fo1 o
Velo o0 o) 3V2\o o0 2/
1 010 1 0 01 1 00O
~=a(358) ==a(353) =& (352)
1 00O 1 00O 1 00O
-a(393) =ed(2ne) e[ 0)
The roots are
HuEl = sVBEL  [Hp B =0
[H1,E2] = é\/éEz, [H2,E2] = %\/éEz
[H1,Eg] = —%\/EEB, [Hz,E3] = %\@Es-
Ther numbersyj, i = 1,...,r can be regarded as the components of a root véctefay, ..., o)

of dimensiorr.
Example: FoiSU(3), the root vectors correspondingg E, andEs are
1./6 1./6 ~1/6
G —( 3 g —( 8 g — 6
@-(%) we-(1) ®-(37)
E_

oeo-(°). sea-(2). aea-(4%)

Theorem: Ifd is a root vector, so is-d, (since roots always occur in pairs of opposite sign).

~—

Theorem: Ifa andﬁ are root vectors then

al
R

Ql
!

2 2
5 and
[ef B
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are integers. Suppose these integergaandg. Then

(6"@2 Pq

ﬁ = o = 00529 S 1

o7 [B] 4
Therefore

pg < 4
It follows that
113
cosh = 0551

Casef = 0°: This is the trivial casé = ﬁ
Cased =30": We havepg=3andp=1,q=3orp=3,q= 1. Letusfirstdiscusp=1,9= 3.
This means

20p_, 2ap_,
o> BP
Therefore
2
LI
B]
The case = 3,q =1 is similar and in summary we obtain
2
1
% = 3or-.
B| 3
Casef = 45°: We havepg=2andp=1,q=2orp=2,q=1. It follows
ja?
— = 2 0r .
B 2
Casef = 60°: We havepg=1andp=1,q= 1. It follows
Jaf*
B

Case9 = 90°: In this casep = 0 andq = 0. This leaves the ratim|?/|8|? undetermined.
The case =120°,0 =135, 06 = 150" and® = 180" are analogous to the ones discussed above.

If & andf are root vectors so is
20 -B

a
a2

vV = B-

Example: The root diagram &U(3):
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Let us first recall some basic facts: The rank of a Lie algebrthé number of simultaneously
diagonalizable generators. In the following we will denthte rank of a Lie algebra by

4.5.3 Weights

We already mentioned the following theorem : The rank of adlgeebra is equal to the number
of independent Casimir operators. (A Casimir operator is@arator, which commutes with all
the generators.)

For a Lie algebra of rank we therefore have Casimir operators and simultaneously diag-
onalizable generatols;.

The eigenvalues of the Casimir operators may be used to thbetreducible representations.
The eigenvalues of the diagonal generatdysnay be used to label the states within a given
irreducible representation.

Let A be a shorthand notation far= (A1,...,Ar), a set of eigenvalues of Casimir operators and
let mbe a shorthand notation far= (my, ..., My ), a set of eigenvalues of the diagonal generators:
The vectom s called the weight vector.

ExampleSU(3): Let us consider the fundamental representation. The vepiEce is spanned
by the three vectors

1 0 0
ee=|( 0], &e=| 1], es=| O
0 0 1
We have
1 1
H 7H - = 9
(H1,H2) &1 ( =3 2)61
1 1

H 7H = T T =Y A A 9
(Hi,H2) & ( =375 ) @

(Hi,Hy)es = <O __2 €

17 2 - 9 3\/2 .



This gives the weight vectors

1 _a 0
m1=<£>,mz=<f>,ms=( ﬁ)-
3v2 3v2 3

and the weight diagram

" it
Consider now the complex conjugate representation of thesftnental representation: If
p = exp(—if,T?)
is a representation, then also
p* = exp(iBaT*) =exp(—iBaT¥)
is a representation and we have
T = T,

It follows that the weights of the complex conjugate repnégon are negatives of those of the
fundamental representation: M

3

Note that in general the complex conjugate representatiois inequivalent top. This is in
contrast taSU(2), where one can find g such that

spst = ¥ s t=p"

The generatorg. 4 are generalisations of the raising and lowering operdtocs SU(2). Sup-
pose
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and
Hi,Eq] = aiEq.
Then

Hi,Eq] A, M) = oiEq[A,m),
HiEa[A, M) — EqHi[A, M) = aiEq A, M),
H; (EG|X,m>) — (m+a) (EG|X,m>) .

ThereforeEq |7\, m) is proportional th, m+d) unless zero. Therefore the weight vectors within
an irreducible representation differ by a linear combwratf root vectors with integer coeffi-
cients.

Example: In theSU(2) case the weight vectors were one-dimensional. Within arelurcible
representation all weights could be obtained frovaax by applying the lowering operatadr .
The action ofl_ corresponds to a shift in the weight proportional to a roctee

In the SU(2) case we also found that within an irreducible represematite weights are
bounded, i.e. there is a maximal weight, for whichA, mmay = 0. We now look how this
fact generalises: We start with the definition of the muitipy of a a weight: The number of
different eigenstates with the same weight is calledntiogtiplicity of the weight. A weight is
said to besimpleif the multiplicity is 1.

For Lie algebras witlm > 2, weights are not necessarily simple.

Theorem : Given a weighih and a root vectod then

20 -m

is an integer and

is also a weight vectom andn¥ are calledequivalent weights
Geometricallyff is obtained fronm by a reflection in the plane perpendicularctoFor SU(2)
the weightam and—mwithin an irreducible representation are equivalent.

Ordering of weights: The convention foSU(n) is the following:mis said to be higher tham
if the rth component of m— i) is positive (if zero look at thér — 1)th component, if this one
is also zero, look at the — Z)th component, etc. ).

The highest weight of a set of equivalent weights is said tddrainant.
(In the case of an irreducible representatio®of 2) the dominant weight is the one withyay.)
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Theorem: For any compact semi-simple Lie algebra there exists fgri@educible representa-
tion a highest weight. Furthermore this highest weightse aimple.

(Recall: In theSU(2) case we first showed that the valuesére bounded, and then obtained
all other states in the irreducible representation by dapglyhe lowering operator to the state
with Mmax.)

Theorem: For every simple Lie algebra of rankthere arer dominant weightvi(), called
fundamental dominant weights, such that any other domiwaightM is a linear combination
of theM ()

-

|\7i = n; M(i)

where then; are non-negative integers.

Note that there existsfundamental irreducible representations, which have tifierentM ()'s
as their highest weight. We can label the irreducible resregions by(ni, ny, ..., ny) instead of
the eigenvalues of the Casimirs.

Example: ForSU(2) we can label the irreducible representations either by ihengalue
of the Casimir operatdr, or by a numben with the relation

n
A= j0(+D), j==.
jG+1), j=3
Note that there is one fundamental representation, whidtvasdimensional. The dominant
weight of the fundamental representation j2 1All other dominant weight$ are non-negative
integer multiples of this fundamental dominant weight:
1

I = N5

4.6 Tensor methods

We have already seen how to construct new representatiasf giten ones through the opera-
tions of the direct sum and the tensor productvilfandV, are representations &, the direct
sumVi &V, and the tensor produ® ® Vo are again representations:

g(vi®ve) = (9v)D(9v2),

g(vi®ve) = (gv)®(9v2),
We now turn to the question how to construct new irreducibfesentations out of given irre-
ducible ones. IV, andV, are irreducible representations, the direct suwhi® Vs is reducible

and decomposes into the irreducible representat@rasdV,. Nothing new here. More inter-
esting is the tensor product, which we will study in the foliog.
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4.6.1 Clebsch-Gordan series

To motivate the discussion of tensor methods we start agan the SU(2) example and its
relation to the spin of a physical system. Suppose we haved&pendent spin operatalsand
Jo, describing the spin of particle 1 and 2, respectively.

[J1i,d2j] = 0 Vi,j

Let us now define the total spin as

Sl

I+,
Jz - le"’JZz-

We use the following notation:

lj1,mg)  eigenstate of? andJ; ;
li2,mp)  eigenstate ofZ andJ,,

We define
i1, 2, me,me) = |j1,me) @ |j2,mp).
The set
{lja; J2, Mg, M) }
are eigenvectors of
{32,951 2,02}

and is referred to as the uncoupled basis. In general thetss stre not eigenstatesX3fand the
basis is reducible. This can be seen easily:

P o= (3+%) (%) =R+ B+ 20
and 2., fails to commute withl; , andJ, ,. To find a better basis, we look for a set of mutually
commuting operators. The set
{3%,3,, 92,33}
is such a set and an eigenbasis for this set is labelled by
{ismja, j2) }-

This basis is called the coupled basis and carries and tigl@urepresentation of dimension
2j+1. Of course we can express each vector in the coupled basiggtha linear combination
of the uncoupled basis:
[5smja, j2) = > Cl mym, 1115 i2, M, mg)
My, MMy +Mp=m
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The coefﬁcienti:jjm are called the Clebsch-Gordan coefficients. The Clebsaiakdhoco-

1j2mmyp
efficients are tabulated in the particle data group tables.

Example: We takg; = j» = 1/2 and use the short-hand notation

) = hZ%DZ%MWZ%W=%>
1) = hZ%DZ%ﬁWZ%WZ—%>
) = hZ%DZ%MHI—%WZ%>
) = Jla=gla=gm=—gme=—3),

For the coupled basis we haye {0,1} and we find

. . 1. 1
‘J_l7m_17jl_§712_§> - ‘TT>7

. . 1. 1 1
‘le7mzo711:§712:_> = —(H\\L>+|¢T>)7

2 V2
. . 1. 1
’JZl,m:_1711:§712:§> = ‘\L\L>7
. . 1. 1 1

Note that the three states wifh= 1 form an irreducible representation, as does the state with
j = 0. The tensor product of two spin'2 states decomposed therefore as

222 = 3a1,

wheren denotes an irreducible representation of dimension

4.6.2 The Wigner-Eckart theorem

Let us make a small detour and discuss the Wigner-EckartegheoConsider first in quantum
mechanics the matrix element of an operaddvetween two statdg) and|y):

M = (9[0]w).
Suppose that a unitary group transformationt = UT) acts on the states as
W) = Ul
and on operators as
0 = uou'.
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Then
M — @Mbﬂw>:<ﬂuwpbujuMQ:<mme:M.

0 = 0
or equivalently
[O,U] = 0

we say that the operataf] transforms as a scalar (or as a singlet). This is the simpésst. We
discuss now more general cases. We first fix the group ®Uj€). Suppose we are given a set
of (2k+ 1) operatorsTX, —k < g < k, which transform irreducible under the gro8p)(2). That

is to say that

K\ _ ky T
(4) = utgu

can be expressed as

(qy = DT,

where we denote th@k+ 1) x (2k+ 1) matrix representation of the transformatidrby

(k)
Pt
with g,q = —k,....k. We caIIqu atensor operator of rank k.
A tensor operator of rank zero is a scalar. An example of aotemerator of rank 1 is given
by the three generators 8U(2):

1 .
J = —(l1+1ily),
1 \@(1 2)
b = I3
1 .
Jd1 = —(l1—=1l9).
1 \/2(1 2)

{J-1,J0, 1} define the spherical basis. The generators transform UBldE?) as the adjoint
representation. FAU(2) the adjoint representation is tBaepresentation. The spherical basis
transforms in this notation as

1
(J) = @éq)

An equivalent definition for a tensor operator is a sef2if+ 1) operators satisfying
1 Td] = oty

[Ii’qu] = VkFOkEq+ DT = Vk(k+1) - (0= Tges.

\Jq/ .
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We can now state the Wigner-Eckart theorem:

(1t im) = gl [T

The important point is that the double bar matrix elemghtT¥||j) is independent afn, m and
g. The dependence an, M’ andq is entirely given by the Clebsch-Gordan coeﬁicie@ﬁﬂq.

4.6.3 Young diagrams

We have seen that the tensor product of two fundamentalgeptations o5U(2) decomposes
as

202 = 331,

into a direct sum of irreducible representations. We gdiserghis now to general irreducible
representations SU(N).

Definition: A Young diagram is a collection of boxesC™ arranged in rows and left-justified. To
be a legal Young diagram, the number of boxes in a row mustmooéase from top to bottom.
An example for a Young diagram is

Let us denote the number of boxes in rgvby Aj. Then a Young diagram is a partition of
defined by the numbefa 1, Az, ...,An) subject to

AM+Ao+...+An=m,
AM>A> .. > A

The example diagram above therefore corresponds to
(A1,A2,A3,\2) = (4,2,1,1)
The number of rows is denoted by For SU(N) we consider only Young diagrams with< N.
Let us further defingn — 1) numbersp; by
P = A1—Ag
P2 = A2—As,
Pn-1 = An-1—An-2.
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The example above has

(P1,p2,pP3) = (2,1,0)

Correspondence between Young diagrams and irreducibteseptations: Recall from the last
lecture that we could label any irreducible representatiba simple Lie algebra of rank by
either ther eigenvalues of the Casimir operators or by theimberd ps, ..., pr) appearing when
expressing the dominant weight of the representation imgeof the fundamental dominant

weights:
;
pi M)
5"

The groupSU(N) has rankN — 1 and we associate to an irreducible representaticBUgiN)
given through(ps, ..., pn—1) the Young diagram corresponding(tpy, ..., PN—1)-

As only differences in the number boxes between succeswe neatter, we are allowed to add
any completed column dfl boxes from the left. Therefore BU(4) we have

The fundamental representationRi(N) is always represented by a single box

]

The trivial (or singlet) representation is alway assodatéth a column ofN boxes. FoiSU(3):

:

The complex conjugate representation of a given repres@nia associated with the conjugate
Young diagram. This diagram is obtained by taking the complat with respect to complete
columns ofN boxes and rotate through 18 obtain a legal Young diagram.

Examples foiSU(3):
complemenE rotatlonH

| complement [ rotation |

? ‘ I

complement rotation
[TT1™™= =

The hook rule for the dimensionality of an irreducible representation
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i) Place integers in the boxes, starting within the top left box, increase in steps of 1 across
rows, decrease in steps of 1 down columns:

N [N+1/ N+2

N—2 N—-1

i) Compute the numerator as the product of all integers.

i) The denominator is given by multiplying all hooks of a Mog diagram. A hook is the
number of boxes that one passes through on entering thatshleng a row from the right hand
side and leaving down a column.

Some examples fdBU(3):

2.3.4

4 1
. 4.5
: d|m: m: 10,

31415 : 2-3-4-3-4-5
2134 M=1723234

W
B

10.

Rules for tensor products We now give rules for tensor products of irreducible repreations
represented by Young diagrams. As an example we tak&J(3)

e

i) Label the boxes of the second factor by row, e, c, ...:

| alal
— ol

i) Add the boxes with tha’s from the lettered diagram to the right-hand ends of thesrofithe
unlettered diagram to form all possible legitimate Younggdams that have no more than @e
per column.

al

ala
b
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Note that the diagram

a
a

is not allowed since it has one column with t@s.

iii) Repeat the same with thgs, then with thec's, etc.

alal alb] a

alalb| alal
2

|| b Y F Y E a

Note that the diagram

a
b
is not allowed forSU(3), since it has more than 3 rows.

iv) A sequence of letterg, b, c, ... is admissible if at any point in the sequence at least as
manya’s have occured ass, at least as manlys have occured ass, etc. Thusabcdandaabch

are admissible sequences, wralebandacbare not. From the diagrams in step iii) throw away
all diagrams in which the sequence of letters formed by readght to left in the first row, then

in the second row, etc., is not admissible. This leaves

alal alal a

b Y F Y a

Removing complete columns of 3 boxes, we finally obtain

B@ = |@Djea5

For the dimensions we have

38 = 150603

As a further example let us calculateS)(3) the tensor product of the fundamental representa-
tion with its complex conjugate representation:

D@H = @@ |

3®3 = 148

For the dimensions we have
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As a final example let us consider

D@D@D@@ oo 1717

For the dimensions we have

3R3®3 = 1la8d8dl0

4.7 Applications
4.7.1 Selection rules in quantum mechanics
We consider a time-independent quantum mechanical system
HY®) = EY(¥),
together with a groufs acting on the states by
VE) = puEX),
and on operators by
O = p(9)Op(g™H).
If the groupG leaves the Hamilton operator invariant
H = p(gHp(g™),

we may label the states by the irreducible representatibttseogroupG. Likewise, we focus
now on operator®, which transform as an irreducible representation of tioeigG. We denote
by (@) (X) a set of states transforming like the irreducible repreg@npg:

W' (%) = pa(u® (%),

Further we denote b@® a set of operators transforming like like the irreducibleresentation
Pp

and finally by@Y) a set of states transforming like the irreducible representp,

d'® = py@)eY (%).

Recall that we defined f@U(2) a tensor operator as a set(@k+ 1) operatorqu" (—k<q<k),
which transform irreducible as

(4) = 2l
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underSU(2). The transformation la@®’ = pg(g)O®) is nothing else than the straightforward
generalisation to an arbitrary group.
We are interested in the matrix elements

<(p(v) é(B)’ lp<oo> ,

Suppose the decomposition of the tensor proggct pg into irreducible representations reads

Pa®Pg = D NyPs,
0

where the numbaery indicates, how often the irreducible representapgoccurs in the decom-
position.
We then have the following theorem: gf, does not occur in the decompositigmsps, then
5

the matrix
<(p(v) ‘é(B) ’ lp<oo>

vanishes. This is called a selection rule.
As an example we consider the c&e- SU(2). The irreducible representations are labelled
by j=0,1/2,1,3/2,... and the states within an irreducible representatiomiyith —j <m< j.
The Wigner-Eckard theorem states
i)
"l

(it 13| im) =
The Clebsch-Gordon coefficier(tgi,krnq vanish whenever the irreducible representagipns not
contained in the decomposition of the tensor progycd py.

_ ci'm <-/
V27 1 Jkmal!

4.7.2 Gauge symmetries and the Standard Model of particle pfsics
The Standard Model of elementary particle physics is baselgauge theory with gauge group

SU(3)CO|OU|' X SU(2>Weak iSOSpinX U (1)Y7

where SU(3)colour COrresponds to the strong interactio8$)(2)weak isospinto the weak interac-
tion andU (1)y to the hypercharge. The gauge symmetrsof 2)weak isospin< U (1)y is sponta-
neously broken to a subgrou(1)q, whereU (1)q corresponds to the electroc charge. We will
not go here into the details of the mechanism of spontangaoasietry breaking, but focus on an
unbroken gauge theory. The strong interactions with gaogepdsU.oour Provide an example.
All particles are classified according to representatidrti® gauge group. Fermions trans-
form as the fundamental representation of the gauge gransS 3)colour the quark fields form
a three-dimensional representatip(x), i = 1,2, 3. Let us denote a gauge transformation by

UX) = exp(—iBa(x)T?),
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the dependence on the space-time coordinatedicates that the gauge transformation may vary
from one space-time point to another. The hermitian matiiceare the generators of the gauge
group in the fundamental representation. Under this gaagesformation, the quarks transform
as follows:

gG(x) = U(x)ijagj(x),
or in vector/matrix-notation without indices
qd(x) = UXqx).

The anti-fermions transform as the complex conjugate offtinelamental representation. In
physics we usually take the anti-quark fiefféx), i = 1,2,3 as the components of a bra-vector
and write the transformation law as

qx) = qeuT).
Taking the transpose of this equation we get
Gx]T = U an’.

We note that the combinatiarix) - q(x) is gauge-invariant:

The gauge boson fields are given by the gauge potem@ie, where the indexa runs from 1

to the number of generators of the Lie group. Baf(N) this number is given byN? — 1. For
SU(3)colour We have eight gauge boson fields, which are called gluon fidlds have already
seen that the gauge potential transforms as

T2AY(x) = U(X) (TaAf}(x)—l—iéau)U(x)T.

This transformation law ensures that the expression

1 .
L= —FIFW. with FE = 0,A% 0,1+ g TANAS

is invariant. For space-time independent transformatidflg = U the transformation law re-
duces to

TAAY(x) = UT2A3(xU™.
For infinitessimal transformations we have
TaAY(x) = (1—iebTb+...)TaAf}(x)(1+ieCT°+...)
= TE00+1[T2T0) @pAT+ .. = T2ANX) — FT AL + .
= TeAN(X) + beaTCebAf}-i— .o =TAANX) + fabCTaebAﬁ—i—
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We therefore find
Al (x) = (5ac+ fabceb) A= exp<—i9b'\/|§c) Al
where
My = if2e
are hermitian(N? — 1) x (N2 — 1) matrices defining the adjoint representation. Therefoee th
gauge bosons belong to the adjoint representation.
4.7.3 The naive parton model

In the early days of particle physics only three quarks (@yrdand strange) were known, to-
gether with the corresponding anti-quarks (anti-up, dotn and anti-strange). Further it was
observed that there is an approxim&e(3)avoursymmetry, called flavour symmetry. Under
flavour symmetry the quarksi, d, s) transform as the fundamental representatioBW({3)avour
while the anti-quarksu, d, s) transform as the complex conjugate of the fundamental sepre
tation. In the naive parton model mesons consist of a quatkaaranti-quark. As a short hand
notation we write

qq =q®d.
The tensor product forms a nine-dimensional represemntafie a basis we can take
ul, ud, us, d, dd, ds, sti, sd, sS.

This representation is reducubible. Using Young diagram$imd
D@H = @@ |

393 = 148

For the dimensions we have

Therefore the tensor representation reduces to a one-giamah (singlet) representation and
an eight-dimensional (octet) representation. Let us fistuss the singlet representation: The
linear combination

1 _ —
" = — (uu+4dd+ss
n Nl S)
transforms as a singlet und8U(3)favour This can be seen as follows: We write
u u
g=(d |, da=|d
S S
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Under aSU(3)savour transformation, the quarks and the antiquarks transform as
g =Uija;, g =Ujq;.

For then’ we can equally well write

1
r AT .
n —\/gq o]
This linear combination transforms unde®8(3)savour transformation as follows:
N/ 1 =T\/ / 1 =T 1 =T ’
- = - =—=(U*g) Ug=-=q'u'ug=n".

(On the left-hand side of this equation the first prime is mdrthe name, the second prime
denotes the transformed quantity.) Thereforerthansforms into itself and is a singlet. (The
factor 1/4/3 is only included for the normalisation. If the statgp have norm 1, so doeg.)

Before discussing the octet representation we first look th@woperator$ds, Ho, E+q, E42
andE.3 act on the stategq of the nine-dimensional representation. A fir#(3)favour trans-
formation acts on such a state as

U(@ed) = Uge ).
We can always write
U = exp(—iBaT?).

In order to find the action of the generators on the tensoesgmtation we expand to first order
in B5:

(1-i8.T+..) (q®q) = q@q —(i8aT?0) 9T +q@ (i6aT?)q +...
Here we assumed that the parame6grare real. Therefore
T (qeq) = (TYged-qe (T¥]).

The generatorsl; andH, are diagonal and reaHf = Hy, H; = H2). We can use this formula
to obtain the action dfl; andH; on the stategq’. For exampleéH; acts oruu as

Hq(uu) = 0.

iuu_ iuu__
Ve V6
Doing this for all other basis vectogg[ of the nine-dimensional representation, we find that
is given in this representation by
ii_io_i_iio)
7\/67 \/é? \/67 b \/é? \/67 \/é? °
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Similar, Hs is given by
1 1 1 1
H, = diag(0,0,—,0,0,—,——,———=,0].
i g( V2V VR fz)

For the non-diagonal generators we have to be a little biensarefully. Let us first discuss the
simplerSU(2) case. We can write

10111 +1i6212 = 16,1, 4+10_1_
with
S —i(e Fibo) I —i(l +ilp)
Note that the coefficien®8. are now complex. Therefore complex conjugation gives
(i041 L +i0_1-)" = —i@L17 —i0* 1" = —i6_1; —i0,1_
Therefore
==, 1 =—l.

This is true in generalEy acts on the complex conjugate representationlasy. We have

1
El (U) - O? El (d> = ﬁuv El (S) - 07
and with the explanations above
1 — —
Ei(U)=——=d, E1(d) =0, E1(s)=0.
1(1) Ve 1(d) 1(9)

This allows us to write down the action Bf on the nine-dimensional basig’:

000 100 O0O0ODO

-1 00 010 O0O0OO

000 O0OO1 O0O0OO

1 000 OOO OODO

Ei. = — 0O000O-100 O0OO
V3 OO0 O0OOO OOO
000 O0OOO OODO

00O O0O0OO-100

000 OOO OODO

In a similar way we can obtain the matrix representations qf E., andE.s.
Note that we can represemtin our basis as

n = (1,0,0,0,1,0,0,0,1)".
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We have
Hin'=0, Hxn'=0,
thereforen’ corresponds to the weight vectd, 0). We further have
Eian' = 0,

i.e.n’is annihilated by all operatoB, 4.
We are now in a position to tackle the octet representationfiidt recall that the fundamental
representation has the weight vectors

1 _1 0
ﬁ‘u:(f), mz=< iE), '713:( ﬁ)-
3V2 3v2 3
The highest weight vector of the fundamental represemtagio
a-(3)
3v2
The complex conjugate representation has the weight \&ector

1 1
- 3/2 - 3/2 3

The highest weight vector is here

wio == ()2 ).

3

Sl

M1 andM,, are the two fundamental dominant weights. The octet reptasen has the dominant

weight

To which state does this weight vector correspond ? Let steabtateK . The weights 11/6
and 1/v/2 are the eigenvalues bf; andH, applied toK*. In other words, we must have

v - m1+m2=<

SIS

1

HiKT = KT,
! NG

1
HKT = —=K™.
? V2
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These equations are easily solved and one fifcids= cus, wherec is some constant. Requiring
thatK ™ has unit norm leads to

There are two ways to obtain the other states in this reptaisem. The first possibility constructs
first all possible weights of the representation. For theto@presentation the occuring weights

are
1 NG
ﬁb:(g), m1:< ) m2:< f) rﬁs:(‘?o),
V2
_ L NG
rm:(__>, ms:<_£>, mez(?o).
V2 V2

For each weight we can then repeat the exercise and solve

SIS

e

Hig=me  Hp=mo
wherem(li) and mg) are the components of = (m(li),m(zi)) and@is the state which we would
like to solve for. For the weight vectors; to mg we find

m : KT =us,
mp : KO=ds
mg : T =du,
My @ K™ =s,
ms : K®=sd,
Mg : 10" =ud.

The weightfy is degenerate. Solving
Hip=0, Hp=0
yields
@= Ciuu+ cpdd + C3SS

with arbitrary constants;, ¢, andcs. We recall thatc; = ¢ = ¢3 corresponds to the singlet
representation, therefore for the octet representatioar@enly interested in the vector space
orthogonal tay’. This gives a two-dimensional vector space. A conveniesistia given by

1 . —
T[O — TZ(UU—dd),
1 _ —
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Both states belong to the octet representation: We knowtligabctet representation is eight-
dimensional and that the weight spaces corresponding to Mg are one-dimensional. There-
fore the weight space correspondingmig must be two-dimensional.

The second possibility of finding the remaining states indbtet representation starting from
the stateK ™ with the dominant weight is given by repeatidly applying tperatorsE_ o to the
stateK ™. We then obtain multiples of the other states. For example:

E KT = —ds=—KO,
V3 V3
1 _ 1 1
Eo KT = —(sS—ul)=——=1"——=n,
1 - 1
E K™ = ——ud=——-11".
3 V3 V3

We can repeat this procedure with the newly found stfest™ and the linear combination of
@ andn, until we have found all states in the representation.

The classification of the pseudo-scalar meg®nts, K°, KO, K*, n andn’ according to the
representations dU(3)savour Was very important in early days of particle physics. Withrfo
quark flavours (up, down, strange, charm) the symmetry goampbe extended t8U(4)siavour-
Adding a fifth quark (bottom quark) would bring us $J(5)siavour- In principle one could also
thing aboutSU(6)favour Y @dding the top quark. However, the classification of peesmhlar
mesons according BU(6)7avouriS NOt useful, since the top quark is so heavy and does threrefo
not form composite bound states like pseudo-scalar mesons.

It should be added that the naive parton model has some sbimitigs. The most important
ones are:

e SU(3)fiavour IS Only an approximate symmetry. The flavour symmetry isiekfyl broken
by mass terms. As the strange quark mass differs the mosttfienguark masses of
the up- and the down-quark, corrections due to the strangekguass give the dominant
contribution toSU(3)favourbreaking terms.

¢ In the modern understanding, a meson does not consist ofrk god an antiquark alone,
but in addition contains an indefinite number of gluons anarkpantiquark pairs.

e The physical particleg andn’ do not correspond exactly to the pure octet state and the
pure singlet state, but are mixtures of both:

= %(ui+dd_—23§)—%(ui+dd_+s§).
S 0 O (o
n \/é(ourdd 2sS) + Ve (ud+dd+ss).
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5 The classification of semi-simple Lie algebras

Recall: For a semi-simple Lie algebgaf dimensiom sndr we had the Cartan standard form

Hi.Hj] =0,
[Hi7EG] - aiECh
with generators$d;, i = 1,...,r as well as the generatoEg andE_q witha =1,...,(n—r)/2.

The generator$l; generate an Abelian sub-algebragof This sub-algebra is called tH@ar-
tan sub-algebraof g.

Ther numbersy;, i = 1,...,r are the components of the root vectoe (a4, ...,0r).
We have already seen that ifﬁfandfﬁ are root vectors so is

L4 26-B

y:B_aza

Let us now put this a little bit more formally. For any root ¥@ca we define a mappintvy
from the set of root vectors to the set of root vectors by

B

a2

2

Ql

a

Wa(B) = B-

Wy can be described as the reflection by the pl@geperpendicular tax. It is clear that this
mapping is an involution: After two reflections one obtaihe btriginal root vector again. The
set of all these mappinys, generates a group, which is called iveyl group.

SinceW; maps a root vector to another root vector, we have the fotiguheorem:
Theorem: The set of root vectors is invariant under the Weyl group.

Actually, a more general result holds: We have seen that i§ a weight and ifd is a root
vector then

20 - ﬁ‘la
a2

is again a weight vector. Therefore we can state that thevimilg theorem:
Theorem: The set of weights of any representatiorga$ invariant under the Weyl group.

The previous theorem is a special case of this one, as theveotdrs are just the weights of
the adjoint representation.
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For the weights we defined an orderinfh is said to be higher thany if the rth component
of (M— AY) is positive (if zero look at thér — 1)th component). This applies equally well to
roots.

Definition: A root vectorsi is called positive, ifi > 0.

Therefore the set of non-zero root vect®decomposes into
R = R'UR,
whereR" denotes the positive roots aRd denotes the negative roots.

Definition: The (closedWeyl chamber relative to a given ordering is the set of poiXtsn
ther-dimensional space of root vectors, such that

X.

!

2

~>0 VieR".

Q

Example: The Weyl chamber f&U(3

The root system The positive roots The Weyl chamber

~—

Let us further recall that i andﬁ are root vectors then
26 - B 2 -
2[3 an 2[3

ja B

are integers. This restricts the angle between two roobvetd

0°,30°,45°,60°,90°, 1207, 135, 1507, 18C°

For6 = 30° or 8 = 150 the ratio of the length of the two root vectors is

2

a 1

% = 3o0r 3

B|

For6 = 45° or 8 = 135 the ratio of the length of the two root vectors is

2

a 1

% = 2or >

B|
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For6 = 60" or 8 = 120 the ratio of the length of the two root vectors is
Jaf*

1Bl

Let us summarise: The root systéhof a Lie algebra has the following properties:
. Ris afinite set.

1
2. If 6 € R then also-d € R
3. For anyd € Rthe reflectionNVy mapsR to itself.

4. If & andp are root vectors thend2 B/ |a|? is an integer.

This puts strong constraints on the geometry of a root sysitetrus now try to find all possible
root systems of rank 1 and 2. For rank 1 the root vectors aredonensional and the only
possibility is

Az < . >

This is the root system ddU(2). For rank 2 we first note that due to property (3) the angle
between two roots must be the same for any pair of adjacets.rttavill turn out that any of the
four angles 90, 60°, 45° and 30 can occur. Once this angle is specified, the relative lengfths
the roots are fixed except for the case of right angles. Letarswith the cas® = 90°. Up to
rescaling the root system is

A x Ar: - >

A\

This corresponds t8U(2) x SU(2). This group is semi-simple, but not simple. In general, the
direct sum of two root systems is again a root system. A rostesy which is not a direct sum is
called irreducible. An irreducible root system correspotaa simple group. We would like to
classify the irreducible root systems.

For the anglé = 60° we have
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This is the root system @&U(3).

For the anglé® = 45° we have

This is the root system &Q(5).

Finally, for 8 = 30° we have

Go: “ >

A\

This is the root system of the exceptional Lie grdbgp

5.1 Dynkin diagrams

Let us try to reduce further the data of a root system. We @jrésarned that with the help of an
ordering we can divide the root vectors into a disjoint ursdpositive and negative roots:

R = RTUR.
Definition: A positive root vector is callesimpleif it is not the sum of two other positive roots.

Example: FoiSU(3) we have

/.
‘A'\L\‘

root system positive roots simple roots
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The angle between the two simple root®is 120°.

The Dynkin diagram of the root system is constructed by dngwine node> for each sim-
ple root and joining two nodes by a number of lines dependmthe angled between the two
roots:

no lines o O if 6 =90
one line o—oO if 0 =120
two lines O==0 if =135

three lines 00 if 6 =150
When there is one line, the roots have the same length. Iféetsare connected by two or three
lines, an arrow is drawn pointing from the longer to the skoroot.

Example: The Dynkin diagram &U(3) is

5.2 The classification

Semi-simple groups are a direct product of simple groupsafmmpact group, all unitary rep-
resentations are finite dimensional.

Real compact semi-simple Lie algebggare in one-to-one correspondence (up to isomorphisms)
with complex semi-simple Lie algebrg$ obtained as the complexification gf Therefore the
classification of real compact semi-simple Lie algebrasiced to the classification of complex
semi-simple Lie algebras.

Theorem: Two complex semi-simple Lie algebras are isomonpland only if they have the
same Dynkin diagram.

Theorem: A complex semi-simple Lie algebra is simple if amdlyaf its Dynkin diagram is
connected.

We have the following classification:

e Ah=SL(n+1,C)

o—o0—0 ... —0—0

a; dz d3 Op—10n
e Bp=SQ2n+1,C)

O—O0—0— ... —0=x=D

ai; 4z ds Oph—10n
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o Cn = SKH,C)

ap a2 43 Op—10n

e D, SO2n,C)

On-1
d; d2 d3 "‘aﬁﬁan

The exceptional groups are

o E5
01 02 O3 Og5 Og
Og4
o E;
01 2 O3 O Og O7
04
e Eg
01 02 O3 O O O7 Og
04
o 4
01 O2 O3 Oy
O—0==0—20
o Gy

a; O3
=0

Summary: The classical real compact simple Lie algebras are

A, = SU(n+1)
Bn = SO2n+1)
C, = Spn)
Dn = SQ2n)

The exceptional groups are
Es, E7,Es, Fa, G2

A semi-simple Lie algebra is determined up to isomorphisnsjpgcifying which simple sum-
mands occur and how many times each one occurs.
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5.3 Proof of the classification

Recall: The root systerR of a Lie algebra has the following properties:
1. Ris afinite set.
2. Ifd € R then also-d € R.
3. For anyd € Rthe reflection\y, mapsR to itself.
4. If & andp are root vectors thend ﬁ/ la|? is an integer.

With the help of an ordering we can divide the root vectors mtlisjoint union of positive and
negative roots:

R = RTUR.
A positive root vector is called simple if it is not the sum wfat other positive roots.

The angle between two simple roots is eithet, 420, 135 or 150

The Dynkin diagram of the root system is constructed by dngwine node> for each sim-
ple root and joining two nodes by a number of lines dependmthe angled between the two
roots:

no lines o O if =90
one line o—©O if 6=120
two lines O==0 if =135

three lines =0 if =150

When there is one line, the roots have the same length. Iféetsare connected by two or three
lines, an arrow is drawn pointing from the longer to the storot.

Theorem: The only possible connected Dynkin diagrams ageottes listed in the previous
section.

To prove this theorem it is sufficient to consider only thelaadpetween the simple roots, the
relative length do not enter the proof.

Such diagrams, without the arrows to indicate the relagmgths, are calleGoxeter diagrams
Define a diagram of nodes, with each pair connected by 0, 1, 2 or 3 lines, tadraissibleif
there aren independent unit vectos, ..., &, in a Euclidean space with the angle betwéeand
g; as follows:
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no lines o O if 6 =90

one line o—©O if 6=120
two lines =0 if 0=13%
three lines =0 if 6 =150

Theorem: The only connected admissible Coxeter graphsharertes of the previous section
(without the arrows).

To prove this theorem, we will first prove the following lemitaa

() Any sub-diagram of an admissible diagram, obtained lnoyaeing some nodes and all lines
to them, will also be admissible.

(il) There are at mostn — 1) pairs of nodes that are connected by lines. The diagram has no
loops.

(iif) No node has more than three lines to it.

(iv) In an admissible diagram, any string of nodes connetidegiach other by one line, with
none but the ends of the string connected to any other nodesecollapsed to one node,
and the resulting diagram remains admissible.

Proof of (i): Suppose we have an admissible diagram wittodes. By definition there are
vectorsgj, such that the angle between a pair of vectors is in the set

{90°, 1207, 135, 150°}

Removing some of the vectogg does not change the angles between the remaining ones-There
fore any sub-diagram of an admissible diagram is again agilohes

Proof of (ii): We have
28 -8 € {0,-1,-v2,—/3}
Therefore if§; andg; are connected we hage> 90° and
268 < -1

Now

0 < (Zé)(Zé) = n+2_Zé-éj < n—# connected pairs

i<]
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Therefore
# connected pairs< n.

Connectingn nodes with(n — 1) connections (of either 1, 2 or 3 lines) implies that thererare
loops.

Proof of (iii): We first note that

(28 - éj)z = #number of lines betwees andg;.

Consider the nodé; and letg, i = 2, ..., ] bet the nodes connectedgn We want to show
j 2
(28,-8)° < 4
Since there are no loops, no pair®f... € is connected. Therefo®, ..., & are perpendicular
unit vectors. Further, by assumptien &,... & are linearly independent vectors. Thereféyés
not in the span o&,... €. It follows
j
1 = (&-@) > ;@-@)2

and therefore

;(@1-6)2 <1
i=
Proof of (iv): , R ,
\\\l 2 r/// \\\///
O—O0—0—0—C — JeS

If &, ...,& are the unit vectors corresponding to the string of nodesdisated above, then
g = 8 +..+8&
IS a unit vector since

g8 = (B+..+8)°=r4+28 &++28 &+...++26_1-&
r—(r—1)=1

Further€ satisfies the same conditions with respect to the other resioces - g; is eitheré; - €;
org -§.
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With the help of these lemmata we can now prove the origiredrdm:
From (iii) it follows that the only connected diagram withrgote line isGo.

Further we cannot have a diagram with two double lines, otiser we would have a sub-
diagram, which we could contract as

Oo—0—0 ++ O——O0—0 Oo—0—o0
—

contradicting again (iii). By the same reasoning we canmoeha diagram with a double line
and a triple node:

Again this contradicts (iii).

To finish the case with double lines, we rule out the diagram
1 2 3 4 5

Consider the vectors
V==86+26, W=36+26;+6s.
We find
(V-W)*> =18, [V?=3, |w*’=6.
This violates the Cauchy-Schwarz inequality
(V-w)? < [ (.

By a similar reasoning one rules out the following (sub-)d@with single lines:

These sub-diagrams rules out all graphs not in the list optbeious section. To finish the proof
of the theorem it remains to show that all graphs in the listaamissible. This is equivalent
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to show that for each Dynkin diagram in the list there existeesponding Lie algebra. (The
simple root vectors of such a Lie algebra will then have awatocally the corresponding angles
of the Coxeter diagram.)

To prove the existence it is sufficient to give for each Dyrdigigram an example of a Lie alge-
bra corresponding to it. For the four familidg, By, C, andD,, we have already seen that they
correspond to the Lie algebras 80(n+ 1), SO2n+1), Spn) andSQ2n) (or SLn+1,C),
SQ2n+1,C), Spn,C) andSQ2n,C) in the complex case). In addition one can write down
explicit matrix representations for the Lie algebras cgpmnding to the five exceptional groups
EG, E7, Eg, F4 andGz.

Finally for the uniqueness let us recall the following thesar Two complex semi-simple Lie
algebras are isomorphic if and only if they have the same Dydikagram.
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