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1 Introduction

1.1 Literature

• Introductory texts:

- J.P. Elliot and P.G. Dawber, Symmetry in Physics, Macmillan Press, 1979

- W. Fulton and J. Harris, Representation theory, Springer,1991

- B. Hall, Lie groups, Lie Algebras and Representations, Springer, 2003

• Physics related:

- D.B. Lichtenberg, Unitary symmetry and elementary particles, Academic Press, 1970

- H. Georgi, Lie Algebras in Particle Physics, Benjamin/Cummings Publishing Company,
1982

- M. Schottenloher, Geometrie und Symmetrie in der Physik, Vieweg, 1995

- M. Nakahara, Geometry, Topology and Physics, IOP, 1990

• Classics:

- N. Bourbaki, Groupes et algèbres de Lie, Hermann, 1972

- H. Weyl, The classical groups, Princeton University Press, 1946

• Differential geometry:

- S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, AMS, 1978

• Hopf algebras:

- Ch. Kassel, Quantum Groups, Springer, 1995

• Specialised topics:

- Ch. Reutenauer, Free Lie Algebras, Clarendon Press, 1993

- V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1983

1.2 Motivation

Symmetries occur in many physical systems, from molecules,crystals, atoms, nuclei to elemen-
tary particles. Symmetries occur in classical physics as well as in quantum physics.A symmetry
is expressed by a transformation, which leave the physical system invariant. Examples for
such transformations are translations, rotations, inversions, particle interchanges. The symmetry
transformations form a group and we are led to study group theory.

4



A few examples:

Example 1: One classical particle in one dimension.
Consider a particle of massm moving in one dimension under the influence of a potentialV(x).
Newton’s law gives the equation of motion

mẍ = − d
dx

V(x).

Suppose now, thatV(x) is constant, in other words that it is invariant under translations. Then
we have

mẍ = 0

and integrating this equation we obtain

mẋ = const,

showing that the momentump= mẋ is conserved.

Example 2: One classical particle in two dimensions.
In two dimensions the motion of the particle is governed by the two equations

mẍ = − ∂
∂x

V(x,y),

mÿ = − ∂
∂y

V(x,y).

Suppose now thatV(x,y) is invariant with respect to rotations about the origin, in other words
thatV is independent of the angleφ if expressed in terms of the polar coordinatesr, φ rather than
the cartesian coordinatesx andy. In this case we have

∂
∂φ

V = 0.

From

x = r cosφ,
y = r sinφ

we obtain

∂
∂φ

V =
∂x
∂φ

∂V
∂x

+
∂y
∂φ

∂V
∂y

=−y
∂V
∂x

+x
∂V
∂y

,

and therefore

0 =
∂

∂φ
V =−y

∂V
∂x

+x
∂V
∂y

=−y(−mẍ)+x(−mÿ) = m
d
dt

(yẋ−xẏ) .
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This shows that the angular momentum is conserved:

m(yẋ−xẏ) = const.

Example 3: Noether theorem.
The two examples above are a special case of the Noether theorem. In classical mechanics we
can describe a physical system by generalised coordinatesqi and a Lagrange functionL(~q,~̇q, t).
We consider the case of a family of coordinate transformations,

q′i = fi (~q, t,α) , 1≤ i ≤ n,

depending on a real parameterα, such that all functionsfi are continously differentiable with
respect toα and sucht thatα = 0 corresponds to the identity transformation

qi = fi (~q, t,0) , 1≤ i ≤ n.

If there exists anε > 0, such that for all|α|< ε we have

L′ (~q′,~̇q′, t
)

= L
(
~q,~̇q, t

)
+

d
dt

Λ(~q, t,α)+O
(
α2) ,

with

Λ(~q, t,0) = 0,

then it follows, that the quantity

I =

(
n

∑
i=1

pi
∂ fi
∂α

∣
∣
∣
∣
α=0

)

− ∂Λ
∂α

∣
∣
∣
∣
α=0

is conserved. This is Noether’s theorem. It states the everycontinuously symmetry of the La-
grange function leads to a conserved quantity. Note that it is only required that the transformed
Lagrange function agrees with the original one only up to a gauge transformation.

Example 4: Two particles connected by springs.
Consider two particles of equal massm connected to each other and to fixed supports by springs
with spring constantλ. The kinetic and potential energies are

T =
1
2

m
(
ẋ2

1+ ẋ2
2

)
,

V =
1
2

λ
(

x2
1+x2

2+(x1+x2)
2
)

.

This system is symmetric under the interchangex1 ↔ x2. The equations of motion are

mẍ1 = −λx1−λ(x1+x2) ,

mẍ2 = −λx2−λ(x1+x2) .
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This suggests new coordinates

q1 = x1+x2,

q2 = x1−x2.

Adding and subtracting the two equations above we obtain

mq̈1 = −3λq1,

mq̈2 = −λq2.

In terms of the coordinatesq1 andq2 the solutions are harmonic oscillations with frequencies

ω1 =

√

3λ
m
, ω2 =

√

λ
m
.

Let us denote the symmetry transformationx1 ↔ x2 by σ. The new coordinatesq1 andq2 are
even and odd, respectively, under the symmetry transformation:

σq1 = q1,

σq2 = −q2.

Example 5: Parity transformations in quantum mechanics.
Consider a quantum mechanical particle in an energy eigenstate with energyE. Let us assume
that this eigenstate is non-degenerate. If the potential has the reflection symmetry

V (~x) = V (−~x) ,

it follows that also the Hamilton operator has this property: H(~x) = H(−~x). Now, if ψ(~x) is an
eigenfunction of the Hamilton operator with eigenvalueE,

Hψ(~x) = Eψ(~x),

it follows that alsoψ(−~x) is an eigenfunction with eigenvalueE:

Hψ(−~x) = Eψ(−~x).

Since we assumed that the energy state is non-degenerate we must have

ψ(−~x) = cψ(~x).

Repeating the symmetry operation twice we obtain

ψ(~x) = c2ψ(~x),

and thus

c = ±1.
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Hence,ψ(~x) is either even or odd. This leads to selection rules in quantum mechanics: The
transition probability for a decay from some initial stateψi to a final stateψ f is proportional to
the square of hte integral

I =

∫
d3x ψ∗

f (~x)O (~x)ψi (~x)

whereO (~x) depends on the particular decay process. IfO (~x) is an even function of~x, the integral
is non-zero only ifψi andψ f are both even or both odd.

Example 6: Particle physics
In particle physics one often observes that certain particles form a pattern (mathematically we
say they form a representation of a group). If some particlesare already discovered and the
pattern is known, one is able to predict the remaining particles of the pattern.

• Theπ0 meson in the isospin triple(π+,π0,π−).

• TheΩ− in the baryon decuplet.

• The charm quark as partner of the strange quark.

• The top quark as partner of the bottom quark.

• TheZ-boson as a third mediator of the weak force.

Summary: Understanding the symmetry properties of a physical system is useful for the follow-
ing reasons:

• Gives insight (origin of selection rules in quantum mechanics)

• Simplifies calculations (conserved quantities)

• Makes predictions (new particles)

• Gauge symmetries are the key ingredient for the understanding of the fundamental forces.
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2 Basics of group theory

2.1 Definition of a group

A non-empty setG together with a composition· : G×G→ G is called a group(G, ·) if

G1: The composition· is associative :a · (b ·c) = (a ·b) ·c

G2: There exists a neutral element :e·a= a ·e= a for all a∈ G

G3: For alla∈ G there exists an inversea−1 : a−1 ·a= a ·a−1 = e

One can actually use a weaker system of axioms:

G1’: The composition· is associative :a · (b ·c) = (a ·b) ·c

G2’: There exists a left-neutral element :e·a= a for all a∈ G

G3’: For all a∈ G there exists an left-inversea−1 : a−1 ·a= e

The first system of axioms clearly implies the second system of axioms. To show that the second
system also implies the first one, we show the following:
a) If e is a left-neutral element, ande′ is a right-neutral element, thene= e′.
Proof:

e′ = e·e′ e is left-neutral

= e, e′ is right-neutral

b) If b is a left-inverse toa, andb′ is a right-inverse toa, thenb= b′.
Proof:

b= b ·e eis right-neutral

= b ·
(
a ·b′

)
b′ is right-inverse ofa

= (b ·a) ·b′ associativity

= e·b′ b is left-inverse ofa

= b′ e is left-neutral

c) If b is a left-inverse toa, i.e. b ·a= e, thenb is also the right-inverse toa.
Proof:

(a ·b) · (a ·b) = a · (b ·a) ·b
= a ·e·b
= a ·b

9



Thereforea ·b= e.
d) If e is the left-neutral element, thene is also right-neutral.
Proof:

a= e·a
=
(
a−1 ·a

)
·a

=
(
a ·a−1) ·a

= a ·
(
a−1 ·a

)

= a ·e

This completes the proof that the second system of axioms is equivalent to the first system of
axioms. To verify that a given set together with a given composition forms a group it is therefore
sufficient to verify axioms (G2’) and (G3’) instead of axioms(G2) and (G3).

More definitions:
A group(G, ·) is calledAbelian if the operation· is commutative :a ·b= b ·a.

The number of elements in the setG is called theorder of the group. If this number is fi-
nite, we speak of a finite group. In the case where the order is infinite, we can further distinguish
the case where the set is countable or not. For Lie groups we are in particular interested in the
latter case. For finite groups we can write down all possible compositions in acomposition
table. In such a composition table each element occurs exactly once in each row and column.

Examples

a) The trivial example: LetG= {e} ande·e= e. This is a group with one element.

b) Z2: Let G = {0,1} and denote the composition by+. The composition is given by the
following composition table:

+ 0 1
0 0 1
1 1 0

Z2 is of order 2 and is Abelian.

c) Zn: We can generalise the above example and takeG = {0,1,2, ...,n− 1}. We define the
addition by

a+b = a+b modn,

where on the l.h.s. “+” denotes the composition inZn, whereas on the r.h.s. “+” denotes the
usual addition of integer numbers.Zn is a group of ordern and is Abelian.
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d) The symmetric groupSn: Let X be a set with distinctn elements and set

G = {σ|σ : X → X permutation ofX}

As composition law we take the composition of permutations.The symmetric group has order

|Sn| = n!

Forn≥ 3 this group is non-Abelian:
(

1 2 3
3 1 2

)(
1 2 3
2 1 3

)

=

(
1 2 3
1 3 2

)

,

(
1 2 3
2 1 3

)(
1 2 3
3 1 2

)

=

(
1 2 3
3 2 1

)

.

e) (Z,+): The integer numbers with addition form an Abelian group. The order of the group is
infinite, but countable.

f) (R,+): The real numbers with addition form an Abelian group. The order of the group is
not countable.

g) (R∗, ·): Denote byR∗ = R\{0} the real numbers without zero. The setR∗ with the mul-
tiplication as composition law forms an Abelian group.

h) Rotations in two dimensions: Consider the set of 2×2-matrixes
(

cosϕ −sinϕ
sinϕ cosϕ

)

,

together with matrix multiplication as composition. To check this, one has to show that
(

cosα −sinα
sinα cosα

)

·
(

cosβ −sinβ
sinβ cosβ

)

can again be written as
(

cosγ −sinγ
sinγ cosγ

)

.

Using the addition theorems of sin and cos one findsγ = α+β. The elements of this group are
not countable, but they form a compact set.
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2.2 Group morphisms

Let a andb be elements of a group(G,∗) with composition∗ and leta′ andb′ be elements of a
group(G′,◦) with composition◦. We are interested in mappings between groups which preserve
the structure of the compositions.

Homomorphism: We call a mappingf : G→ G′ a homomorphism, if

f (a∗b) = f (a)◦ f (b).

Isomorphism: We call a mappingf : G→ G′ an isomorphism, if it is bijective and a homomor-
phism.

Automorphism: We call a mappingf : G → G from the groupG into the groupG itself an
automorphism, if it is an isomorphism.

We consider an example for an isomorphism: We take

G = (Zn,+) ,

and

G′ =
({

e2πi 0
n ,e2πi 1

n , ...,e2πi (n−1)
n

}

, ·
)

.

This is the group of then-th roots of unity. These two groups are isomorphic. The isomorphism
is given by

f : G→ G′,

k→ e2πi k
n .

2.3 Subgroups

A non-empty subsetH ⊆ G is said to be asubgroup of a groupG, if H is itself a group under
the same law of composition as that ofG.

Every group has two trivial subgroups:

• The group consisting just of the identity element{e}.

• The whole groupG.

A subgroupH is called aproper subgroup if H 6= G.

Example: Consider the group

Z6 = {0,1,2,3,4,5}.
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The set

H = {0,2,4}

is a subgroup ofZ6, isomorphic toZ3. The isomorphism is given by

f : H → Z3,

2n→ n.

Generating set: Let G be a group andS⊆ G. The group

〈S〉= ∩{U |U subgroup ofG with S⊆U}

is called the subgroup generated byS. We say thatG is generated byS, if

G = 〈S〉.

We say thatG is finitely generated if there is a finite setS= {a1, ...,an} such that

G = 〈a1, ...,an〉.

Note that “finitely generated” does not imply that the group has a finite number of elements. The
group(Z,+) is generated by the element 1, but has an infinite number of elements.

A groupG is calledcyclic, if it is generated by one element

G = 〈a〉

Remark: Cyclic groups are always Abelian.

We define theorder of an elementa∈ G as

orda = |〈a〉| .

The order of an elementa is either infinity or equal to the smallest positive numberssuch that

as = e,

where

as = a◦ ...◦a
︸ ︷︷ ︸

s times

The orders of the elements of a group give us useful information about the group: Let us consider
the following example. Assume that we are considering a group with four elements{e,a,b,c}.
Assume further that the elementsa andb are of order two:

a2 = b2 = e.

Based on this knowledge we know the following entries in the composition table:

13



e a b c
e e a b c
a a e ?
b b e
c c

In the place with the question mark we must putc, otherwisec would occur in the last col-
umn twice. All other entries can be figured out with similar considerations and we obtain the
composition table

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

2.4 Cosets

Consider a subgroupH of a groupG. Let a∈ G. The set

aH = {ah1,ah2,ah3, ...}

is called aleft cosetof H in G. The number of distinct left cosets ofH in G is called theindex
of H in G and is denoted by

|G : H|

Theorem (Lagrange):

1.

G =
⋃
a∈G

aH

2. Two left cosets ofH in G are either identical or have no common element.

3. If two of the numbers|G|, |H| and|G : H| are finite, then also the third one is and we have
the relation

|G| = |G : H| |H| .

Proof:

1. H contains the neutral element. We therefore have
⋃
a∈G

aH ⊇
⋃
a∈G

ae=
⋃
a∈G

a= G.

14



On the other hand it is obvious that
⋃
a∈G

aH ⊆ G

and the claim follows.

2. Assume thata1H anda2H have one element in common. Then

a1h1 = a2h2

a−1
2 a1 = h2h−1

1 ∈ H

a−1
2 a1H = H

a1H = a2H,

which shows that the two cosets are identical.

3. The proof follows from

|aH| = |H| .

The theorem of Lagrange has some important consequences forfinite groups: LetG be a finite
group.

• The order|H| of each subgroup divides the order|G| of the group.

• The order of each elementa divides the order|G| of the group.

• For each elementa we have

a|G| = e.

As a further consequence we have the following: IfG is a finite group, where the order is a prime
number, thenG is cyclic.

2.5 Conjugacy classes

Let G be a group. An elementb is conjugate to an elementa if there is an elementg∈ G sucht
that

b = gag−1.

Remark:b= gag−1 is equivalent toa= g−1bg.
This defines anequivalence relation:

• a is conjugated to itself.

15



• If a is conjugated tob, thenb is conjugated toa.

• If a is conjugated tob andb is conjugated toc, thena is conjugated toc.

The set of all elements conjugate toa is called theconjugacy classof a. The set of all elements
of a group can be decomposed into disjoint conjugacy classes.

It is often useful to consider conjugacy classes instead of all individual elements, because group
elements of the same conjugacy class will behave similar.

2.6 Normal subgroups

Let G be a group andH a subgroup ofG. We have already considered the left cosetsaH, a∈ G.
We may ask under which conditions do the left cosets form again a group ?

We start with a definition: We call a subgroupN of G anormal subgroup if for all a∈ G

aNa−1 ⊆ N.

Remark: This means that for alln1 ∈ N and for alla∈ G there exists ann2 ∈ N such that

an1a−1 = n2.

For a proper normal subgroupN of G one writesN�G.

For a normal subgroup the left and right cosets are equal

aN = Na.

This is exactly the property we need such that the left cosetshave a well-defined composition
law:

(aN)(bN) = (ab)N,

or in more detail

(an1)(bn2) = a(n1b)n2 = a
(
bn′1
)

n2 = abn′1n2
︸︷︷︸

n3

= (ab)n3.

We summarise: IfN is a normal subgroup ofG, then

G/N = {aN|a∈ G}

together with the composition law

(aN)(bN) = (ab)N

16



is a group, called thefactor group of G by N.

Remark: We have

|G/N| = |G : N| .

Remark 2: SupposeN1 is a normal subgroup ofG1 and suppose thatN2 is a normal subgroup
of G2. Let us further assume thatN1 and N2 as well as the corresponding factor groups are
isomorphic:

N1
∼= N2,

G1/N1
∼= G2/N2.

This doesnot imply that G1 and G2 are isomorphic, as the counter-exampleG1 = Z4 and
G2 = Z2×Z2 shows.

Example: Let us consider the dihedral groupDn for n ≥ 3. This is the symmetry group of a
regular polygon. The symmetry operations are rotations through an angle 2π/n and reflexions.
In mathematical terms, this group is generated by two elementsa andb with

an = b2 = e, ab= ban−1.

The elementa corresponds to a rotation through the angle 2π/n, hencean = e, the elementb
corresponds to a reflexion, henceb2 = e. This group is non-Abelian and one easily convinces
oneself thatab= ban−1 (note thata−1 = an−1). The elementa generates a cyclic subgroup〈a〉
of ordern. We can writeDn as left cosets of〈a〉:

Dn = 〈a〉 ∪ b〈a〉.

This shows thatDn has(2n) elements. The subgroup〈a〉 is a normal subgroup:

bajb−1 = bajb= baj−2ab= baj−2ban−1 = bbaj(n−1) = a j(n−1) ∈ 〈a〉.

The factor groupDn/〈a〉 is of order 2 and hence

Dn/〈a〉 ∼= Z2.

The elementb generates a cyclic subgroup〈b〉 of order 2. This subgroup is not a normal sub-
group:

(
baj)b

(
baj)−1

= bajban− jb= bajb2a(n− j)(n−1) = baj+n2−n− jn+ j = ba2 j .

Let us now look more specifically atD4, the dihedral group withn= 4. We work out the conju-
gacy classes and find

{e},{a,a3},{a2},{b,ba2},{ba,ba3}.
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2.7 Direct product

Let G1, ...,Gn be groups. In the set

G = G1× ...×Gn = {(a1, ...,an) |ai ∈ Gi ,1≤ i ≤ n}

we define a composition by

(a1, ...,an)(b1, ...,bn) = (a1b1, ...,anbn) .

G is called thedirect product of the groupsG1, ..., Gn. The neutral element inG is given by
(e1, ...,en), the inverse element to(a1, ...,an) is given by(a−1

1 , ...,a−1
n ).

For the order of the groupG we have

|G| =
n

∏
i=1

|Gi| .

Let us denote the trivial group byE = {e} and

G̃i = E× ...×E
︸ ︷︷ ︸

(i−1) times

×Gi ×E× ...×E
︸ ︷︷ ︸

(n−i) times

We can show that̃Gi is a normal subgroup inG and that

G̃i ∩
(
G̃1...G̃i−1G̃i+1...G̃n

)
= {e}

We call a groupG the inner direct product of normal subgroupsNi , 1≤ i ≤ n, if

G= N1N2...Nn,

Ni ∩ (N1...Ni−1Ni+1...Nn) = {e} .

Furthe properties of inner direct products: IfG=N1...Nn is an inner direct product, then we have

• The elements ofNi commute with the elements ofNj for i 6= j:

aia j = a jai .

• Each elementa∈ G can be represented uniquely (up to ordering) as

a = a1...an,

with ai ∈ Ni .
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The converse is also true: IfGi (1 ≤ i ≤ n) are subgroups ofG, such that the elements ofGi

commute with the elements ofG j (for i 6= j) and each elementa∈ G has a unique representation

a = a1...an

with ai ∈ Gi , then theGi ’s are normal subgroups ofG andG is an inner direct product of theGi ’s.

Consequence: Ifn andmare two positive numbers, which share no common divisor, then

Znm
∼= Zn×Zm.

Without a proof we state the following theorem, which characterises completely the finitely gen-
erated Abelian groups:

Theorem on finitely generated Abelian groups: Every finitely generated Abelian groupG
is a direct product of finitely many cyclic groups, in other words

G ∼= Z
p

k1
1
× ...×Zpkr

r
×Z× ...×Z,

with (not necessarily distinct) prime numbersp1, ..., pr .

An example where direct products occur in physics is given bythe gauge symmetry of the Stan-
dard Model of particle physics. The gauge group is given by

U(1)×SU(2)×SU(3),

whereU(1) is the gauge group corresponding to the hypercharge,SU(2) is the gauge group
corresponding to the weak isospin andSU(3) is the gauge group corresponding to the colour
charges.

2.8 The theorems of Sylow

In this section we state without proof the three theorems of Sylow. These theorems are very
helpful to discuss the structure of finite groups. From the theorem of Lagrange we know, that the
order of a subgroup must divide the order of the group. But thetheorem of Lagrange does not
make any statement on the existence of a subgroup for a given divisor. This situation is clarified
with the theorems of Sylow.

First theorem of Sylow: Let G be a finite group of ordern = prm, wherep is a prime num-
ber and gcd(p,m) = 1. Then there exists for eachj with 1≤ j ≤ r a subgroupH of G with order
p j .

Corollary : Let G be a finite group and letp be a prime number, which divides the order of
G. ThenG contains an element of orderp.
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Definition: Let p be a prime number and letG be a group. We callG a p-group, if the or-
der of every element is a power ofp.

Definition: Let G be a group and letP be a subgroup ofG. We call P a p-Sylow group of
G, if

• P is a p-group

• P is maximal, i.e. ifP′ is anotherp-subgroup ofG with P⊆ P′, thenP= P′.

It can be shown that ifP is a p-Sylow subgroup ofG, then alsoaPa−1 is a p-Sylow subgroup of
G for all a∈ G.

Second theorem of Sylow: Let G be a finite group of ordern= prm, wherep is a prime number
and gcd(p,m) = 1. LetP be ap-Sylow group ofG and letH be ap-subgroup ofG. Then there
exists an elementa such that

aHa−1 ⊆ P.

Corollary : Assume that for a given prime numberp there is only onep-Sylow groupP of G.
ThenP is a normal subgroup.

Third theorem of Sylow: Let G be a finite group and assume that the prime numberp is a
divisor of the order of the group. Then the number of thep-Sylow groups ofG is also a divisor
of the order of the group and of the form

1+kp,

with k≥ 0.

2.9 The group rearrangement theorem

Let G be a group anda∈ G. Consider the set

aG = {ag|g∈ G} .

We have

aG = G.

Proof: We showaG⊆ G andaG⊇ G.
Let us start with “⊆”: Take an arbitraryb∈ G. We haveab∈ G and thereforeaG⊆ G.
We then show “⊇": Take an arbitraryc ∈ G. The element(a−1c) is again inG and therefore
a
(
a−1c

)
= c. This showsaG⊇ G.
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An important application of the group rearrangement theorem is the following: Consider a func-
tion

f : G→ R

defined on the groupG. Then

∑
a∈G

f (a) = ∑
a∈G

f (ab)

for all b∈ G.
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3 Lie groups

3.1 Manifolds

3.1.1 Definition

A topological spaceis a setM together with a familyT of subsets ofM satisfying the following
properties:

1. /0 ∈ T , M ∈ T

2. U1,U2 ∈ T ⇒U1∩U2 ∈ T

3. For any index setA we haveUα ∈ T ;α ∈ A⇒ ⋃
α∈A

Uα ∈ T

The setsU ∈ T are calledopen.

A topological space is calledHausdorff if for any two distinct pointsp1, p2 ∈ M there exists
open setsU1,U2 ∈ T with

p1 ∈U1, p2 ∈U2, U1∩U2 = /0.

A map between topological spaces is calledcontinous if the preimage of any open set is again
open.

A bijective map which is continous in both directions is called ahomeomorphism.

An open chartonM is a pair(U,ϕ), whereU is an open subset ofM andϕ is a homeomorphism
of U onto an open subset ofRn.

A differentiable manifold of dimensionn is a Hausdorff space with a collection of open charts
(Uα,ϕα)α∈A such that

M1:

M =
⋃

α∈A

Uα.

M2: For each pairα,β ∈ A the mappingϕβ ◦ ϕ−1
α is an infinitely differentiable mapping of

ϕα
(
Uα ∩Uβ

)
ontoϕβ

(
Uα∩Uβ

)
.

A differentiable manifold is also often denoted as aC∞ manifold. As we will only be concerned
with differentiable manifolds, we will often omitt the word“differentiable” and just speak about
manifolds.

The collection of open charts(Uα,ϕα)α∈A is called anatlas.
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If p∈Uα and

ϕα(p) = (x1(p), ...,xn(p)) ,

the setUα is called thecoordinate neighbourhoodof p and the numbersxi(p) are called the
local coordinatesof p.

Note that in each coordinate neighbourhoodM looks like an open subset ofRn. But note that we
do not require thatM beRn globally.

Consider two manifoldsM andN with dimensionsm andn. Let xi be coordinates onM and
y j be coordinates onN. A mapping f : M → N between two manifolds is calledanalytic, if for
each pointp∈ M there exits a neighbourhoodU of p andn power seriesPj , j = 1, ...,n such that

y j( f (q)) = Pj (x1(q)−x1(p), ...,xm(q)−xm(p))

for all q∈U .

An analytic manifold is a manifold where the mappingϕβ ◦ϕ−1
α is analytic.

3.1.2 Examples

a)Rn: The spaceRn is a manifold.Rn can be covered with a single chart.

b) S1: The circle

S1 = {~x∈ R
2||~x|2 = 1}

is a manifold. For an atlas we need at least two charts.

c) The set of rotation matrices in two dimensions:
(

cosϕ −sinϕ
sinϕ cosϕ

)

,

The set of all these matrices forms a manifold homeomorphic to the circleS1.

3.1.3 Morphisms

Homeomorphism: A map f : M → N between two manifoldsM and N is called a homeo-
morphism if it is bijective and both the mappingf : M → N and the inversef−1 : N → M are
continous.

Diffeomorphism: A map f : M → N is called a diffeomorphism if it is a homeomorphism and
both f and f−1 are infinitely differentiable.

Analytic diffeomorphism : The mapf : M → N is a diffeomorphism and analytic.
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3.2 Lie groups

3.2.1 Definition

A Lie groupG is a group which is also an analytic manifold, such that the mappings

G×G → G,

(a,b) → a ·b,

and

G → G,

a → a−1

are analytic.

Remark: Instead of the two mappings above, it is sufficient torequire that the mapping

G×G → G,

(a,b) → a ·b−1

is analytic.

3.2.2 Examples

The most important examples of Lie groups are matrix groups with matrix multiplication as com-
position. In order to have an inverse, the matrices must be non-singular.

a) GL(n,R), GL(n,C): The group of non-singularn×n matrices with real or complex entries.
GL(n,R) hasn2 real parameters,GL(n,C) has 2n2 real parameters.

b) SL(n,R), SL(n,C): The group of non-singularn× n matrices with real or complex entries
and

detA= 1.

SL(n,R) hasn2−1 real parameters, whileSL(n,C) has 2(n2−1) real parameters.

c) O(n) : The group of orthogonaln×n matrices defined through

RRT = 1.

The groupO(n) hasn(n− 1)/2 real parameters. The groupO(n) can also be defined as the
transformation group of a realn-dimensional vector space, which preserves the inner product

n

∑
i=1

x2
i
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d) SO(n): The group of special orthogonaln×n matrices defined through

RRT = 1 and detR= 1.

The groupSO(n) hasn(n−1)/2 real parameters.

e)U(n): The group of unitaryn×n matrices defined through

UU† = 1.

The groupU(n) hasn2 real parameters. The groupU(n) can also be defined as the transformation
group of a complexn-dimensional vector space, which preserves the inner product

n

∑
i=1

z∗i zi

f) SU(n): The group of special unitaryn×n matrices defined through

UU† = 1 and detU = 1.

The groupSU(n) hasn2−1 real parameters.

g) Sp(n,R): The symplectic group is the group of 2n×2n matrices satisfying

MT
(

0 In
−In 0

)

M =

(
0 In

−In 0

)

The groupSp(n,R) has(2n+1)n real parameters. The groupSp(n,R) can also be defined as the
transformation group of a real 2n-dimensional vector space, which preserves the inner product

n

∑
j=1

(
x jy j+n−x j+ny j

)
.

3.3 Algebras

3.3.1 Definition

Let K be a field andA a vector space over the fieldK. A is called an algebra, if there is an
additional composition

A×A → A

(a1,a2) → a1a2

such that the algebra multiplication isK-linear.

(r1a1+ r2a2)a3 = r1(a1a3)+ r2(a2a3)

a3(r1a1+ r2a2) = r1(a3a1)+ r2(a3a2)
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Remark: It is not necessary to require thatK is a field. It is sufficient to have a commutative ring
R with 1. In this case one replaces the requirement forA to be a vector space by the requirement
thatA is an unitalR-modul. The difference between a fieldK and a commutative ringR with 1
lies in the fact that in the ringR the multiplicative inverse might not exist.

An algebra is called associative if

(a1a2)a3 = a1(a2a3)

An algebra is called commutative if

a1a2 = a2a1

An unit element1A ∈ A satisfies

1A a = a.

Note that it is not required thatA has a unit element. If there is one, note that difference between
1A ∈ A and 1K ∈ K: The latter always exists and we have the scalar multiplication with one:

1K a = a.

3.3.2 Examples

a) Consider the set ofn×n matrices overR with the composition given by matrix multiplication.
This gives an associative, non-commutative algebra with a unit element given by the unit matrix.

b) Consider the set ofn×n matrices overR where the composition is defined by

[a,b] = ab−ba.

This defines a non-associative, non-commutative algebra. There is no unit element.

3.4 Lie algebras

3.4.1 Definition

For a Lie algebra it is common practice to denote the composition of two elementsa andb by
[a,b]. An algebra is called a Lie-algebra if the composition satisfies

[a,a] = 0,

[a, [b,c]]+ [b, [c,a]]+ [c, [a,b]] = 0.

Remark: Consider again the example above of the set ofn×n matrices overR where the com-
position is defined by the commutator

[a,b] = ab−ba.
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Clearly this definition satisfies[a,a] = 0. It fullfills the Jacobi identity:

[a, [b,c]]+ [b, [c,a]]+ [c, [a,b]] =

= abc−acb−bca+cba+bca−bac−cab+acb+cab−cba−abc+bac

= 0.

Matrix algebras with the commutator as composition are therefore Lie algebras.

Let A be a Lie algebra andX1, ...,Xn a basis ofA as a vector space.[Xi,Xj ] is again inA and
can be expressed as a linear combination of the basis vectorsXk:

[
Xi,Xj

]
=

n

∑
k=1

ci jkXk.

The coefficentsci jk are called the structure constants of the Lie algebra. For matrix algebras the
Xi ’s are anti-hermitian matrices.

The notation above is mainly used in the mathematical literature. In physics a slightly differ-
ent convention is often used: Denote byT1, ...,Tn a basis ofA as a (complex) vector space. Then

[Ta,Tb] = i
n

∑
c=1

fabcTc.

For matrix algebras theTa’s are hermitian matrices.

We can get from one convention to the other one by letting

Ta = iXa.

In this case we have

fabc = cabc.

3.4.2 The exponential map

In this section we focus on matrix Lie groups. Let us first define the matrix exponential. For an
n×n matrixX we define expX by

expX =
∞

∑
n=0

Xn

n!
.

Theorem: For anyn×n real or complex matrixX the series converges.

A few properties:
1. We have

exp(0) = 1.
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2. expX is invertible and

(expX)−1 = exp(−X) .

3. We have

exp[(α+β)X] = exp(αX)exp(βX) .

4. If XY=YX then

exp(X+Y) = expX expY.

5. If A is invertible then

exp
(
AXA−1) = Aexp(X)A−1.

6. We have

d
dt

exp(tX) = X exp(tX) = exp(tX)X.

In particular

d
dt

exp(tX)

∣
∣
∣
∣
t=0

= X.

Point 1 is obvious. Points 2 and 3 are special cases of 4. To prove point 4 it is essential thatX
andY commute:

expX expY =
∞

∑
i=0

Xi

i!

∞

∑
j=0

Y j

j!
=

∞

∑
n=0

n

∑
i=0

Xi

i!
Yn−i

(n− i)!
=

∞

∑
n=0

1
n!

n

∑
i=0

(
n
i

)

XiYn−i

=
∞

∑
n=0

1
n!

(X+Y)n = exp(X+Y) .

Proof of point 5:

exp
(
AXA−1) =

∞

∑
n=0

1
n!

(
AXA−1)n =

∞

∑
n=0

1
n!

AXnA−1 = Aexp(X)A−1.

Proof of point 6:

d
dt

exp(tX) =
d
dt

∞

∑
n=0

1
n!

(tX)n =
∞

∑
n=0

1
(n−1)!

tn−1Xn = X exp(tX) = exp(tX)X.

Computation of the exponential of a matrix:

Case 1:X is diagonalisable.
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If X = ADA−1 with D = diag(λ1,λ2, ...) we have

expX = expADA−1 = Aexp(D)A−1 = A diag
(

eλ1,eλ2, ...
)

A−1.

Case 2:X is nilpotent.

A matrix X is called nilpotent, ifXm = 0 for some positivem. In this case the series termi-
nates:

expX =
m−1

∑
n=0

Xn

n!

Case 3:X is arbitrary.

A general matrixX may be neither diagonalisable nor nilpotent. However, any matrix X can
uniquely be written as

X = S+N,

whereS is diagonalisable andN is nilpotent andSN= NS. Then

expX = expSexpN

and expSand expN can be computed as in the previous two cases.

3.4.3 Relation between Lie algebras and Lie groups

Let G be a Lie group. Assume that as a manifold it has dimensionn. G is also a group. Choose
a local coordinate system, such that the identity elemente is given by

e = g(0, ...,0).

A lot of information onG can be obtained from the study ofG in the neighbourhood ofe. Let

g(θ1, ...,θn)

denote a general point in the local chart containinge. Let us write

g(0, ...,θa, ...,0) = g(0, ...,0, ...,0)+θaX
a+O(θ2)

= g(0, ...,0, ...,0)− iθaT
a+O(θ2).

We also have

Xa = lim
θa→0

g(0, ...,θa, ...,0)−g(0, ...,0, ...,0)
θa

,

Ta = i lim
θa→0

g(0, ...,θa, ...,0)−g(0, ...,0, ...,0)
θa

.
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TheTa’s (and theXa’s) are called thegeneratorsof the Lie groupG.

Theorem: The commutators of the generatorsTa of a Lie group are linear combinations of
the generators and satisfy a Lie algebra.

[

Ta,Tb
]

= i
n

∑
c=1

f abcTc.

We will often use Einstein’s summation convention and simply write
[

Ta,Tb
]

= i f abcTc.

In order to proove this theorem we have to show that the commutator is again a linear combina-
tion of the generators. We start with the definition of a one-parameter subgroup ofGL(n,C): A
mapg : R→ GL(n,C) is called a one-parameter sub-group ofGL(n,C) if
1. g(t) is continous.

2. g(0) = 1.

3. Fort1, t2 ∈ R we have

g(t1+ t2) = g(t1)g(t2) .

If g(t) is a one-parameter sub-group ofGL(n,C) then there exists a uniquen×n matrix X such
that

g(t) = exp(tX) .

X is given by

X =
d
dt

g(t)

∣
∣
∣
∣
t=0

.

There is a one-to-one correspondence between linear combinations of the generators

X = −iθaTa

and the one-parameter sub-groups

g(t) = exp(tX) with X =
d
dt

g(t)

∣
∣
∣
∣
t=0

.

If A ∈ G and if Y defines a one-parameter sub-group ofG, then alsoAYA−1 defines a one-
parameter sub-group ofG. The non-trivial point is to check that exp

[
t
(
AYA−1

)]
is again inG.

This follows from

exp
[
t
(
AYA−1)] = Aexp(tY)A−1.
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ThereforeAYA−1 is a linear combination of the generators. Now we take forA= exp(λX). This
implies that

exp(λX)Yexp(−λX)

is a linear combination of the generators. Since the vector space spanned by the generators is
topologically closed, also the derivative with respect toλ belongs to this vector space and we
have shown that

d
dλ

exp(λX)Yexp(−λX)

∣
∣
∣
∣
λ=0

= XY−YX= [X,Y]

is again a linear combination of the generators.

We have seen that by studying a Lie groupG in the neighbourhood of the identity we can obtain
from the Lie groupG the corresponding Lie algebrag. We can now ask if the converse is also
true: Given the Lie algebrag, can we reconstruct the Lie groupG ? The answer is that this can
almost be done. Note that a Lie group need not be connected. The Lorentz group is an example
of a Lie group which is not connected. Given a Lie algebra we have information about the con-
nected component in which the idenity lies. The exponentialmap takes us from the Lie algebra
into the group. In the neighbourhood of the identity we have

g(θ1, ...,θn) = exp

(

−i
n

∑
a=1

θaTa

)

.

3.4.4 Examples

As an example for the generators of a group let us study the cases ofSU(2) andSU(3), as well
as the groupsU(2) andU(3). A common normalisation for the generators is

Tr TaTb =
1
2

δab.

a) The groupSU(2) is a three-paramter group. The generators are proportionalto the Pauli
matrices:

T1 =
1
2

(
0 1
1 0

)

, T2 =
1
2

(
0 −i
i 0

)

, T3 =
1
2

(
1 0
0 −1

)

.

31



b) The groupSU(3) has eight parameters. The generators can be taken as the Gell-Mann matri-
ces:

T1 =
1
2





0 1 0
1 0 0
0 0 0



 , T2 =
1
2





0 −i 0
i 0 0
0 0 0



 , T3 =
1
2





1 0 0
0 −1 0
0 0 0



 ,

T4 =
1
2





0 0 1
0 0 0
1 0 0



 , T5 =
1
2





0 0 −i
0 0 0
i 0 0



 , T6 =
1
2





0 0 0
0 0 1
0 1 0



 ,

T7 =
1
2





0 0 0
0 0 −i
0 i 0



 , T8 =
1

2
√

3





1 0 0
0 1 0
0 0 −2



 .

c) For the groupsU(2) andU(3) add the generator

T0 =
1
2

(
1 0
0 1

)

for U(2), respectively the generator

T0 =
1√
6





1 0 0
0 1 0
0 0 1





for U(3).

3.4.5 The Fierz identity

Problem: Denote byTa the generators ofSU(n) or U(n). Evaluate traces like

Tr TaTbTaTb,

where a sum overa andb is implied.

We first consider the case forSU(N). The Fierz identity reads forSU(N):

Ta
i j T

a
kl =

1
2

(

δil δ jk −
1
N

δi j δkl

)

.

Proof:Ta and the unit matrix form a basis of theN×N hermitian matrices, therefore any hermi-
tian matrixA can be written as

A = c01+caTa.
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The constantsc0 andca are determined using the normalization condition and the fact that the
Ta are traceless. We first take the trace on both sides:

Tr(A) = c0 Tr 1+ca Tr Ta = c0N,

therefore

c0 =
1
N

Tr(A) .

Now we multiply first both sides withTb and take then the trace:

Tr
(

ATb
)

= c0 Tr Tb+ca Tr TaTb = ca
1
2

δab,

therefore

ca = 2Tr(TaA) .

Putting both results together we obtain

A =
1
N

Tr(A)1+2Tr(ATa)Ta

Let us now write this equation in components

Ai j =
1
N

Tr(A)1i j +2Tr(ATa)Ta
i j ,

Ai j =
1
N

All 1i j +2AlkTa
klT

a
i j ,

Therefore

Alk

(

2Ta
i j T

a
kl +

1
N

δi j δkl −δil δ jk

)

= 0.

This has to hold for an arbitraryA, therefore the Fierz identity follows. Useful formulae involving
traces:

Tr(TaX)Tr(TaY) =
1
2

[

Tr(XY)− 1
N

Tr(X)Tr(Y)

]

,

Tr(TaXTaY) =
1
2

[

Tr(X)Tr(Y)− 1
N

Tr(XY)

]

.

In the case of aU(N)-group the identity matrix is part of the generators and the Fierz identity
takes the simpler form

Ta
i j T

a
kl =

1
2

δil δ jk.
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As a consequence we have for aU(N)-group for the traces

Tr(TaX)Tr(TaY) =
1
2

Tr(XY) ,

Tr(TaXTaY) =
1
2

Tr(X)Tr(Y) .

It is also useful to know, that the structure constantsf abc can expressed in terms of traces over
the generators: From

[Ta,Tb] = i f abcTc

one derives by multiplying withTd and taking the trace:

i f abc = 2
[

Tr
(

TaTbTc
)

−Tr
(

TbTaTc
)]

This yields an expression of the structure constants in terms of the matrices of the fundamental
representation. We can now calculate for the groupSU(N) the fundamental and the adjoint
Casimirs:

(TaTa)i j = CFδi j =
N2−1

2N
δi j ,

f abcf dbc = CAδad = Nδad.

For the groupSU(N) we define the symmetric tensordabc through

{

Ta,Tb
}

= dabcTc+
1
N

δab.

Here,{..., ...} denotes the anti-commutator

{A,B} = AB+BA.

With the same steps as above one finds that

dabc = 2
[

Tr
(

TaTbTc
)

+Tr
(

TbTaTc
)]

.

From this expression and the fact that the trace is cyclic we see explicitly thatdabc is symmetric
in all indices.

3.5 Gauge symmetries

Lie groups play an essential role in describing internal symmetries in physics. The simplest
example is given by electrodynamics. We denote byAµ(x) the gauge potential of electrodynamics
and by

Fµν = ∂µAν(x)−∂νAµ(x)
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the field strength tensor. We denote further byU(x) an element of aU(1)-Lie group, smoothly
varying withx. We may write

U(x) = exp(−iθ(x)) ,

whereθ(x) is a real smooth function. Recall that the groupU(1) has one generator, which is
the 1×1 unit matrix. This is simply one and we don’t write it explicitly. We then consider the
transformation

A′
µ(x) = U(x)

(

Aµ(x)+
i
e

∂µ

)

U(x)†.

Here,e denotes the electric charge. Working out the expression forA′
µ(x) in terms ofθ(x) we

find

A′
µ(x) = Aµ(x)−

1
e

∂µθ(x).

This is nothing else than a gauge transformationA′
µ(x) = Aµ(x)− ∂µχ(x) with χ(x) = θ(x)/e.

The field strength transforms as

F ′
µν = UFµνU

†.

For aU(1)-groupU andU† commute withFµν and we get

F ′
µν = Fµν.

Therefore for aU(1)-transformation the field strength is invariant. As a consequence, also the
Lagrange density

L = −1
4

FµνFµν

is invariant:

L
′ = L .

Now let us see if this can be generalised toSU(N). In electrodynamics we can interpret the gauge
potential as a quantity, which takes values in the Lie algebra ofU(1). There is only one generator
for theU(1)-group. In the groupSU(N) there are more generators (N2−1 to be precise), and
we start from the following generalisation of the gauge potential:

TaAa
µ(x),

where theTa’s are the generators of the Lie algebra ofSU(N) anda ranges from 1 toN2−1. We
consider again a transformation of the form

TaAa
µ
′(x) = U(x)

(

TaAa
µ(x)+

i
g

∂µ

)

U(x)†,
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whereU(x) is now an element ofSU(N). (g is a coupling constant replacing the electromagnetic
couplinge). U(x) can be written in terms of the generators as

U(x) = exp(−iθa(x)T
a) ,

The groupSU(N) is non-Abelian and the generatorsTa do not commute. As a consequence the
expression

∂µ(T
aAa

ν)−∂ν
(
TaAa

µ

)

does not transform nicely. As a short-hand notation we writein the following

Aµ = TaAa
µ.

We have

∂µAν
′ = ∂µ

[

U

(

Aν +
i
g

∂ν

)

U†
]

= ∂µ

[

UAνU
†+

i
g
U
(

∂νU
†
)]

= U
(
∂µAν

)
U†+

(
∂µU

)
AνU

†+UAν

(

∂µU
†
)

+
i
g

(
∂µU

)(

∂νU
†
)

+
i
g
U
(

∂µ∂νU
†
)

SinceUU† = 1 we have

0 = ∂µ

(

UU†
)

=
(
∂µU

)
U†+U

(

∂µU
†
)

and hence
(
∂µU

)
U† = −U

(

∂µU
†
)

.

We can use this relation to rewrite

∂µAν
′ = U

(
∂µAν

)
U†−

(

U∂µU
†
)(

UAνU
†
)

+
(

UAνU
†
)(

U∂µU
†
)

− i
g

(

U∂µU
†
)(

U∂νU
†
)

+
i
g
U
(

∂µ∂νU
†
)

We then find that

∂µAν
′−∂νAµ

′ = U
(
∂µAν−∂νAµ

)
U†

−
[

UAµU
†,U∂νU

†
]

−
[

U∂µU
†,UAνU

†
]

− i
g

[

U∂µU
†,U∂νU

†
]

.

If we now define the field strength in the non-Abelian case by

Fµν = ∂µAν−∂νAµ− ig
[
Aµ,Aν

]

we obtain the transformation law

F ′
µν = UFµνU

†.
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We now define the Lagrange density as

L = −1
2

Tr FµνFµν.

This Lagrange density is invariant underSU(N)-gauge transformations:

L
′ = −1

2
Tr F ′

µνFµν′ =−1
2

Tr
(

UFµνU
†
)(

UFµνU†
)

=−1
2

Tr FµνFµν = L .

Going back from our short-notation to the more detailed notation

Aµ = TaAa
µ,

one denotes the field strength also by

Fa
µν = ∂µAa

ν −∂νAa
µ+g fabcAb

µAc
ν.

Obviously, we have the relation

Fµν = TaFa
µν.

In terms ofFa
µν the Lagrange density reads

L = −1
4

Fa
µνFaµν.
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4 Representation theory

4.1 Group actions

An action of a groupG on a setX is a correspondence that associates to each elementg∈ G a
mapφg : X → X in such a way that

φg1g2 = φg1φg2,

φe is the identity map onX,

whereedenotes the neutral element of the group. Instead ofφg(x) one often writesgx.

A group action ofG onX gives rise to a natural equivalence relation onX: x1 ∈ X andx2 ∈ X are
equivalent, if they can be obtained from one another by the action of some group elementg∈ G.
The equivalence class of a pointx∈ X is called theorbit of x.

G is said to acteffectively on X, if the homomorphism from G into the group of transforma-
tions ofX is injective.

G is said to acttransitively on X, if there is only one orbit. A setX where a groupG acts
transitively is called a homogeneous space. Every orbit of a(not necessarily transitive) group
action is a homogeneous space.

The stabilizer (or the isotropy subgroup or the little group) Hx of a pointx∈ X is the subgroup
of G that leavex fixed, e.g.h∈ Hx if hx= x. WhenHx is the trivial subgroup for allx∈ X, we
say that the action ofG onX is free.

If G acts onX and onY, then a mapψ : X → Y is said to beG-equivariant if ψ ◦ g = g◦ψ
for all g∈ G.

4.2 Representations

Let V be a finite-dimensional vector space andGL(V) the group of automorphisms ofV. Typi-
cally V = Rn or V = Cn andGL(V) = GL(n,R) or GL(V) = GL(n,C).

Definition: A representation of a goupG is a homomorphismρ from G to GL(V)

g → ρ(g).

The composition inGL(V) is given by matrix multiplication. Sinceρ is a homomorphism we
have

ρ(g1g2) = ρ(g1)ρ(g2) .
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This implies

ρ(e) = 1,

ρ
(
g−1) = [ρ(g)]−1 .

The trivial representation:

ρ(g) = 1, ∀g.

Remark: In general more than one group element can be mapped on the identity. If the mapping
ρ : G→ GL(V) is one-to-one, i.e.

ρ(g) = ρ(g′) ⇒ g= g′

then the representation is calledfaithful .

Strictly speaking a representation is a set of (non-singular) matrices, e.g. a sub-set ofGL(V).
Very often we will also speak about the vector spaceV, on which these matrices act, as a repre-
sentation ofG.

In this sense asub-representationof a representationV is a vector sub-spaceW of V, which is
invariant underG:

ρ(g)w∈W ∀g∈ G andw∈W.

A representationV is calledirreducible if there is no proper non-zero invariant sub-spaceW of
V. (This excludes the trivial invariant sub-spacesW = {0} andW =V.)

If V1 andV2 are representations ofG, thedirect sum V1⊕V2 and thetensor product V1⊗V2

are again representations:

g(v1⊕v2) = (gv1)⊕ (gv2) ,

g(v1⊗v2) = (gv1)⊗ (gv2) ,

Two representationsρ1 andρ2 of the same dimension are calledequivalent, if there exists a
non-singular matrixSsuch that

ρ1(g) = Sρ2(g)S
−1, ∀g∈ G.

For finite groups and compact Lie groups it can be shown that any representation is equivalent to
a unitary representation.
For finite groups the proof goes as follows: Suppose we start with an arbitrary (i.e. not neces-
sarily unitary) representationρ2(g). We would like to find aSsuch thatρ1(g) = Sρ2(g)S−1 is a
unitary matrix for allg. We setS to be a hermitian matrix which satisfies

S2 = ∑
g′∈G

ρ2
(
g′
)†ρ2

(
g′
)
.
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Then

ρ2(g)
†S2ρ2(g) = ρ2(g)

† ∑
g′∈G

ρ2
(
g′
)†ρ2

(
g′
)

ρ2(g) = ∑
g′∈G

ρ2
(
g′g
)†ρ2

(
g′g
)

= ∑
g′′∈G

ρ2
(
g′′
)† ρ2

(
g′′
)
= S2.

We therefore have

ρ2(g)
†S2ρ2(g) = S2,

ρ2(g)
†S2 = S2ρ2(g)

−1 ,

S−1ρ2(g)
†S = Sρ2(g)

−1S−1,
(
Sρ2(g)S−1)† =

(
Sρ2(g)S−1)−1

,

This shows thatρ1(g) = Sρ2(g)S−1 satisfies

ρ1(g)
† = ρ1(g)

−1,

in other words,ρ1(g) is a unitary matrix.

This proof carries over to the case of compact Lie groups by replacing the sum in the defini-
tion of Sby an integration over all group elements.

The goal of representation theory: Classify and study all representations of a groupG up to
equivalence. This will be done by decomposing an arbitrary representation into direct sums of
irreducible representations.

4.3 Schur’s lemmas

Lemma 1: Any matrixM which commutes with all the matricesρ(g) of an irreducible represen-
tation of a groupG must be a multiple of the unit matrix:

M = c1.

Proof: We have

ρ(g)M = Mρ(g) ∀g∈ G.

If ρ(g) is of dimensionn, thenM must be square of dimensionn. Let us assume thatρ(g) is
unitary. Then

M†ρ(g)† = ρ(g)†M†.

Multiply by ρ(g) from left and right:

ρ(g)M† = M†ρ(g).
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Therefore alsoM† commutes with allρ(g), and so do the hermitian matrices

H1 = M+M†,

H2 = i
(

M−M†
)

.

Any hermitian matrix may be diagonalised by a unitary transformation:

D = U−1HU.

If we define now

ρ′(g) = U−1ρ(g)U,

we have

ρ′(g)D = Dρ′(g).

Let D = diag(λ1, ...,λn) and consider now thei, j element of this matrix equation:
[
ρ′(g)

]

i j λ j = λi
[
ρ′(g)

]

i j ,
(
λi −λ j

)[
ρ′(g)

]

i j = 0.

Suppose that a certain eigenvalueλ of D occursk times and that, by a suitable ordering the first
k positions ofD are occupied byλ. Then

λ1 = ...= λk 6= λl , k+1≤ l ≤ n.

This implies that
[
ρ′(g)

]

i j = 0 for 1≤ i ≤ k, k+1≤ j ≤ n,

or 1≤ j ≤ k, k+1≤ i ≤ n.

Henceρ′(g) is of the form
(

... 0
0 ...

)

and is thus reducible, contrary to the initial assumption. Thus if and only if all the eigenvalues
of D are the sameρ′(g) will be irreducible. In other words,D and henceM must be a multiple
of the unit matrix.

Lemma 2: Ifρ1(g) andρ2(g) are two irreducible representations of a groupG of dimensions
n1 andn2 respectively and if a rectangular matrixM of dimensionn1×n2 exists sucht that

ρ1(g)M = Mρ2(g), ∀g∈ G
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then either
(a)M = 0 or
(b) n1 = n2 and detM 6= 0, in which caseρ1(g) andρ2(g) are equivalent.

Proof: Let us assume without loss of generality thatρ1(g) andρ2(g) are unitary representations.

M†ρ1(g)
† = ρ2(g)

†M†,

M†ρ1(g
−1) = ρ2(g

−1)M†.

Multiply by M from the right:

M†ρ1(g
−1)M = ρ2(g

−1)M†M.

By assumptionρ1(g−1)M = Mρ2(g−1) and therefore

M†Mρ2(g
−1) = ρ2(g

−1)M†M.

By lemma 1 we conclude

M†M = λ1.

Consider the casen1 = n2 = n:

detM†M = detM†detM = λn.

If λ 6= 0 then detM 6= 0 and thereforeM−1 exists. Fromρ1(g)M = Mρ2(g) it follows that

ρ1(g) = Mρ2(g)M
−1

andρ1(g) andρ2(g) are equivalent.

If on the other handλ = 0 we have

∑
k

M†
ikMki = 0,

∑
k

|Mki|2 = 0.

This is only possible forMki = 0 and hence

M = 0.

To complete the proof we consider the casen1 6= n2. Let us assumen1 < n2. ConstructM′ from
M by addingn2−n1 rows of zeros:

M′ =

(
M
0

)
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M′† =
(

M† 0
)

We have

M′†M′ = M†M

and thus

detM†M = detM′†M′ = detM′†detM′ = 0.

Henceλ = 0 andM†M = 0. It follows M = 0 as before.

Application: Orthogonality theorem for finite groups. LetG be a finite group and letρ1 and
ρ2 be irreducible representations of dimensionn1 andn2. Then

∑
g∈G

ρ1(g)i j ρ2(g
−1)kl =







0 ρ1 andρ2 are inequivalent,
|G|
n1

δil δk j ρ1 andρ2 are identical,
... ρ1 andρ2 are equivalent, but not identical.

Proof: Assume thatρ1 andρ2 are inequivalent. Consider

M =
1
|G| ∑

g∈G

ρ1(g)Xρ2(g
−1),

whereX is an arbitraryn1×n2 matrix. Then

ρ1(g
′)M = ρ1(g

′)
1
|G| ∑

g∈G

ρ1(g)Xρ2(g
−1) =

1
|G| ∑

g∈G

ρ1(g
′g)Xρ2(g

−1)

=
1
|G| ∑

g∈G

ρ1(g)Xρ2(g
−1g′) =

1
|G| ∑

g∈G

ρ1(g)Xρ2(g
−1)ρ2(g

′) = Mρ2(g
′).

By Schur’s second lemma we haveM = 0, therefore

1
|G| ∑

g∈G

ρ1(g)i j ′Xj ′k′ρ2(g
−1)k′l = 0.

SinceX was arbitrary we can takeX = δ j j ′δkk′ and we have

∑
g∈G

ρ1(g)i j ρ2(g
−1)kl = 0.

Now consider the case whereρ1 andρ2 are identical:ρ1 = ρ2 = ρ. Take again

M =
1
|G| ∑

g∈G

ρ(g)Xρ(g−1).
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One shows again

ρ(g)M = Mρ(g).

Therefore by Schur’s first lemma

1
|G| ∑

g∈G

ρ(g)i j ′Xj ′k′ρ(g−1)k′l = cδil .

Again takeX = δ j j ′δkk′ :

1
|G| ∑

g∈G

ρ(g)i j ρ(g−1)kl = cδil .

To find c take the trace on both sides:

δk j = cn1,

and therefore

∑
g∈G

ρ(g)i j ρ(g−1)kl =
|G|
n1

δk jδil .

Another consequence of Schur’s first lemma: All irreduciblerepresentation of an Abelian group
are one-dimensional.

4.4 Representation theory for finite groups

A finite groupG admits only finitely many irreducible representationsVi up to isomorphism.

Example: Consider the symmetric groupS3, the permutation group of three elements, which
is the simplest non-abelian group. This group has two one-dimensional representations: The
trivial oneI and the alternating representationA defined by

gv = sign(g)v.

There is a natural representation, in whichS3 acts onC3 by

g · (z1,z2,z3) =
(

zg−1(1),zg−1(2),zg−1(3)

)

This representation is reducible: The line spanned by the sum

e1+e2+e3

is an invariant sub-space. The complementary sub-space

V = {(z1,z2,z3)|z1+z2+z3 = 0}
defines an irreducible representation. This representation is called the standard representation.
It can be shown that any representation ofS3 can be decomposed into these three irreducible
representations

W = I⊕n1 ⊕A⊕n2 ⊕V⊕n3.
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4.4.1 Characters

Definition:If V is a representation ofG, its characterχV is the complex-valued function on the
group defined by

χV(g) = Tr(ρ(g)) .

In particular we have

χV
(
hgh−1) = χV(g).

Let V andW be representation ofG. Then

χV⊕W = χV +χW,

χV⊗W = χV ·χW,

χV∗ = (χV)
∗ ,

χ∧2V(g) =
1
2

[
χV(g)

2−χV(g
2)
]
,

χSym2
V
(g) =

1
2

[
χV(g)

2+χV(g
2)
]

Orthogonality theorem for characters: For finite groups we had the orthogonality theorem. If
we consider unitary representations and if we make the agreement that if two representations are
equivalent, we take them to be identical, the orthogonalitytheorem can be written as

∑
g∈G

ρα(g)i j ρβ(g)
∗
lk =

|G|
n1

δil δk jδαβ

(Note that for an unitary representation we haveρ(g−1)kl = ρ(g)∗lk.) Now we seti = j and sum,
and we setl = k and sum:

∑
g∈G

χα(g)χβ(g)
∗ = |G| δαβ

Since the character is a class function we can write

∑
g∈G

= ∑
classesκ

nκ,

wherenκ denotes the number of elements in the classCκ. Therefore

∑
κ

nκχα(Cκ)χβ(Cκ)
∗ = |G| δαβ

Character table:
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n1C1 n2C2 n2C2 ...
ρ1 χ1(C1) χ1(C2) χ1(C3) ...
ρ2 χ2(C1) χ2(C2) χ2(C3) ...
ρ3 χ3(C1) χ3(C2) χ3(C3) ...
... ... ... ... ...

The number of orthogonal vectors corresponds to the number of inequivalent representations.
The dimension of the space is given by the number of classes. Therefore the number of inequiv-
alent representations is smaller or equal to the number of classes. In fact equality holds. To show
this, we consider one specific (reducible) representation,called theregular representation. The
regular representation is defined by

gagb = ∑
c

ρR
cb(ga)gc

Note that the matrixρR
cb(ga) has in each column exactly one 1 and all other entries in this column

are zero. This defines a representation: We have

gdgagb = gd ∑
c

ρR
cb(ga)gc = ∑

e
ρR

ec(gd)∑
c

ρR
cb(ga)ge

= ∑
e

(

∑
c

ρR
ec(gd)ρR

cb(ga)

)

ge.

On the other hand we have

gdgagb = (gdga)gb = ∑
e

ρR
eb(gdga)ge.

Therefore it follows

ρR
eb(gdga) = ∑

c
ρR

ec(gd)ρR
cb(ga) ,

or in matrix notation

ρR(gdga) = ρR(gd) ·ρR(ga) .

We have already seen that the 1 appears in each column of the matrix ρR(g) exactly once. The 1
appears always on the diagonal ifg= e, otherwise it appears never on the diagonal. This implies
for the character

χR(g) =

{
0 g 6= e,
|G| g= e.

In general, the regular representation is reducible. We write

ρR(g) =
⊕

α
aαρα (g) ,
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where the sum is over all irreducible representations andaα gives the number of times the irre-
ducible representationρα is contained inρR. For the characters we have then

χR(g) = ∑
α

aαχα (g) .

The numberaα we can obtain from the orthogonality theorem as follows

1
|G|∑κ

nκχαχR(g)∗ =
1
|G|∑κ

nκχα ∑
β

aβχβ (g)
∗ = ∑

β
aβδαβ = aα.

Using the fact thatχR(g) = 0 for all g 6= ewe have on the other side

1
|G|∑κ

nκχαχR(g)∗ =
1
|G|χα (e) |G|= χα (e) = nα,

wherenα is the dimension of the irreducible representationρα. Thus

aα = nα.

The irreducible representationρα appears exactlynα times in the decomposition ofρR. In partic-
ular, each irreducible representation appears in the decomposition of the regular representation.
We also have

|G| = ∑
α

aαnα = ∑
α

n2
α.

From the orthogonality theorem for finite groups it follows that we can viewρα(g)i j for fixed
α and fixedi, j as a vector in a|G|-dimensional space. The orthogonality theorem tells us, that
there are

∑
α

n2
α

orthogonal vectors. On the other hand we have just shown thatthis number equals|G|, therefore
the vectorsρα(g)i j span the full space. Therefore any vector in this space can bewritten as a
linear combination of these basis vectors. In particular the componentva with respect to the
standard bases is given by

va = ∑
α,i, j

c(α, i, j)ρα (ga)i j .

47



Let us now focus on vectors which are constant on classes. Forthose vectors we have with
gc = g−1

b gagb

va =
1
|G|

|G|
∑
b=1

vc

=
1
|G|

|G|
∑
b=1

∑
α,i, j

c(α, i, j)ρα

(

g−1
b gagb

)

i j

=
1
|G|

|G|
∑
b=1

∑
α,i, j

c(α, i, j)∑
k,l

ρα

(

g−1
b

)

ik
ρα (ga)kl ρα (gb)l j

= ∑
α,i, j

c(α, i, j)
1
nα

∑
k,l

δi j δlkρα (ga)kl

= ∑
α,i

c(α, i, i)
nα

χα (ga)

These vectors span a subspace of dimension equal to the number of classesnclass. The above
equations show that the characters of the irreducible representations span this subspace. Hence
there must be exactlynclasssuch characters, which is the desired result.

Criteria for reducibility: Assume that

ρ(g) =
⊕

α
aαρα(g)

Then

χ(g) = ∑
α

aαχα(g).

Conisder now

1
|G|∑g

χ(g)χ(g)∗ = ∑
α
|aα|2

{
= 1 ρ irreducible
> 1 ρ reducible

This gives a criteria to check if a representation is irreducible.

Let us consider again the orthogonality theorem for characters:

∑
κ

nκχα(Cκ)χβ(Cκ)
∗ = |G| δαβ

If we define

ζα
κ =

√
nκ
|G|χα(Cκ)
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we have

∑
κ

ζα
κζβ

κ
∗

= δαβ.

We can viewζα
κ as an entry of anclass×nclass-matrix. In matrix notation we can write

ζ ·ζ† = 1.

It follows thatζ−1 = ζ† and also

ζ† ·ζ = 1.

In other words

∑
α

ζα
κ
∗ζα

λ = δκλ.

Converting back to our original notation we have

∑
α

χα (Cκ)
∗ χα (Cλ) =

|G|
nκ

δκλ.

This defines an orthogonality relation between the columns of the character table.

4.4.2 Application: Molecular vibration

As an application of representation theory of finite groups we will study the vibration modes of
molecules. We will treat the atoms of the molecules classically as point particles moving in a
potential which has a minimum when they are in their equilibrium position. We will consider
small displacements from the equilibrium position.

Let us assume that the molecules hasn atoms. We will denote the positions of the atoms by

(~x1, ...,~xn)

and the equilibrium position by(~x(0)1 , ...,~x(0)n ). It is convenient to introduce 3n coordinatesηi ,
i = 1, ...,3n, describing the displacement from the equilibrium position. The Lagrange function
of the system reads

L = T −V,

T =
1
2

3n

∑
i=1

Ti j η̇iη̇ j

V =
1
2

3n

∑
i=1

Vi j ηiη j .
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From classical mechanics we know that by suitable change of coordinates we can achive that the
Lagrange function reads

L =
1
2

3n

∑
i=1

ξ̇2
i −

1
2

3n

∑
i

ω2
i ξ2

i .

Theωi ’s are called the frequencies of the normal modes. The changeof coordinates involves the
diagonalisation of(3n)× (3n) matrices.

We will now discuss how the task of obtaining the normal modescan be simplified using group
theory. As an example we will discuss the water moleculeH2O. Let us agree that the equilibrium
position of the water molecule is in thex−zplane, with theO-atom along thez-axis and the two
H-atoms along thex-axis. We assume that the twoH-atoms cannot be distinguished. We first
determine the symmetry group, which leaves the equilibriumposition invariant. We can rotate
the system by 180◦ along thez-axis, since the twoH-atoms are not distinguished, we obtain the
same configuration again. This defines aZ2-group. We denote the element, which generates
the group bya. Secondly, we have a reflection in thex− z plane: Changingy → −y will not
affect the equilibrium position. This defines anotherZ2-group. We denote the element, which
generates the group byb. In summary we find the symmetry groupZ2×Z2, with the generators
a andb. This group has four elements{e,a,b,ab} and is Abelian. We therefore have four classes
(each element is in a class of its own) and as a consequence four irreducible representationsρ1,
..., ρ4. The character table is easily obtained:

e a b ab
ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 1 −1 −1
ρ4 1 −1 −1 1

The(3n) coordinatesηi define a(3n)-dimensional representationρ of this group. This represen-
tation is in general reducible. We will now discuss how oftena given irreducible representation
occurs in the(3n)-dimensional one, i.e. we look for the decomposition

ρ =
⊕

α
aαρα.

To this aim let us group the(3n)-coordinates in tuples of 3:

(η1, ...,η3n) = (η1,1,η1,2,η1,3,η2,1, ...,ηn,3) .

ρ acts on this representation as

η′
i =

3n

∑
j=1

ρ(g)i j η j ,
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or writing this alternatively

η′
i, j =

n

∑
k=1

3

∑
l=1

ρ(g)i,k; j ,lηk,l .

We can think ofρ(g)i,k; j ,l as an×n-matrix, whose entries are 3×3-matrices. For the character
of this representation we have

χ(g) =
n

∑
i=1

3

∑
j=1

ρ(g)i,i; j , j .

In particular we observe that for the trace only the 3×3-matrices on the diagonal of then×n-
matrix contribute. In other words: Only the displacements of the atoms which are left unmoved
by the symmetry operation are relevant. Let us now consider an atomi which is not moved by
a symmetry operation. The effect of a rotation by an angleθ through thez-axis on the three
displacementsηi,1, ηi,2, ηi,3 is given by





cosθ −sinθ 0
sinθ cosθ 0

0 0 1





The trace of this matrix is

χ(R(θ)) = 2cosθ+1.

For θ = 180◦ we find

χ = −1.

The reflection in thex−z plane is described by




1 0 0
0 −1 0
0 0 1



 ,

its character is

χ = 1.

Finally, the combined operation of a rotation byθ = 180◦ and a reflection is given by




−1 0 0
0 1 0
0 0 1



 ,

with character

χ = 1.

We can now obtain the characters of the representationρ:
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e a b ab
ρ 9 −1 3 1

Not all irreducible representations in the decomposition of ρ correspond to true vibrations: The
9 generalised coordinatesηi contain 6 coordinates desribing the centre-of-mass motionand the
rigid rotation of the molecule. The centre-of-mass motion is described by the vector

~X =
1
M

n

∑
i=1

mi~xi ,

with M =
n
∑

i=1
mi . This is a three-dimensional representation of the symmetry group with character

e a b ab
ρtrans 3 −1 1 1

The rigid rotation can be described by the three quantities

1
M

n

∑
i=1

mi~x
(0)
i ×~ηi =

1
M

n

∑
i=1

mi







x(0)i,1 ηi,2−x(0)i,2 ηi,1

x(0)i,2 ηi,3−x(0)i,3 ηi,2

x(0)i,3 ηi,1−x(0)i,1 ηi,3






.

This transforms as a three-dimensional vector under rotations, but as a pseudo-vector under re-
flections. Indeed, for the symmetry transformationy→−y we have the transformation matrix





−1 0 0
0 −1 0
0 0 1





and the character

χ = −1.

We therefore find the character of rigid rotations as

e a b ab
ρrot 3 −1 −1 −1

We are not so much interested in the centre-of-mass motion and the rigid rotation. We subtract
these characters from the character ofρ and obtain

e a b ab
ρ−ρtrans−ρrot 3 1 3 1
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We can now find the decomposition ofρ−ρtrans−ρrot in terms of the irreducible representations.
We make the ansatz

ρ−ρtrans−ρrot =
⊕

α
aαρα.

The multiplicityaα we obtain from the orthogonality theorem for characters

aα =
1
|G|∑κ

nκχαχ∗
3n−trans−rot.

For the water molecule|G|= 4 and all classes have exactly one element:nκ = 1. We find

a1 =
1
4
(1 ·3+1 ·1+1 ·3+1 ·1) = 2,

a2 =
1
4
(1 ·3+(−1) ·1+1 ·3+(−1) ·1)= 1,

a3 =
1
4
(1 ·3+1 ·1+(−1) ·3+(−1) ·1)= 0,

a4 =
1
4
(1 ·3+(−1) ·1+(−1) ·3+1 ·1)= 0.

Therefore

ρ−ρtrans−ρrot = 2ρ1+ρ2.

We therefore find three vibrational modes. Two transform as the trivial representationρ1. The
displacements in these modes are left invariant under the symmetry groupZ2×Z2. One of these
two modes is given by the vibration, where bothH-atoms move along thez-axis in the same
direction, while theO-atom moves along thez-axis in the opposite direction. The other mode is
given by an oscillation, where theO-atom is at rest, and theH-atoms move along thex-axis in
opposite directions.

The third mode transforms as the representationρ2. It transforms trivially under reflections,
therefore the motion is in thex−z plane. It has however a non-trivial transformation under the
rotation of 180◦ around thez-axis. This is oscillation is given by a motion, where theO-atom
moves along thex-axis in one direction, the twoH-atoms have both a component along thex-
axis in the opposite direction. In addition the twoH-atoms have opposite components along the
z-axis.

4.4.3 Application: Quantum mechanics

A quantum mechanical system is described by the Schrödingerequation

i~
∂
∂t

ψ(~x, t) = Ĥψ(~x, t) .
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If the Hamilton operator̂H is time-independent we can make the ansatz

ψ(~x, t) = ψ(~x)exp

(

− i
~

Et

)

and we obtain the time-independent Schrödinger equation

Ĥψ(~x) = Eψ(~x) .

Consider now a group of transformations acting on the coordinates~x:

~x′ = g~x, g∈ G.

This induces a transformation on the wave function by

ψ′ (~x) = ρ(g)ψ(~x) = ψ
(
g−1~x

)
.

An operator transforms as

Ô′ = ρ(g)Ôρ(g−1).

We are in particular interested in transformations, which leave the Hamilton operator invariant:

Ĥ = ρ(g)Ĥρ(g−1).

Multiplying this equation byρ(g) from the right we obtain̂Hρ(g) = ρ(g)Ĥ, and we see that this
is equivalent to the statement thatρ(g) commutes with the Hamilton operator

[
Ĥ,ρ(g)

]
= 0.

Remark: Usually the Hamiltonian of a quantum mechanical system is given by the sum of the
kinetic and potential energy operator. As symmetry transformations we will usually consider
translations, rotations and reflections. The kinetic energy operator is invariant under these trans-
formations, therefore the full Hamiltonian is invariant ifthe potential energy operator is:

V̂ (~x) = V̂ (g~x) .

Let us now consider a quantum mechanical system with a Hamilton operatorĤ, which is invari-
ant under a finite symmetry groupG. In this case :

• The eigenfunctions for a given eigenvalueE form a representation of the symmetry group
G.

• The energyEα corresponding to an irreducible representationρα will be at leastnα-fold
degenerate, wherenα is the dimension of the irreducible representationρα.

54



Proof: The set of all degenerate eigenfunctions for the eigenvalueE form a vectorspaceV. If ψ
andφ are two eigenfunctions with the eigenvalueE, so is any linear combination of them. This
vector space defines a representation of the symmetry groupG. If ψ ∈V andψ′ = ρ(g)ψ then

Ĥψ′ = Ĥρ(g)ψ = ρ(g)Ĥψ = ρ(g)Eψ = E (ρ(g)ψ) = Eψ′.

Thereforeψ′ ∈V. V is either irreducible or reducible. In the latter caseV may be decomposed
into irreducible components. In both cases, ifV contains the irreducible representationVα, it
follows that

dimV ≥ dimVα = nα.

Example: We consider the quantum mechanical harmonic oscillator in one dimension. The
Hamilton operator is

Ĥ =
p̂2

2m
+

mω2

2
x̂2.

We define the characteristic length

x0 =

√

~

mω
.

Obviously, the Hamilton operator is invariant under the reflection x → −x. The reflectiona
generates a symmetry groupZ2. The character table of this group is

e a
ρ1 1 1
ρ2 1 −1

It is well-known that the eigenvalues are given by

En = ~ω
(

n+
1
2

)

and the eigenfunctions are given by

ψn(x) =
1

√

2nn!
√

πx0
exp

(

−1
2

(
x
x0

)2
)

Hn

(
x
x0

)

,

with the Hermite polynomials

Hn(x) = (−1)nex2 dn

dxne−x2
.

We see that the eigenfunctionsψn for evenn transform as the trivial representationρ1 of Z2,
while the eigenfunctions for oddn transform as the representationρ2 of Z2.
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4.5 Representation theory for Lie groups

4.5.1 Irreducible representation ofSU(2) and SO(3)

The groupsSU(2) andSO(3) have the same Lie algebra:

[Ia, Ib] = iεabcIc.

ForSU(2) we can take theIa’s proportional to the Pauli matrices

I1 =
1
2

(
0 1
1 0

)

, I2 =
1
2

(
0 −i
i 0

)

, I3 =
1
2

(
1 0
0 −1

)

.

This defines a representation ofSU(2) which is called the fundamental representation. (It is not
a representation ofSO(3).)
Quite generally the structure constants provide a representation known as the adjoint or vector
representation:

(Mb)ac = i fabc.

ForSU(2) andSO(3):

M1 =





0 0 0
0 0 −i
0 i 0



 , M2 =





0 0 i
0 0 0
−i 0 0



 , M3 =





0 −i 0
i 0 0
0 0 0



 .

The dimension of the adjoint representation equals the dimension of the parameter space of the
group and the numbers of generators.

Let us now discus more systematically all irreducible representations.
Definition: A Casimir operator is an operator, which commutes with all the generators of the
group.
Example: ForSU(2)

I2 = I2
1 + I2

2 + I2
3

is a Casimir operator:
[
I2, Ia

]
= 0.

Example 2: Let us considerSU(3), with the generatorsTa, a = 1, ...,8. Here we find two
independent Casimir operators, which we callC2 andC3. The first one is given by

C2 = TaTa

and is called the quadratic Casimir operator. The symmetrictensordabc is defined forSU(3)
through

{

Ta,Tb
}

= dabcTc+
1
3

δab.
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Here,{..., ...} denotes the anti-commutator

{A,B} = AB+BA.

We then defineC3 by

C3 = dabcTaTbTc.

C3 is called the cubic Casimir operator. SinceC2 andC3 are Casimir operators, we have

[C2,T
a] = 0, [C3,T

a] = 0.

Continuing in this line, it can be shown thatSU(n) has(n−1) independent Casimir operators
C2, C3, ...,Cn−1. The groupU(n) hasn independent Casimir operatorsC1, C2, ...,Cn−1.

Definition: Therank of a Lie algebra is the number of simultaneously diagonalisable gen-
erators.
Example 1:SU(2) has rank one, the convention is to takeI3 diagonal.
Example 2:SU(3) has rank two, in the Gell-Mann representationT3 andT8 are diagonal.

Theorem: The number of independent Casimir operators is equal to therank of the Lie alge-
bra. The proof can be found in many textbooks.

The eigenvalues of the Casimir operators may be used to labelthe irreducible representations.
The eigenvalues of the diagonal generators can be used to label the basis vectors within a given
irreducible representation.

ExampleSU(2):

I2 |λ,m〉 = λ |λ,m〉 ,
I3 |λ,m〉 = m|λ,m〉 .

Consider
(
I2
1 + I2

2

)
|λ,m〉 =

(
I2− I2

3

)
|λ,m〉=

(
λ−m2) |λ,m〉 .

Further

〈λ,m| I2
1 |λ,m〉 = 〈λ,m| I†

1I1 |λ,m〉= |I1 |λ,m〉|2 ≥ 0.

A similar consideration applies to〈λ,m| I2
2 |λ,m〉. Therefore

λ−m2 ≥ 0.

For a givenλ the possible values ofm are bounded:

−
√

λ ≤ m≤
√

λ
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Define

I± =
1√
2
(I1± iI2)

[I3, I±] =±I±,
[
I2, I±

]
= 0.

The last relation implies
(
I2I±− I±I2) |λ,m〉 = 0,

I2(I± |λ,m〉) = λ(I± |λ,m〉) .

Therefore the operatorsI± don’t changeλ. From the commutation relation withI3 we obtain

(I3I±− I±I3) |λ,m〉 = ±I± |λ,m〉 ,
I3(I± |λ,m〉) = (m±1)(I± |λ,m〉) .

ThereforeI± |λ,m〉 is proportional to|λ,m±1〉 unless zero. Recall that the values ofm are
bounded, therefore there is a maximal valuemmax and a minimal valuemmin:

I+ |λ,mmax〉 = 0,

I− |λ,mmin〉 = 0.

Now

I2 = I2
1 + I2

2 + I2
3 = 2I+I−+ I2

3 − I3
= 2I−I++ I2

3 + I3

Therefore

I2 |λ,mmax〉 =
(
2I−I++ I2

3 + I3
)
|λ,mmax〉 ,

λ |λ,mmax〉 = mmax(mmax+1) |λ,mmax〉 ,

and

λ = mmax(mmax+1) .

Similar:

I2 |λ,mmin〉 =
(
2I+I−+ I2

3 − I3
)
|λ,mmin〉 ,

λ |λ,mmin〉 = mmin(mmin−1) |λ,mmin〉 ,

and

λ = mmin(mmin−1) .
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From

m2
max+mmax = m2

min−mmin,

(mmax+mmin)(mmax−mmin+1)
︸ ︷︷ ︸

>0

= 0

it follows

mmin = −mmax.

Since the ladder operators raise or lowerm by one unit we must have thatmmax andmmin differ
by an integer, therefore

2mmax = integer.

Let us writemmax= j. Then 2j is an integer and

j = 0,
1
2
,1,

3
2
, ...

λ = j ( j +1)

Normalisation:

I± |λ,m〉 = A± |λ,m±1〉

With I†
± = I∓ we have

|A±|2 = 〈λ,m| I†
±I± |λ,m〉= 〈λ,m| I∓I± |λ,m〉= 1

2
〈λ,m| I2− I3(I3±1) |λ,m〉

and therefore

|A±|2 =
1
2
( j ( j +1)−m(m±1))

Condon-Shortley convention:

A± =

√

j ( j +1)−m(m±1)
2

.

The representation ofSU(2) corresponding toj = 0,1,2, ... are also representations ofSO(3),
but the one corresponding toj = 1/2,3/2, ... are not.
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4.5.2 The Cartan basis

Definition: Suppose a Lie algebraA has a sub-algebraB such that the commutator of any element
of A (Ta say) with any element ofB (Tb say) always lies inB, thenB is said to be anideal of A:

[

Ta,Tb
]

∈ B.

Every Lie algebra has two trivial ideals:A and{0}.

A Lie algebra is calledsimple if it is non-Abelian and has no non-trivial ideals.

A Lie algebra is calledsemi-simpleif it has no non-trivial Abelian ideals.

A Lie algebra is calledreductive if it is the sum of a semi-simple and an abelian Lie alge-
bra.

A simple Lie algebra is also semi-simple and a semi-simple Lie algebra is also reductive.

Examples: The Lie algebras

su(n),so(n),sp(n)

are simple.
Semi-simple Lie algebras are sums of simple Lie algebras:

su(n1)⊕su(n2).

Reductive Lie algebras may have in addition an abelian part:

u(1)⊕su(2)⊕su(3).

From Schur’s lemma we know that abelian Lie groups have only one-dimensional irreducible
representations. Therefore let us focus on Lie groups corresponding to semi-simple Lie algebras.
A Lie group, which has a semi-simple Lie algebra, is for obvious reasons called semi-simple.
We first would like to have a criterion to decide, whether a Liealgebra is semi-simple or not: If

[

Ta,Tb
]

= i f abcTc,

define

gab = f acd f bcd.

A criterion due to Cartan say that a Lie algebra is semi-simple if and only if

detg 6= 0.
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ForSU(n) we find

gab = CAδab.

Let us now define the Cartan standard form of a Lie algebra. To motivate the Cartan standard
form let us as an example suppose that we have

[
T1,T2]= 0,

[
T1,T3] 6= 0,

[
T2,T3] 6= 0.

If we now make a change of basis

T1′ = T1+T3, T2′ = T2, T3′ = T3,

none of the new commutators vanishes. It is certainly desirable to pick a basis, where a maximum
number of commutators vanish and the non-vanishing ones arerather simple. This will bring us
to the Cartan standard form. Let us assume that

A =
n

∑
a=1

caTa,

X =
n

∑
a=1

xaTa,

such that

[A,X] = ρX.

ρ is called aroot of the Lie algebra. We then have

[A,X] = icaxb f abcTc = ρxcT
c,

(

caxbi f abc−ρxc

)

= 0,
(

cai f abc−ρδbc
)

xb = 0.

For a non-trivial solution we must have

det
(

cai f abc−ρδbc
)

= 0.

In general the secular equation will give an-th order polynomial isρ. Solving forρ one obtains
n roots. One root may occur more than once. The degree of degeneracy is called the multiplicity
of the root.

Theorem (Cartan): IfA is chosen sucht that the secular equation has the maximum number
of distince roots, then only the rootρ = 0 is degenerate. Further ifr is the multiplicity of that
root, there existr linearly independent generatorsHi, which mutually commute

[
Hi,H j

]
= 0, i, j = 1, ..., r.
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r is the rank of the Lie algebra.

Notation: Latin indices for 1, ..., r, e.g. Hi and greek indices for the remaining(n− r) gener-
atorsEα (α = 1, ...,n− r).

ExampleSU(2):
[

Ia, Ib
]

= iεabcI c.

TakeA= I3:
[
I3,X

]
= ρX.

Secular equation:

det
(

iε3bc−ρδbc
)

= 0,
∣
∣
∣
∣
∣
∣

−ρ i 0
−i −ρ 0
0 0 −ρ

∣
∣
∣
∣
∣
∣

= 0,

−ρ3+ρ = 0,

ρ
(
ρ2−1

)
= 0.

Therefore the roots are 0,±1. We have

ρ = 0
[
I3,X

]
= 0 ⇒ X = I3 = H1,

ρ = 1
[
I3,X

]
= X ⇒ X =

1√
2

(
I1+ iI 2)= E1,

ρ =−1
[
I3,X

]
=−X ⇒ X =

1√
2

(
I1− iI 2)= E2.

Theorem: For any compact semi-simple Lie group, non-zero roots occur in pairs of opposite sign
and are denotedEα andE−α (α = 1, ...,(n− r)/2).

We thus have the Cartan standard form:
[
Hi,H j

]
= 0,

[Hi,Eα] = ρ(α, i)Eα.

As a short-hand notation the last equation is also often written as

[Hi ,Eα] = αiEα.

The standard normalisation for the Cartan basis is

(n−r)/2

∑
α=1

ρ(α, i)ρ(α, j) = δi j .
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Cartan standard form ofSU(2):

H1 =
1
2

(
1 0
0 −1

)

, E1 =
1√
2

(
0 1
0 0

)

, E−1 =
1√
2

(
0 0
1 0

)

.

The roots are

[H,E1] = E1, [H,E−1] =−E1.

Cartan standard form ofSU(3):

H1 =
1√
6





1 0 0
0 −1 0
0 0 0



 , H2 =
1

3
√

2





1 0 0
0 1 0
0 0 −2



 ,

E1 =
1√
3





0 1 0
0 0 0
0 0 0



 , E2 =
1√
3





0 0 1
0 0 0
0 0 0



 , E3 =
1√
3





0 0 0
0 0 1
0 0 0



 ,

E−1 =
1√
3





0 0 0
1 0 0
0 0 0



 , E−2 =
1√
3





0 0 0
0 0 0
1 0 0



 , E−3 =
1√
3





0 0 0
0 0 0
0 1 0



 .

The roots are

[H1,E1] =
1
3

√
6E1, [H2,E1] = 0,

[H1,E2] =
1
6

√
6E2, [H2,E2] =

1
2

√
2E2

[H1,E3] =−1
6

√
6E3, [H2,E3] =

1
2

√
2E3.

Ther numbersαi , i = 1, ..., r can be regarded as the components of a root vector~α = (α1, ...,αr)
of dimensionr.

Example: ForSU(3), the root vectors corresponding toE1 E2 andE3 are

~α(E1) =

(
1
3

√
6

0

)

, ~α(E2) =

( 1
6

√
6

1
2

√
2

)

, ~α(E3) =

(
−1

6

√
6

1
2

√
2

)

,

~α(E−1) =

(
−1

3

√
6

0

)

, ~α(E−2) =

(
−1

6

√
6

−1
2

√
2

)

, ~α(E−3) =

( 1
6

√
6

−1
2

√
2

)

.

Theorem: If~α is a root vector, so is−~α, (since roots always occur in pairs of opposite sign).

Theorem: If~α and~β are root vectors then

2~α ·~β
|α|2

and
2~α ·~β
|β|2
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are integers. Suppose these integers arep andq. Then
(

~α ·~β
)2

|α|2 |β|2
=

pq
4

= cos2θ ≤ 1.

Therefore

pq ≤ 4.

It follows that

cos2 θ = 0,
1
4
,
1
2
,
3
4
,1.

Caseθ = 0◦: This is the trivial case~α =~β.
Caseθ = 30◦: We havepq= 3 andp= 1,q= 3 or p= 3,q= 1. Let us first discussp= 1,q= 3.
This means

2~α ·~β
|α|2

= 1,
2~α ·~β
|β|2

= 3.

Therefore

|α|2

|β|2
= 3.

The casep= 3,q= 1 is similar and in summary we obtain

|α|2

|β|2
= 3 or

1
3
.

Caseθ = 45◦: We havepq= 2 andp= 1,q= 2 or p= 2,q= 1. It follows

|α|2

|β|2
= 2 or

1
2
.

Caseθ = 60◦: We havepq= 1 andp= 1,q= 1. It follows

|α|2

|β|2
= 1.

Caseθ = 90◦: In this casep= 0 andq= 0. This leaves the ratio|α|2/|β|2 undetermined.

The casesθ = 120◦, θ = 135◦, θ = 150◦ andθ = 180◦ are analogous to the ones discussed above.

If ~α and~β are root vectors so is

~γ = ~β− 2~α ·~β
α2

~α

Example: The root diagram ofSU(3):
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60◦

4.5.3 Weights

Let us first recall some basic facts: The rank of a Lie algebra is the number of simultaneously
diagonalizable generators. In the following we will denotethe rank of a Lie algebra byr.

We already mentioned the following theorem : The rank of a Liealgebra is equal to the number
of independent Casimir operators. (A Casimir operator is anoperator, which commutes with all
the generators.)

For a Lie algebra of rankr we therefore haver Casimir operators andr simultaneously diag-
onalizable generatorsHi .

The eigenvalues of the Casimir operators may be used to labelthe irreducible representations.
The eigenvalues of the diagonal generatorsHi may be used to label the states within a given
irreducible representation.

Let~λ be a shorthand notation for~λ = (λ1, ...,λr), a set of eigenvalues of Casimir operators and
let~mbe a shorthand notation for~m= (m1, ...,mr), a set of eigenvalues of the diagonal generators:

Hi|~λ,~m〉 = mi |~λ,~m〉
The vector~m is called the weight vector.

ExampleSU(3): Let us consider the fundamental representation. The vector space is spanned
by the three vectors

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

We have

(H1,H2)e1 =

(
1√
6
,

1

3
√

2

)

e1,

(H1,H2)e2 =

(

− 1√
6
,

1

3
√

2

)

e2,

(H1,H2)e3 =

(

0,− 2

3
√

2

)

e3.
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This gives the weight vectors

~m1 =

(
1√
6

1
3
√

2

)

, ~m2 =

(

− 1√
6

1
3
√

2

)

, ~m3 =

(
0

−
√

2
3

)

.

and the weight diagram

m1

m2

~m1~m2

~m3

Consider now the complex conjugate representation of the fundamental representation: If

ρ = exp(−iθaTa)

is a representation, then also

ρ∗ = exp(iθaTa∗) = exp
(
−iθaTa′)

is a representation and we have

Ta′ = −Ta∗.

It follows that the weights of the complex conjugate representation are negatives of those of the
fundamental representation:

m1

m2

Note that in general the complex conjugate representationρ∗ is inequivalent toρ. This is in
contrast toSU(2), where one can find aS, such that

SIaS−1 = −Ia∗, SρS−1 = ρ∗.

The generatorsE±α are generalisations of the raising and lowering operatorsI± of SU(2). Sup-
pose

Hi|~λ,~m〉 = mi |~λ,~m〉
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and

[Hi ,Eα] = αiEα.

Then

[Hi ,Eα] |~λ,~m〉 = αiEα|~λ,~m〉,
HiEα|~λ,~m〉−EαHi|~λ,~m〉 = αiEα|~λ,~m〉,

Hi

(

Eα|~λ,~m〉
)

= (mi +αi)
(

Eα|~λ,~m〉
)

.

ThereforeEα|~λ,~m〉 is proportional to|~λ,~m+~α〉 unless zero. Therefore the weight vectors within
an irreducible representation differ by a linear combination of root vectors with integer coeffi-
cients.
Example: In theSU(2) case the weight vectors were one-dimensional. Within one irreducible
representation all weights could be obtained frommmax by applying the lowering operatorI−.
The action ofI− corresponds to a shift in the weight proportional to a root vector.

In the SU(2) case we also found that within an irreducible representations the weights are
bounded, i.e. there is a maximal weight, for whichI+ |λ,mmax〉 = 0. We now look how this
fact generalises: We start with the definition of the multiplicity of a a weight: The number of
different eigenstates with the same weight is called themultiplicity of the weight . A weight is
said to besimple if the multiplicity is 1.
For Lie algebras withr ≥ 2, weights are not necessarily simple.

Theorem : Given a weight~m and a root vector~α then

2~α ·~m
α2

is an integer and

~m′ = ~m− 2~α ·~m
α2

~α

is also a weight vector.~m and~m′ are calledequivalent weights.
Geometrically,~m′ is obtained from~m by a reflection in the plane perpendicular to~α. ForSU(2)
the weightsm and−m within an irreducible representation are equivalent.

Ordering of weights: The convention forSU(n) is the following:~m is said to be higher than~m′

if the rth component of(~m−~m′) is positive (if zero look at the(r −1)th component, if this one
is also zero, look at the(r −2)th component, etc. ).

The highest weight of a set of equivalent weights is said to bedominant.
(In the case of an irreducible representation ofSU(2) the dominant weight is the one withmmax.)
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Theorem: For any compact semi-simple Lie algebra there exists for any irreducible representa-
tion a highest weight. Furthermore this highest weight is also simple.
(Recall: In theSU(2) case we first showed that the values ofm are bounded, and then obtained
all other states in the irreducible representation by applying the lowering operator to the state
with mmax.)

Theorem: For every simple Lie algebra of rankr there arer dominant weights~M(i), called
fundamental dominant weights, such that any other dominantweight ~M is a linear combination
of the ~M(i)

~M =
r

∑
i=1

ni ~M
(i)

where theni are non-negative integers.

Note that there existsr fundamental irreducible representations, which have ther different ~M(i)’s
as their highest weight. We can label the irreducible representations by(n1,n2, ...,nr) instead of
the eigenvalues of the Casimirs.

Example: ForSU(2) we can label the irreducible representations either by the eigenvalueλ
of the Casimir operatorI2, or by a numbern with the relation

λ = j ( j +1) , j =
n
2
.

Note that there is one fundamental representation, which istwo-dimensional. The dominant
weight of the fundamental representation is 1/2. All other dominant weightsj are non-negative
integer multiples of this fundamental dominant weight:

j = n · 1
2

4.6 Tensor methods

We have already seen how to construct new representation outof given ones through the opera-
tions of the direct sum and the tensor product: IfV1 andV2 are representations ofG, the direct
sumV1⊕V2 and the tensor productV1⊗V2 are again representations:

g(v1⊕v2) = (gv1)⊕ (gv2) ,

g(v1⊗v2) = (gv1)⊗ (gv2) ,

We now turn to the question how to construct new irreducible representations out of given irre-
ducible ones. IfV1 andV2 are irreducible representations, the direct sum isV1⊕V2 is reducible
and decomposes into the irreducible representationsV1 andV2. Nothing new here. More inter-
esting is the tensor product, which we will study in the following.
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4.6.1 Clebsch-Gordan series

To motivate the discussion of tensor methods we start again from theSU(2) example and its
relation to the spin of a physical system. Suppose we have to independent spin operators~J1 and
~J2, describing the spin of particle 1 and 2, respectively.

[
J1 i ,J2 j

]
= 0 ∀i, j

Let us now define the total spin as

~J = ~J1+ ~J2,

Jz = J1 z+J2 z.

We use the following notation:

| j1,m1〉 eigenstate ofJ2
1 andJ1 z

| j2,m2〉 eigenstate ofJ2
2 andJ2 z

We define

| j1, j2,m1,m2〉 = | j1,m1〉⊗ | j2,m2〉 .

The set

{| j1, j2,m1,m2〉}

are eigenvectors of
{

J2
1,J

2
2,J1 z,J2 z

}

and is referred to as the uncoupled basis. In general these states are not eigenstates ofJ2 and the
basis is reducible. This can be seen easily:

J2 =
(

~J1+ ~J2

)(

~J1+ ~J2

)

= J2
1 +J2

2 +2~J1~J2,

and 2~J1~J2 fails to commute withJ1 z andJ2 z. To find a better basis, we look for a set of mutually
commuting operators. The set

{
J2,Jz,J

2
1,J

2
2

}

is such a set and an eigenbasis for this set is labelled by

{| j,m, j1, j2〉} .

This basis is called the coupled basis and carries and irreducible representation of dimension
2 j +1. Of course we can express each vector in the coupled basis through a linear combination
of the uncoupled basis:

| j,m, j1, j2〉 = ∑
m1,m2;m1+m2=m

C jm
j1 j2m1m2

| j1, j2,m1,m2〉

69



The coefficientsC jm
j1 j2m1m2

are called the Clebsch-Gordan coefficients. The Clebsch-Gordan co-
efficients are tabulated in the particle data group tables.

Example: We takej1 = j2 = 1/2 and use the short-hand notation

|↑↑〉 =

∣
∣
∣
∣
j1 =

1
2
, j2 =

1
2
,m1 =

1
2
,m2 =

1
2

〉

,

|↑↓〉 =

∣
∣
∣
∣
j1 =

1
2
, j2 =

1
2
,m1 =

1
2
,m2 =−1

2

〉

,

|↓↑〉 =

∣
∣
∣
∣
j1 =

1
2
, j2 =

1
2
,m1 =−1

2
,m2 =

1
2

〉

,

|↓↓〉 =

∣
∣
∣
∣
j1 =

1
2
, j2 =

1
2
,m1 =−1

2
,m2 =−1

2

〉

,

For the coupled basis we havej ∈ {0,1} and we find
∣
∣
∣
∣
j = 1,m= 1, j1 =

1
2
, j2 =

1
2

〉

= |↑↑〉 ,
∣
∣
∣
∣
j = 1,m= 0, j1 =

1
2
, j2 =

1
2

〉

=
1√
2
(|↑↓〉+ |↓↑〉) ,

∣
∣
∣
∣
j = 1,m=−1, j1 =

1
2
, j2 =

1
2

〉

= |↓↓〉 ,
∣
∣
∣
∣
j = 0,m= 0, j1 =

1
2
, j2 =

1
2

〉

=
1√
2
(|↑↓〉− |↓↑〉) ,

Note that the three states withj = 1 form an irreducible representation, as does the state with
j = 0. The tensor product of two spin 1/2 states decomposed therefore as

2⊗2 = 3⊕1,

wheren denotes an irreducible representation of dimensionn.

4.6.2 The Wigner-Eckart theorem

Let us make a small detour and discuss the Wigner-Eckart theorem. Consider first in quantum
mechanics the matrix element of an operatorO between two states|φ〉 and|ψ〉:

M =
〈
φ
∣
∣Ô
∣
∣ψ
〉
.

Suppose that a unitary group transformation (U−1 =U†) acts on the states as
∣
∣ψ′〉 = U |ψ〉

and on operators as

Ô
′ = UÔU†.

70



Then

M′ =
〈
φ′
∣
∣Ô

′∣∣ψ′〉=
〈

φ
∣
∣
∣U†

(

UÔU†
)

U
∣
∣
∣ψ
〉

=
〈
φ
∣
∣Ô
∣
∣ψ
〉
= M.

If

Ô
′ = Ô,

or equivalently
[
Ô,U

]
= 0

we say that the operator̂O transforms as a scalar (or as a singlet). This is the simplestcase. We
discuss now more general cases. We first fix the group to beSU(2). Suppose we are given a set
of (2k+1) operatorsTk

q , −k≤ q≤ k, which transform irreducible under the groupSU(2). That
is to say that

(

Tk
q

)′
= UTk

qU†

can be expressed as
(

Tk
q

)′
= D

(k)
qq′T

k
q′ ,

where we denote the(2k+1)× (2k+1) matrix representation of the transformationU by

D
(k)
qq′ ,

with q,q′ =−k, ...,k. We callTk
q a tensor operator of rank k.

A tensor operator of rank zero is a scalar. An example of a tensor operator of rank 1 is given
by the three generators ofSU(2):

J1 =
1√
2
(I1+ iI2) ,

J0 = I3,

J−1 =
1√
2
(I1− iI2) .

{J−1,J0,J1} define the spherical basis. The generators transform underSU(2) as the adjoint
representation. ForSU(2) the adjoint representation is the3 representation. The spherical basis
transforms in this notation as

(
Jq
)′

= D
(1)
qq′ Jq′.

An equivalent definition for a tensor operator is a set of(2k+1) operators satisfying
[

I3,T
k
q

]

= qTk
q ,

[

I±,Tk
q

]

=
√

(k∓q)(k±q+1)Tk
q±1 =

√

k(k+1)−q(q±1)Tk
q±1.
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We can now state the Wigner-Eckart theorem:

〈

j ′m′
∣
∣
∣Tk

q

∣
∣
∣ jm

〉

=
1√

2 j ′+1
C j ′m′

jkmq

〈

j ′
∣
∣
∣

∣
∣
∣Tk
∣
∣
∣

∣
∣
∣ j
〉

.

The important point is that the double bar matrix element〈 j ′||Tk|| j〉 is independent ofm, m′ and

q. The dependence onm, m′ andq is entirely given by the Clebsch-Gordan coefficientsC j ′m′

jkmq.

4.6.3 Young diagrams

We have seen that the tensor product of two fundamental representations ofSU(2) decomposes
as

2⊗2 = 3⊕1,

into a direct sum of irreducible representations. We generalise this now to general irreducible
representations ofSU(N).

Definition: A Young diagram is a collection ofmboxes2 arranged in rows and left-justified. To
be a legal Young diagram, the number of boxes in a row must not increase from top to bottom.
An example for a Young diagram is

Let us denote the number of boxes in rowj by λ j . Then a Young diagram is a partition ofm
defined by the numbers(λ1,λ2, ...,λn) subject to

λ1+λ2+ ...+λn = m,

λ1 ≥ λ2 ≥ ...≥ λn.

The example diagram above therefore corresponds to

(λ1,λ2,λ3,λ4) = (4,2,1,1)

The number of rows is denoted byn. ForSU(N) we consider only Young diagrams withn≤ N.

Let us further define(n−1) numbersp j by

p1 = λ1−λ2,

p2 = λ2−λ3,

...

pn−1 = λn−1−λn−2.
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The example above has

(p1, p2, p3) = (2,1,0)

Correspondence between Young diagrams and irreducible representations: Recall from the last
lecture that we could label any irreducible representationof a simple Lie algebra of rankr by
either ther eigenvalues of the Casimir operators or by ther numbers(p1, ..., pr) appearing when
expressing the dominant weight of the representation in terms of the fundamental dominant
weights:

~M =
r

∑
i=1

pi ~M
(i)

The groupSU(N) has rankN− 1 and we associate to an irreducible representation ofSU(N)
given through(p1, ..., pN−1) the Young diagram corresponding to(p1, ..., pN−1).

As only differences in the number boxes between succesive rows matter, we are allowed to add
any completed column ofN boxes from the left. Therefore inSU(4) we have

=

The fundamental representation ofSU(N) is always represented by a single box

The trivial (or singlet) representation is alway associated with a column ofN boxes. ForSU(3):

The complex conjugate representation of a given representation is associated with the conjugate
Young diagram. This diagram is obtained by taking the complement with respect to complete
columns ofN boxes and rotate through 180◦ to obtain a legal Young diagram.
Examples forSU(3):

complement−→ rotation−→ ,

complement−→ rotation−→ ,

complement−→ rotation−→ .

The hook rule for the dimensionality of an irreducible representation:
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i) Place integers in the boxes, starting withN in the top left box, increase in steps of 1 across
rows, decrease in steps of 1 down columns:

N N+1 N+2

N−1 N

N−2 N−1

ii) Compute the numerator as the product of all integers.

iii) The denominator is given by multiplying all hooks of a Young diagram. A hook is the
number of boxes that one passes through on entering the tableau along a row from the right hand
side and leaving down a column.

Some examples forSU(3):

3 4
2

: dim=
2 ·3 ·4
1 ·3 ·1 = 8,

3 4 5 : dim=
3 ·4 ·5
1 ·2 ·3 = 10,

3 4 5
2 3 4

: dim=
2 ·3 ·4 ·3 ·4 ·5
1 ·2 ·3 ·2 ·3 ·4 = 10.

Rules for tensor products: We now give rules for tensor products of irreducible representations
represented by Young diagrams. As an example we take inSU(3)

⊗

i) Label the boxes of the second factor by row, e.g.a, b, c, ...:

−→ a a
b

.

ii) Add the boxes with thea’s from the lettered diagram to the right-hand ends of the rows of the
unlettered diagram to form all possible legitimate Young diagrams that have no more than onea
per column.

a a ,
a

a
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Note that the diagram

a
a

is not allowed since it has one column with twoa’s.

iii) Repeat the same with theb’s, then with thec’s, etc.

a a b , a a
b

,
a a

b
,

a b

a

a
b

a

Note that the diagram

a

a
b

is not allowed forSU(3), since it has more than 3 rows.

iv) A sequence of lettersa, b, c, ... is admissible if at any point in the sequence at least as
manya’s have occured asb’s, at least as manyb’s have occured asc’s, etc. Thusabcdandaabcb
are admissible sequences, whileabbandacbare not. From the diagrams in step iii) throw away
all diagrams in which the sequence of letters formed by reading right to left in the first row, then
in the second row, etc., is not admissible. This leaves

a a
b

,
a a

b
,

a
b

a

Removing complete columns of 3 boxes, we finally obtain

⊗ = ⊕ ⊕

For the dimensions we have

3⊗8 = 15⊕6⊕3.

As a further example let us calculate inSU(3) the tensor product of the fundamental representa-
tion with its complex conjugate representation:

⊗ = ⊕

For the dimensions we have

3⊗ 3̄ = 1⊕8.
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As a final example let us consider

⊗ ⊗ = ⊕ ⊕ ⊕

For the dimensions we have

3⊗3⊗3 = 1⊕8⊕8⊕10.

4.7 Applications

4.7.1 Selection rules in quantum mechanics

We consider a time-independent quantum mechanical system

Ĥψ(~x) = Eψ(~x) ,

together with a groupG acting on the states by

ψ′ (~x) = ρ(g)ψ(~x) ,

and on operators by

Ô′ = ρ(g)Ôρ(g−1).

If the groupG leaves the Hamilton operator invariant

Ĥ = ρ(g)Ĥρ(g−1),

we may label the states by the irreducible representations of the groupG. Likewise, we focus
now on operatorŝO, which transform as an irreducible representation of the groupG. We denote
by ψ(α) (~x) a set of states transforming like the irreducible representationρα:

ψ(α)′ (~x) = ρα(g)ψ(α) (~x) ,

Further we denote bŷO(β) a set of operators transforming like like the irreducible representation
ρβ

Ô(β)′ = ρβ(g)Ô
(β),

and finally byφ(γ) a set of states transforming like the irreducible representationργ

φ(γ)
′
(~x) = ργ(g)φ(γ) (~x) .

Recall that we defined forSU(2) a tensor operator as a set of(2k+1) operatorsTk
q (−k≤ q≤ k),

which transform irreducible as
(

Tk
q

)′
= D

(k)
qq′ T

k
q′
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underSU(2). The transformation laŵO(β)′ = ρβ(g)Ô
(β) is nothing else than the straightforward

generalisation to an arbitrary group.
We are interested in the matrix elements

〈

φ(γ)
∣
∣
∣Ô(β)

∣
∣
∣ψ(α)

〉

.

Suppose the decomposition of the tensor productρα ⊗ρβ into irreducible representations reads

ρα⊗ρβ = ∑
δ

nδρδ,

where the numbernδ indicates, how often the irreducible representationρδ occurs in the decom-
position.

We then have the following theorem: Ifργ does not occur in the decomposition∑
δ

nδρδ, then

the matrix
〈

φ(γ)
∣
∣
∣Ô(β)

∣
∣
∣ψ(α)

〉

vanishes. This is called a selection rule.
As an example we consider the caseG= SU(2). The irreducible representations are labelled

by j = 0,1/2,1,3/2, ... and the states within an irreducible representation bymwith − j ≤m≤ j.
The Wigner-Eckard theorem states

〈

j ′m′
∣
∣
∣Tk

q

∣
∣
∣ jm

〉

=
1√

2 j ′+1
C j ′m′

jkmq

〈

j ′
∣
∣
∣

∣
∣
∣Tk
∣
∣
∣

∣
∣
∣ j
〉

.

The Clebsch-Gordon coefficientsC j ′m′

jkmq vanish whenever the irreducible representationρ j ′ is not
contained in the decomposition of the tensor productρ j ⊗ρk.

4.7.2 Gauge symmetries and the Standard Model of particle physics

The Standard Model of elementary particle physics is based on a gauge theory with gauge group

SU(3)colour×SU(2)weak isospin×U(1)Y,

whereSU(3)colour corresponds to the strong interactions,SU(2)weak isospinto the weak interac-
tion andU(1)Y to the hypercharge. The gauge symmetry ofSU(2)weak isospin×U(1)Y is sponta-
neously broken to a subgroupU(1)Q, whereU(1)Q corresponds to the electroc charge. We will
not go here into the details of the mechanism of spontaneous symmetry breaking, but focus on an
unbroken gauge theory. The strong interactions with gauge groupSUcolour provide an example.

All particles are classified according to representations of the gauge group. Fermions trans-
form as the fundamental representation of the gauge group. For SU(3)colour the quark fields form
a three-dimensional representationqi(x), i = 1,2,3. Let us denote a gauge transformation by

U(x) = exp(−iθa(x)T
a) ,
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the dependence on the space-time coordinatesx indicates that the gauge transformation may vary
from one space-time point to another. The hermitian matricesTa are the generators of the gauge
group in the fundamental representation. Under this gauge transformation, the quarks transform
as follows:

q′i(x) = U(x)i j q j(x),

or in vector/matrix-notation without indices

q′(x) = U(x)q(x).

The anti-fermions transform as the complex conjugate of thefundamental representation. In
physics we usually take the anti-quark fields ¯qi(x), i = 1,2,3 as the components of a bra-vector
and write the transformation law as

q̄′(x) = q̄(x)U†(x).

Taking the transpose of this equation we get
[
q̄′(x)

]T
= U∗(x)q̄(x)T .

We note that the combination ¯q(x) ·q(x) is gauge-invariant:

q̄′(x) ·q′(x) =
(

q̄(x)U†(x)
)

· (U(x)q(x)) = q̄(x) ·q(x).

The gauge boson fields are given by the gauge potentialsAa
µ(x), where the indexa runs from 1

to the number of generators of the Lie group. ForSU(N) this number is given byN2−1. For
SU(3)colour we have eight gauge boson fields, which are called gluon fields. We have already
seen that the gauge potential transforms as

TaAa
µ
′(x) = U(x)

(

TaAa
µ(x)+

i
g

∂µ

)

U(x)†.

This transformation law ensures that the expression

L = −1
4

Fa
µνFaµν, with Fa

µν = ∂µAa
ν −∂νAa

µ+g fabcAb
µAc

ν

is invariant. For space-time independent transformationsU(x) = U the transformation law re-
duces to

TaAa
µ
′(x) = UTaAa

µ(x)U
†.

For infinitessimal transformations we have

TaAa
µ
′(x) =

(

1− iθbTb+ ...
)

TaAa
µ(x)(1+ iθcT

c+ ...)

= TaAa
µ(x)+ i

[

Ta,Tb
]

θbAa
µ+ ...= TaAa

µ(x)− f abcTcθbAa
µ+ ...

= TaAa
µ(x)+ f cbaTcθbAa

µ+ ...= TaAa
µ(x)+ f abcTaθbAc

µ+ ...
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We therefore find

Aa
µ
′(x) =

(

δac+ f abcθb

)

Ac
µ = exp

(

−iθbMb
ac

)

Ac
µ,

where

Mb
ac = i f abc

are hermitian(N2−1)× (N2− 1) matrices defining the adjoint representation. Therefore the
gauge bosons belong to the adjoint representation.

4.7.3 The naive parton model

In the early days of particle physics only three quarks (up, down and strange) were known, to-
gether with the corresponding anti-quarks (anti-up, anti-down and anti-strange). Further it was
observed that there is an approximateSU(3)flavour-symmetry, called flavour symmetry. Under
flavour symmetry the quarks(u,d,s) transform as the fundamental representation ofSU(3)flavour,
while the anti-quarks(ū, d̄, s̄) transform as the complex conjugate of the fundamental represen-
tation. In the naive parton model mesons consist of a quark and an anti-quark. As a short hand
notation we write

qq̄′ = q⊗ q̄′.

The tensor product forms a nine-dimensional representation. As a basis we can take

uū,ud̄,us̄,dū,dd̄,ds̄,sū,sd̄,ss̄.

This representation is reducubible. Using Young diagrams we find

⊗ = ⊕

For the dimensions we have

3⊗ 3̄ = 1⊕8.

Therefore the tensor representation reduces to a one-dimensional (singlet) representation and
an eight-dimensional (octet) representation. Let us first discuss the singlet representation: The
linear combination

η′ =
1√
3

(
uū+dd̄+ss̄

)

transforms as a singlet underSU(3)flavour. This can be seen as follows: We write

~q=





u
d
s



 , ~̄q=





ū
d̄
s̄



 .
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Under aSU(3)flavour transformation, the quarks and the antiquarks transform as

q′i =Ui j q j , q̄′i =U∗
i j q̄ j .

For theη′ we can equally well write

η′ =
1√
3
~̄qT ·~q.

This linear combination transforms under aSU(3)flavour transformation as follows:

(
η′)′ =

1√
3

(
~̄qT)′ ·~q′ = 1√

3

(
U∗~̄q

)T
U~q=

1√
3
~̄qTU†U~q= η′.

(On the left-hand side of this equation the first prime is partof the name, the second prime
denotes the transformed quantity.) Therefore theη′ transforms into itself and is a singlet. (The
factor 1/

√
3 is only included for the normalisation. If the statesqq̄′ have norm 1, so doesη′.)

Before discussing the octet representation we first look howthe operatorsH1, H2, E±1, E±2

andE±3 act on the statesqq̄′ of the nine-dimensional representation. A finiteSU(3)flavour trans-
formation acts on such a state as

U
(
q⊗ q̄′

)
= (Uq)⊗

(
U∗q̄′

)
.

We can always write

U = exp(−iθaTa) .

In order to find the action of the generators on the tensor representation we expand to first order
in θa:

(1− iθaTa+ ...)
(
q⊗ q̄′

)
= q⊗ q̄′− (iθaTaq)⊗ q̄′+q⊗ (iθaTa∗) q̄′+ ...

Here we assumed that the parametersθa are real. Therefore

Ta(q⊗ q̄′
)

= (Taq)⊗ q̄′−q⊗
(
Ta∗q̄′

)
.

The generatorsH1 andH2 are diagonal and real (H∗
1 = H1, H∗

2 = H2). We can use this formula
to obtain the action ofH1 andH2 on the statesqq̄′. For exampleH1 acts onuū as

H1(uū) =
1√
6

uū− 1√
6

uū= 0.

Doing this for all other basis vectorsqq̄′ of the nine-dimensional representation, we find thatH1

is given in this representation by

H1 = diag

(

0,
2√
6
,

1√
6
,− 2√

6
,0,− 1√

6
,− 1√

6
,

1√
6
,0

)

.
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Similar,H2 is given by

H2 = diag

(

0,0,
1√
2
,0,0,

1√
2
,− 1√

2
,− 1√

2
,0

)

.

For the non-diagonal generators we have to be a little bit more carefully. Let us first discuss the
simplerSU(2) case. We can write

iθ1I1+ iθ2I2 = iθ+I++ iθ−I−

with

θ± =
1√
2
(θ1∓ iθ2) , I± =

1√
2
(I1± iI2) .

Note that the coefficientsθ± are now complex. Therefore complex conjugation gives

(iθ+I++ iθ−I−)
∗ = −iθ∗+I ∗+− iθ∗−I ∗− =−iθ−I+− iθ+I−

Therefore

I ′+ =−I−, I ′− =−I+.

This is true in general:Eα acts on the complex conjugate representation as−E−α. We have

E1(u) = 0, E1(d) =
1√
3

u, E1(s) = 0,

and with the explanations above

E1(ū) =− 1√
3

d̄, E1
(
d̄
)
= 0, E1(s̄) = 0.

This allows us to write down the action ofE1 on the nine-dimensional basisqq̄′:

E1 =
1√
3

















0 0 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0

















.

In a similar way we can obtain the matrix representations ofE−1, E±2 andE±3.
Note that we can representη′ in our basis as

η′ = (1,0,0,0,1,0,0,0,1)T .
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We have

H1η′ = 0, H2η′ = 0,

thereforeη′ corresponds to the weight vector(0,0). We further have

E±αη′ = 0,

i.e. η′ is annihilated by all operatorsE±α.
We are now in a position to tackle the octet representation: We first recall that the fundamental

representation has the weight vectors

~m1 =

(
1√
6

1
3
√

2

)

, ~m2 =

(

− 1√
6

1
3
√

2

)

, ~m3 =

(
0

−
√

2
3

)

.

The highest weight vector of the fundamental representation is

~M1 =

(
1√
6

1
3
√

2

)

,

The complex conjugate representation has the weight vectors

~m′
1 =

(

− 1√
6

− 1
3
√

2

)

, ~m′
2 =

(
1√
6

− 1
3
√

2

)

, ~m′
3 =

(
0√
2

3

)

.

The highest weight vector is here

~M2 = ~m′
3 =

(
0√
2

3

)

.

~M1 and~M2 are the two fundamental dominant weights. The octet representation has the dominant
weight

~M = ~M1+ ~M2 =

(
1√
6

1√
2

)

To which state does this weight vector correspond ? Let us call the stateK+. The weights 1/
√

6
and 1/

√
2 are the eigenvalues ofH1 andH2 applied toK+. In other words, we must have

H1K+ =
1√
6

K+,

H2K+ =
1√
2

K+.
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These equations are easily solved and one findsK+ = cus̄, wherec is some constant. Requiring
thatK+ has unit norm leads to

K+ = us̄.

There are two ways to obtain the other states in this representation. The first possibility constructs
first all possible weights of the representation. For the octet representation the occuring weights
are

~m0 =

(
0
0

)

, ~m1 =

(
1√
6

1√
2

)

, ~m2 =

(

− 1√
6

1√
2

)

, ~m3 =

(

−
√

6
3
0

)

,

~m4 =

(

− 1√
6

− 1√
2

)

, ~m5 =

(
1√
6

− 1√
2

)

, ~m6 =

( √
6

3
0

)

.

For each weight we can then repeat the exercise and solve

H1φ = m(i)
1 φ, H2φ = m(i)

2 φ,

wherem(i)
1 andm(i)

2 are the components of~mi = (m(i)
1 ,m(i)

2 ) andφ is the state which we would
like to solve for. For the weight vectors~m1 to ~m6 we find

~m1 : K+ = us̄,

~m2 : K0 = ds̄,

~m3 : π− = dū,

~m4 : K− = sū,

~m5 : K̄0 = sd̄,

~m6 : π+ = ud̄.

The weight~m0 is degenerate. Solving

H1φ = 0, H2φ = 0

yields

φ = c1uū+c2dd̄+c3ss̄

with arbitrary constantsc1, c2 andc3. We recall thatc1 = c2 = c3 corresponds to the singlet
representation, therefore for the octet representation weare only interested in the vector space
orthogonal toη′. This gives a two-dimensional vector space. A convenient basis is given by

π0 =
1√
2

(
uū−dd̄

)
,

η =
1√
6

(
uū+dd̄−2ss̄

)
.
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Both states belong to the octet representation: We know thatthe octet representation is eight-
dimensional and that the weight spaces corresponding to~m1 to ~m6 are one-dimensional. There-
fore the weight space corresponding to~m0 must be two-dimensional.

The second possibility of finding the remaining states in theoctet representation starting from
the stateK+ with the dominant weight is given by repeatidly applying theoperatorsE±α to the
stateK+. We then obtain multiples of the other states. For example:

E−1K+ =
1√
3

ds̄=
1√
3

K0,

E−2K+ =
1√
3
(ss̄−uū) =− 1√

6
π0− 1√

2
η,

E−3K+ = − 1√
3

ud̄ =− 1√
3

π+.

We can repeat this procedure with the newly found statesK0, π+ and the linear combination of
π0 andη, until we have found all states in the representation.

The classification of the pseudo-scalar mesonπ0, π±, K0, K̄0, K±, η andη′ according to the
representations ofSU(3)flavour was very important in early days of particle physics. With four
quark flavours (up, down, strange, charm) the symmetry groupcan be extended toSU(4)flavour.
Adding a fifth quark (bottom quark) would bring us toSU(5)flavour. In principle one could also
thing aboutSU(6)flavour by adding the top quark. However, the classification of pseudo-scalar
mesons according toSU(6)flavour is not useful, since the top quark is so heavy and does therefore
not form composite bound states like pseudo-scalar mesons.

It should be added that the naive parton model has some short-comings. The most important
ones are:

• SU(3)flavour is only an approximate symmetry. The flavour symmetry is explicitly broken
by mass terms. As the strange quark mass differs the most fromthe quark masses of
the up- and the down-quark, corrections due to the strange quark mass give the dominant
contribution toSU(3)flavour-breaking terms.

• In the modern understanding, a meson does not consist of a quark and an antiquark alone,
but in addition contains an indefinite number of gluons and quark-antiquark pairs.

• The physical particlesη andη′ do not correspond exactly to the pure octet state and the
pure singlet state, but are mixtures of both:

η =
cosϕ√

6

(
uū+dd̄−2ss̄

)
− sinϕ√

3

(
uū+dd̄+ss̄

)
.

η′ =
sinϕ√

6

(
uū+dd̄−2ss̄

)
+

cosϕ√
3

(
uū+dd̄+ss̄

)
.
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5 The classification of semi-simple Lie algebras

Recall: For a semi-simple Lie algebrag of dimensionn sndr we had the Cartan standard form

[
Hi,H j

]
= 0,

[Hi,Eα] = αiEα,

with generatorsHi, i = 1, ..., r as well as the generatorsEα andE−α with α = 1, ...,(n− r)/2.

The generatorsHi generate an Abelian sub-algebra ofg. This sub-algebra is called theCar-
tan sub-algebraof g.

Ther numbersαi , i = 1, ..., r are the components of the root vector~α = (α1, ...,αr).

We have already seen that if if~α and~β are root vectors so is

~γ = ~β− 2~α ·~β
α2

~α

Let us now put this a little bit more formally. For any root vector α we define a mappingWα
from the set of root vectors to the set of root vectors by

Wα(β) = ~β− 2~α ·~β
α2

~α

Wα can be described as the reflection by the planeΩα perpendicular toα. It is clear that this
mapping is an involution: After two reflections one obtains the original root vector again. The
set of all these mappingsWα generates a group, which is called theWeyl group.

SinceWα maps a root vector to another root vector, we have the following theorem:

Theorem: The set of root vectors is invariant under the Weyl group.

Actually, a more general result holds: We have seen that if~m is a weight and if~α is a root
vector then

Wα (~m) = ~m− 2~α ·~m
α2

~α

is again a weight vector. Therefore we can state that the following theorem:

Theorem: The set of weights of any representation ofg is invariant under the Weyl group.

The previous theorem is a special case of this one, as the rootvectors are just the weights of
the adjoint representation.
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For the weights we defined an ordering.~m is said to be higher than~m′ if the rth component
of (~m−~m′) is positive (if zero look at the(r −1)th component). This applies equally well to
roots.

Definition: A root vectors~α is called positive, if~α >~0.

Therefore the set of non-zero root vectorsR decomposes into

R = R+∪R−,

whereR+ denotes the positive roots andR− denotes the negative roots.

Definition: The (closed)Weyl chamber relative to a given ordering is the set of points~x in
ther-dimensional space of root vectors, such that

2
~x·~α
α2 ≥ 0 ∀~α ∈ R+.

Example: The Weyl chamber forSU(3):

The root system The positive roots The Weyl chamber

Let us further recall that if~α and~β are root vectors then

2~α ·~β
|α|2

and
2~α ·~β
|β|2

are integers. This restricts the angle between two root vectors to

0◦,30◦,45◦,60◦,90◦,120◦,135◦,150◦,180◦

For θ = 30◦ or θ = 150◦ the ratio of the length of the two root vectors is

|α|2

|β|2
= 3 or

1
3
.

For θ = 45◦ or θ = 135◦ the ratio of the length of the two root vectors is

|α|2

|β|2
= 2 or

1
2
.
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For θ = 60◦ or θ = 120◦ the ratio of the length of the two root vectors is

|α|2

|β|2
= 1.

Let us summarise: The root systemR of a Lie algebra has the following properties:

1. R is a finite set.

2. If ~α ∈ R, then also−~α ∈ R.

3. For any~α ∈ R the reflectionWα mapsR to itself.

4. If ~α and~β are root vectors then 2~α ·~β/ |α|2 is an integer.

This puts strong constraints on the geometry of a root system. Let us now try to find all possible
root systems of rank 1 and 2. For rank 1 the root vectors are one-dimensional and the only
possibility is

A1:

This is the root system ofSU(2). For rank 2 we first note that due to property (3) the angle
between two roots must be the same for any pair of adjacent roots. It will turn out that any of the
four angles 90◦, 60◦, 45◦ and 30◦ can occur. Once this angle is specified, the relative lengthsof
the roots are fixed except for the case of right angles. Let us start with the caseθ = 90◦. Up to
rescaling the root system is

A1×A1:

This corresponds toSU(2)×SU(2). This group is semi-simple, but not simple. In general, the
direct sum of two root systems is again a root system. A root system which is not a direct sum is
called irreducible. An irreducible root system corresponds to a simple group. We would like to
classify the irreducible root systems.

For the angleθ = 60◦ we have

A2
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This is the root system ofSU(3).

For the angleθ = 45◦ we have

B2:

This is the root system ofSO(5).

Finally, for θ = 30◦ we have

G2:

This is the root system of the exceptional Lie groupG2.

5.1 Dynkin diagrams

Let us try to reduce further the data of a root system. We already learned that with the help of an
ordering we can divide the root vectors into a disjoint unionof positive and negative roots:

R = R+∪R−.

Definition: A positive root vector is calledsimple if it is not the sum of two other positive roots.

Example: ForSU(3) we have

root system positive roots simple roots
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The angle between the two simple roots isθ = 120◦.

The Dynkin diagram of the root system is constructed by drawing one node◦ for each sim-
ple root and joining two nodes by a number of lines depending on the angleθ between the two
roots:

no lines if θ = 90◦

one line if θ = 120◦

two lines if θ = 135◦

three lines if θ = 150◦

When there is one line, the roots have the same length. If two roots are connected by two or three
lines, an arrow is drawn pointing from the longer to the shorter root.

Example: The Dynkin diagram ofSU(3) is

5.2 The classification

Semi-simple groups are a direct product of simple groups. For a compact group, all unitary rep-
resentations are finite dimensional.
Real compact semi-simple Lie algebrasg are in one-to-one correspondence (up to isomorphisms)
with complex semi-simple Lie algebrasgC obtained as the complexification ofg. Therefore the
classification of real compact semi-simple Lie algebras reduces to the classification of complex
semi-simple Lie algebras.

Theorem: Two complex semi-simple Lie algebras are isomorphic if and only if they have the
same Dynkin diagram.

Theorem: A complex semi-simple Lie algebra is simple if and only if its Dynkin diagram is
connected.

We have the following classification:

• An
∼= SL(n+1,C)

· · ·α1 α2 α3 αn−1 αn

• Bn
∼= SO(2n+1,C)

· · ·α1 α2 α3 αn−1 αn
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• Cn
∼= Sp(n,C)

· · ·α1 α2 α3 αn−1 αn

• Dn
∼= SO(2n,C)

· · ·α1 α2 α3 αn−2

αn−1
αn

The exceptional groups are

• E6

α1 α2 α3 α5 α6

α4

• E7

α1 α2 α3 α5 α6 α7

α4

• E8

α1 α2 α3 α5 α6 α7 α8

α4

• F4

α1 α2 α3 α4

• G2

α1 α2

Summary: The classical real compact simple Lie algebras are

An = SU(n+1)

Bn = SO(2n+1)

Cn = Sp(n)

Dn = SO(2n)

The exceptional groups are

E6,E7,E8,F4,G2

A semi-simple Lie algebra is determined up to isomorphism byspecifying which simple sum-
mands occur and how many times each one occurs.
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5.3 Proof of the classification

Recall: The root systemR of a Lie algebra has the following properties:

1. R is a finite set.

2. If ~α ∈ R, then also−~α ∈ R.

3. For any~α ∈ R the reflectionWα mapsR to itself.

4. If ~α and~β are root vectors then 2~α ·~β/ |α|2 is an integer.

With the help of an ordering we can divide the root vectors into a disjoint union of positive and
negative roots:

R = R+∪R−.

A positive root vector is called simple if it is not the sum of two other positive roots.

The angle between two simple roots is either 90◦, 120◦, 135◦ or 150◦

The Dynkin diagram of the root system is constructed by drawing one node◦ for each sim-
ple root and joining two nodes by a number of lines depending on the angleθ between the two
roots:

no lines if θ = 90◦

one line if θ = 120◦

two lines if θ = 135◦

three lines if θ = 150◦

When there is one line, the roots have the same length. If two roots are connected by two or three
lines, an arrow is drawn pointing from the longer to the shorter root.

Theorem: The only possible connected Dynkin diagrams are the ones listed in the previous
section.

To prove this theorem it is sufficient to consider only the angles between the simple roots, the
relative length do not enter the proof.

Such diagrams, without the arrows to indicate the relative lengths, are calledCoxeter diagrams.
Define a diagram ofn nodes, with each pair connected by 0, 1, 2 or 3 lines, to beadmissibleif
there aren independent unit vectors~e1, ...,~en in a Euclidean space with the angle between~ei and
~ej as follows:
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no lines if θ = 90◦

one line if θ = 120◦

two lines if θ = 135◦

three lines if θ = 150◦

Theorem: The only connected admissible Coxeter graphs are the ones of the previous section
(without the arrows).

To prove this theorem, we will first prove the following lemmata:

(i) Any sub-diagram of an admissible diagram, obtained by removing some nodes and all lines
to them, will also be admissible.

(ii) There are at most(n−1) pairs of nodes that are connected by lines. The diagram has no
loops.

(iii) No node has more than three lines to it.

(iv) In an admissible diagram, any string of nodes connectedto each other by one line, with
none but the ends of the string connected to any other nodes, can be collapsed to one node,
and the resulting diagram remains admissible.

Proof of (i): Suppose we have an admissible diagram withn nodes. By definition there aren
vectors~ej , such that the angle between a pair of vectors is in the set

{90◦,120◦,135◦,150◦}

Removing some of the vectors~ej does not change the angles between the remaining ones. There-
fore any sub-diagram of an admissible diagram is again admissible.

Proof of (ii): We have

2~ei ·~ej ∈ {0,−1,−
√

2,−
√

3}

Therefore if~ei and~ej are connected we haveθ > 90◦ and

2~ei ·~ej ≤ −1.

Now

0 <

(

∑
i
~ei

)

·
(

∑
j
~ei

)

= n+2∑
i< j

~ei ·~ej < n−# connected pairs
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Therefore

# connected pairs< n.

Connectingn nodes with(n−1) connections (of either 1, 2 or 3 lines) implies that there areno
loops.

Proof of (iii): We first note that

(
2~ei ·~ej

)2
= # number of lines between~ei and~ej .

Consider the node~e1 and let~ei , i = 2, ..., j bet the nodes connected to~e1. We want to show

j

∑
i=2

(2~e1 ·~ei)
2 < 4.

Since there are no loops, no pair of~e2,...,~ej is connected. Therefore~e2, ...,~ej are perpendicular
unit vectors. Further, by assumption~e1,~e2,...,~ej are linearly independent vectors. Therefore~e1 is
not in the span of~e2,...,~ej . It follows

1 = (~e1 ·~e1)
2 >

j

∑
i=2

(~e1 ·~ei)
2

and therefore

j

∑
i=2

(~e1 ·~ei)
2 < 1.

Proof of (iv):

1 2 r
→

If ~e1, ...,~er are the unit vectors corresponding to the string of nodes as indicated above, then

~e′ = ~e1+ ...+~er

is a unit vector since

~e′ ·~e′ = (~e1+ ...+~er)
2 = r +2~e1 ·~e2++2~e2 ·~e3+ ...++2~er−1 ·~er

= r − (r −1) = 1.

Further~e′ satisfies the same conditions with respect to the other vectors since~e′ ·~ej is either~e1 ·~ej

or~er ·~ej .
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With the help of these lemmata we can now prove the original theorem:

From (iii) it follows that the only connected diagram with a triple line isG2.

Further we cannot have a diagram with two double lines, otherwise we would have a sub-
diagram, which we could contract as

... →

contradicting again (iii). By the same reasoning we cannot have a diagram with a double line
and a triple node:

... →

Again this contradicts (iii).

To finish the case with double lines, we rule out the diagram

1 2 3 4 5

Consider the vectors

~v=~e1+2~e2, ~w= 3~e3+2~e4+~e5.

We find

(~v·~w)2 = 18, |~v|2 = 3, |~w|2 = 6.

This violates the Cauchy-Schwarz inequality

(~v·~w)2 < |~v|2 · |~w|2 .

By a similar reasoning one rules out the following (sub-) graphs with single lines:

These sub-diagrams rules out all graphs not in the list of theprevious section. To finish the proof
of the theorem it remains to show that all graphs in the list are admissible. This is equivalent
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to show that for each Dynkin diagram in the list there exists acorresponding Lie algebra. (The
simple root vectors of such a Lie algebra will then have automatically the corresponding angles
of the Coxeter diagram.)

To prove the existence it is sufficient to give for each Dynkindiagram an example of a Lie alge-
bra corresponding to it. For the four familiesAn, Bn, Cn andDn we have already seen that they
correspond to the Lie algebras ofSU(n+1), SO(2n+1), Sp(n) andSO(2n) (or SL(n+1,C),
SO(2n+1,C), Sp(n,C) andSO(2n,C) in the complex case). In addition one can write down
explicit matrix representations for the Lie algebras corresponding to the five exceptional groups
E6, E7, E8, F4 andG2.

Finally for the uniqueness let us recall the following theorem: Two complex semi-simple Lie
algebras are isomorphic if and only if they have the same Dynkin diagram.
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