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The Standard Model and the Higgs boson

Our current paradigma: The Standard Model

The Higgs boson: The Standard Model predicts
a scalar particle, which gives rise to the mass of
all other particles.
- yet to be discovered -

Up to the Higgs boson manifests itself only
through quantum corrections! 0
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∆αhad =∆α(5)

0.02758±0.00035
0.02749±0.00012
incl. low Q2 data

Theory uncertainty

(Electroweak Working Group, hep-ex/0509008.)



Electroweak precision physics

Precision observables allow us to extract the values
of the five input parameters for the Standard model
at the Z-pole.

Input parameters are:
α(m2

Z), αs(m2
Z), mZ, mt , mH .

Check how individual measurements agree with the
results of this fit.

The forward-backward asymmetry for b-quarks
shows the largest pull.

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4965
σhad [nb]σ0 41.540 ± 0.037 41.481
RlRl 20.767 ± 0.025 20.739
AfbA0,l 0.01714 ± 0.00095 0.01642
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480
RbRb 0.21629 ± 0.00066 0.21562
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1037
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.425 ± 0.034 80.389
ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.093
mt [GeV]mt [GeV] 178.0 ± 4.3 178.5

(Electroweak Working Group, hep-ex/0509008.)



The forward-backward asymmetry
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e+ e−

b̄

b

forwardbackward

A first definition of the forward-backward asymmetry:

AFB =
NF −NB

NF +NB

But: Free quarks are not observed, instead hadronic jets are seen in the detector !



Perturbation theory

Due to the smallness of the coupling constants α and αs, we may compute observables
at high energies reliable in perturbation theory,

〈O〉 = 〈O〉LO +
αs

2π
〈O〉NLO +

(αs

2π

)2
〈O〉NNLO + ...

provided that the observable is infrared-safe!

In particular, it is required that they do not change value, if infinitessimal soft or collinear
particles are added.

On+l(p1, ..., pn+l) → On(p′
1, ..., p′

n),

The forward-backward asymmetry is measured experimentally with a precision at the
per cent level.

To match this precision the inclusion of QCD corrections in a theoretical calculation is
mandatory.



Prior art

Calculation of the NNLO QCD corrections to the forward-backward asymmetry in
massless QCD:

AFB = A(0)
FB

(

1+
αs

2π
BFB +

(αs

2π

)2
CFB

)

+ O
(

α3
s

)

,

• G. Altarelli and B. Lampe, 1993;

• V. Ravindran and W. L. van Neerven, 1998;

• S. Catani and M. H. Seymour, 1999.

NLO corrections including mass corrections:

J. Jersak, E. Laermann, and P. M. Zerwas, 1981; J. G. Körner, G. Schuler, G. Kramer, and B. Lampe, 1986; A. B. Arbuzov,

D. Y. Bardin, and A. Leike, 1992; A. Djouadi, B. Lampe, and P. M. Zerwas, 1995; B. Lampe, 1996;

Partial results for mass corrections at NNLO:

W. Bernreuther, A. Brandenburg, and P. Uwer, 2000; W. Bernreuther et al., 2006;



Diagrams

Some examples of diagrams contributing to the various orders in perturbation theory:

LO:

NLO:

NNLO:

Purely virtual diagrams cancel in the correction to the asymmetry!



Definitions used in the literature

How to define the direction of the b-quark in the presence of additional partons?

• Define the direction by the momentum of the quark.

• Use the thrust axis as direction.

How to treat the bbb̄b̄ final state if two b-quarks are tagged?

• Count it once.

• Count it twice.

The experimental analysis seems to have used the thrust axis and counted bbb̄b̄ final
states with weigth two.



Infrared finiteness

Catani ans Seymour have shown, that none of the combinations thrust axis/ quark axis
and weight two/ weight one yields an infrared finite observable.

The divergence is proportional to

1
Z

0

dz Pq→qqq̄(z) ln
Q2

m2
b

To absorb this divergence one can introduce a b-quark fragmentation function.
This brings along additional uncertainties related to non-perturbative physics.



Questions

Can the introduction of the fragmentation function and dependence on non-
perturbative physics be avoided ?

How to define the forward-backward asymmetry in an infrared-safe way ?

What about a jet axis ?



Jet algorithms

The most fine-grained look at hadronic events consistent with infrared safety is given
by classifying the particles into jets.

Ingredients:

• a resolution variable yi j where a smaller yi j means that particles i and j are “closer”;

• a combination procedure which combines two four-momenta into one;

• a cut-off ymin which provides a stopping point for the algorithm.

A typical algorithm:

• for each pair i, j, calculate yi j

• select pair with smallest yi j; if yi j < ymin, combine i and j

• repeat until the smallest yi j > ymin



The Durham algorithm

Example: The Durham or k⊥-algorithm for partons, whose flavour is not detected.
(Dokshitzer, 1991)

Resolution variable:

yDURHAM
i j =

2(1− cosθi j)

Q2 min(E2
i ,E

2
j )

Combination procedure:

pµ
(i j) = pµ

i + pµ
j.



Jets with flavour

The Durham algorithm is not infrared-safe for jets with flavour,
since at order α2

s a soft gluon can split into a soft qq̄ pair.

The Durham measure

yDURHAM
i j =

2(1− cosθi j)

Q2 min(E2
i ,E

2
j )

assumes that parton emission has a soft and a collinear
divergence.

However, there is no soft divergence in the g → qq̄ splitting.



The flavour-k⊥ algorithm

In order to account for tagged flavours modify the Durham measure

yDURHAM
i j =

2(1− cosθi j)

Q2 min(E2
i ,E

2
j )

towards

y f lavour
i j =

2(1− cosθi j)

Q2 ×

{

min(E2
i ,E

2
j ), softer of i, j is flavourless,

max(E2
i ,E

2
j ), softer of i, j is flavoured.

This yields an infrared-safe definition of jets if flavours are tagged.
Banfi, Salam and Zanderighi, (2006).



Definition of the forward-backward asymmetry

• Assign flavour number +1 to a b-quark and −1 to a b̄-quark.
All other particles have flavour number zero.

• Cluster particles into jets, using the flavour-k⊥ algorithm.

• If two particles are combined, the flavour numbers are added.

• Select two jet events, where one jet has flavour number > 0.

• The jet axis of this jet defines the direction relevant to the forward-backward
asymmetry.



Calculation of the NLO and NNLO corrections

To compute for this definition the NLO and NNLO corrections, a general purpose
program for NNLO corrections to e+e− → 2 jets is used.
S.W., 2006.

The relevant matrix elements are known for a long time.
T. Matsuura and W. L. van Neerven, 1988; T. Matsuura, S. C. van der Marck, and W. L. van Neerven, 1989; G. Kramer and

B. Lampe, 1987; R. K. Ellis, D. A. Ross, and A. E. Terrano, 1981; A. Ali et al., 1979;

Difficulty: Cancellation of IR divergences.



General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.

• Phase space slicing

– e+e−: W. Giele and N. Glover, (1992)

– initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)

– massive partons, fragmentation: S. Keller and E. Laenen, (1999)

• Subtraction method

– residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)

– dipole formalism: S. Catani and M. Seymour, (1996)

– massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)



The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as

σNLO =
Z

n+1

dσR +
Z

n

dσV

=
Z

n+1

(

dσR−dσA)+
Z

n



dσV +
Z

1

dσA





The approximation dσA has to fulfill the following requirements:

• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour in D dimensions as dσR itself. Thus, dσA acts as a local
counterterm for dσR and one can safely perform the limit ε → 0.

• Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.



The subtraction method at NNLO

• Singular behaviour

– Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,

Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower ’99

– Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, ’99

• Extension of the subtraction method to NNLO Kosower; S.W.; Anastasiou, Melnikov, Petriello;

Kilgore; Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;

• Applications:

– pp →W , Anastasiou, Dixon, Melnikov, Petriello ’03,

– e+e− → 2 jets, Anastasiou, Melnikov, Petriello ’04,



The subtraction method at NNLO

Contributions at NNLO:

dσ(0)
n+2 =

(

A (0)
n+2

∗
A (0)

n+2

)

dφn+2,

dσ(1)
n+1 =

(

A (0)
n+1

∗
A (1)

n+1 + A (1)
n+1

∗
A (0)

n+1

)

dφn+1,

dσ(2)
n =

(

A (0)
n

∗
A (2)

n + A (2)
n

∗
A (0)

n + A (1)
n

∗
A (1)

n

)

dφn,

Adding and subtracting:

〈O〉NNLO
n =

Z

(

On+2 dσ(0)
n+2−On+1 ◦dα(0,1)

n+1 −On ◦dα(0,2)
n

)

+
Z

(

On+1 dσ(1)
n+1 + On+1 ◦dα(0,1)

n+1 −On ◦dα(1,1)
n

)

+
Z

(

On dσ(2)
n + On ◦dα(0,2)

n + On ◦dα(1,1)
n

)

.



NNLO subtraction terms

The (n+2)-parton contribution:

Z

(

On+2 dσ(0)
n+2−On+1 ◦dα(0,1)

n+1 −On ◦dα(0,2)
n

)

, dα(0,2)
n = dα(0,2)

(0,0)n−dα(0,2)
(0,1)n.

has to be integrable for all double and single unresolved limits.

The (n+1)-parton contribution:

Z

(

On+1 dσ(1)
n+1 + On+1 ◦dα(0,1)

n+1 −On ◦dα(1,1)
n

)

, dα(1,1)
n = dα(1,1)

(1,0) n +dα(1,1)
(0,1) n

has to be integrable over single unresolved limits.
In addition, explicit poles in ε have to cancel.



Example: qggq̄ final state for e+e− → 2 jets

NNLO subtraction terms for the (n+2)-parton configuration:

dα(0,2)
(0,0) =

1
2

{

N
2

CF
[

A0
4(1,2,3,4)+A0

4(1,3,2,4)
]

−
1

2N
CF
[

A0
4,sc(1,2,3,4)+A0

4,sc(1,3,2,4)
]

}

∣

∣

∣
A (0)

2

∣

∣

∣

2

dα(0,2)
(0,1) =

1
2

{

N
2
[

D0
3(1,2,3)+D0

3(1,3,2)+D0
3(4,2,3)+D0

3(4,3,2)
]

−
1

2N

[

A0
3(1,2,4)+A0

3(1,3,4)
]

}

CFA0
3(1

′,2′,3′)
∣

∣

∣
A (0)

2

∣

∣

∣

2
.



Spin-averaged antenna functions

Spin-averaged qggq̄ antenna function obtained from the matrix element γ∗ → qggq̄:

A (0)
4 (q1,g2,g3, q̄4) = eg2

[

(

T 2T 3)

14 A(0)
4 (q1,g2,g3, q̄4)+

(

T 3T 2)

14 A(0)
4 (q1,g3,g2, q̄4)

]

∣

∣

∣A (0)
4

∣

∣

∣

2
= e2g4N(N2−1)

4

(

A(0)
4 (2,3),A(0)

4 (3,2)
)

(

1− 1
N2 − 1

N2

− 1
N2 1− 1

N2

)

(

A(0)
4 (2,3)

A(0)
4 (3,2)

)

Leading-colour antenna function:

A0
4(1,2,3,4) =

∣

∣

∣
A(0)

4 (2,3)
∣

∣

∣

2
/
∣

∣

∣
A(0)

2

∣

∣

∣

2

Subleading-colour:

A0
4,sc(1,2,3,4)+A0

4,sc(1,3,2,4) =
∣

∣

∣
A(0)

4 (2,3)+A(0)
4 (3,2)

∣

∣

∣

2
/
∣

∣

∣
A(0)

2

∣

∣

∣

2



Example: Leading colour qggq̄ antenna function

A0
4(1,2,3,4) =

1
4s1234

(

48s1234

s2342 +
32s1234

s232 +
48s1234

s1232 +
48s23 −48s123 +64s1234

s12 s234
+

−32s123 s1234 +16s123
2 −32s34 s1234 +16s34

2 +32s1234
2

s12 s23 s234

+
−48s12 −96s23 −48s34 −96s1234

s123 s234
−

16s1234

s34 s234
+

−32s123 s1234 +16s123
2 −32s1234 s234 +16s234

2 +32s1234
2

s12 s23 s34
+

96
s123

+
32s1234

s12 s34

−
16s1234

s12 s123
+

64s12 s34 s1234

s232s123 s234
+

64s12 s1234 −32s12
2 +64s34 s1234 −32s34

2 −128s1234
2

s23 s123 s234
+

16s23 s1234

s34 s2342 +
48s23 −48s234 +64s1234

s123 s34

+
48s12 −48s123 +32s1234

s23 s234
+

64s34 s1234

s23 s2342 +
64s12 s1234

s23 s1232 −
64s34 s1234

s232s234
+

48s34 −48s234 +32s1234

s23 s123
+

32s34
2s1234

s232s2342 −
64s12 s1234

s232s123

+
32s12

2s1234

s232s1232 +
16s23 s1234

s12 s1232 +
−32s12 s1234 +16s12

2 −32s1234 s234 +16s234
2 +32s1234

2

s23 s123 s34

+
−32s23 s1234 −16s23

2 +48s34 s1234 −16s34
2 −64s1234

2

s12 s123 s234
+

48s12 s1234 −16s12
2 −32s23 s1234 −16s23

2 −64s1234
2

s123 s34 s234

+
32s23 s1234

2 +16s23
2s1234 +32s1234

3

s12 s123 s34 s234
+

−32s23 s1234 +16s123 s1234 −32s1234
2

s12 s34 s234
+

−32s23 s1234 +16s1234 s234 −32s1234
2

s12 s123 s34
+

96
s234

)



Spin correlations

In the collinear limit spin correlations remain:

Aµ
kµ
⊥kν

⊥

k2
⊥

Aν, where k⊥ = (1− z)pi + zp j − (1−2z)
y

1− y
pk.

Let ϕ be the azimuthal angle of pi around pi + p j. Then

Aµ
kµ
⊥kν

⊥

k2
⊥

Aν ∼ C0 +C2 cos(2ϕ+α).

One can perform the average with two points:

ϕ, ϕ+
π
2
,

while all other coordinates remain fixed.



Phase space generation

Dimension of phase space for n final state particles: 3n−4.

Split the phase space into different channels, according to which invariants are the
smallest.

For each channel, use a parameterization such that ϕ is along a coordinate axis:

dφn+1 = dφn dφdipole,

dφdipole =
si jk

32π3 (1− y) dy dz dϕ.

Construct the momenta of the (n + 1) event from the ones of the n parton event and
the values of y, z and ϕ.



Numerical results for the forward-backward asymmetry of
b-quarks

Perturbative expansion:

AFB = A(0)
FB

(

1+
αs

2π
BFB +

(αs

2π

)2
CFB

)

+ O
(

α3
s

)

,

Select two-jet events defined by the flavour-k⊥ algorithm and a given ycut .
Leading order result independent of ycut:

A(0)
FB,b = 0.11161.

QCD corrections: ycut BFB,b CFB,b

0.01 −0.070±0.005 −0.4±0.8
0.03 −0.145±0.003 −1.7±0.5
0.1 −0.294±0.002 −4.3±0.3
0.3 −0.512±0.001 −10.2±0.1
0.9 −0.565±0.001 −13.4±0.1



Plot
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Numerical results for the forward-backward asymmetry of
c-quarks

Perturbative expansion:

AFB = A(0)
FB

(

1+
αs

2π
BFB +

(αs

2π

)2
CFB

)

+ O
(

α3
s

)

,

Select two-jet events defined by the flavour-k⊥ algorithm and a given ycut .
Leading order result independent of ycut:

A(0)
FB,c = 0.08003.

QCD corrections: ycut BFB,c CFB,c

0.01 −0.070±0.005 −0.5±0.7
0.03 −0.145±0.003 −2.1±0.5
0.1 −0.294±0.002 −4.8±0.2
0.3 −0.513±0.001 −12.1±0.2
0.9 −0.565±0.001 −15.9±0.1



Summary

• The forward-backward asymmetry shows the largest discrepancy in a fit of the
Standard Model parameter.

• Experimental analysis based on an infrared-unsafe definition.

• Infrared-safe definition of the forward-backward asymmetry.

• Calculation of the NLO and NNLO QCD corrections.

• The corrections are small, useful observable also for a future linear collider.


