# The forward-backward asymmetry in electron-positron annihilation

# **Stefan Weinzierl**

Universität Mainz

| Introduction: | Electroweak | precision | physics |
|---------------|-------------|-----------|---------|
|---------------|-------------|-----------|---------|

- I.: Higher order corrections
- II: Infrared-safe definition of the observable
- III: Outline of the calculation
- IV.: Results

Our current paradigma: The Standard Model

The Higgs boson: The Standard Model predicts a scalar particle, which gives rise to the mass of all other particles.

- yet to be discovered -

Up to the Higgs boson manifests itself only through quantum corrections!



<sup>(</sup>Electroweak Working Group, hep-ex/0509008.)

#### **Electroweak precision physics**

Precision observables allow us to extract the values of the five input parameters for the Standard model at the Z-pole.

Input parameters are:  $\alpha(m_Z^2)$ ,  $\alpha_s(m_Z^2)$ ,  $m_Z$ ,  $m_t$ ,  $m_H$ .

Check how individual measurements agree with the results of this fit.

The forward-backward asymmetry for b-quarks shows the largest pull.



(Electroweak Working Group, hep-ex/0509008.)

#### The forward-backward asymmetry



A first definition of the forward-backward asymmetry:

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

But: Free quarks are not observed, instead hadronic jets are seen in the detector !

## **Perturbation theory**

Due to the smallness of the coupling constants  $\alpha$  and  $\alpha_s$ , we may compute observables at high energies reliable in perturbation theory,

$$\langle O \rangle = \langle O \rangle_{LO} + \frac{\alpha_s}{2\pi} \langle O \rangle_{NLO} + \left(\frac{\alpha_s}{2\pi}\right)^2 \langle O \rangle_{NNLO} + \dots$$

provided that the observable is infrared-safe!

In particular, it is required that they do not change value, if infinitessimal soft or collinear particles are added.

$$\mathcal{O}_{n+l}(p_1,\ldots,p_{n+l}) \longrightarrow \mathcal{O}_n(p'_1,\ldots,p'_n),$$

The forward-backward asymmetry is measured experimentally with a precision at the per cent level.

To match this precision the inclusion of QCD corrections in a theoretical calculation is mandatory.

#### **Prior art**

Calculation of the NNLO QCD corrections to the forward-backward asymmetry in massless QCD:

$$A_{FB} = A_{FB}^{(0)} \left( 1 + rac{lpha_s}{2\pi} B_{FB} + \left(rac{lpha_s}{2\pi}
ight)^2 C_{FB} 
ight) + O\left(lpha_s^3
ight),$$

- G. Altarelli and B. Lampe, 1993;
- V. Ravindran and W. L. van Neerven, 1998;
- S. Catani and M. H. Seymour, 1999.

#### NLO corrections including mass corrections:

J. Jersak, E. Laermann, and P. M. Zerwas, 1981; J. G. Körner, G. Schuler, G. Kramer, and B. Lampe, 1986; A. B. Arbuzov,

D. Y. Bardin, and A. Leike, 1992; A. Djouadi, B. Lampe, and P. M. Zerwas, 1995; B. Lampe, 1996;

Partial results for mass corrections at NNLO:

W. Bernreuther, A. Brandenburg, and P. Uwer, 2000; W. Bernreuther et al., 2006;

# Diagrams

Some examples of diagrams contributing to the various orders in perturbation theory:



Purely virtual diagrams cancel in the correction to the asymmetry!

How to define the direction of the *b*-quark in the presence of additional partons?

- Define the direction by the momentum of the quark.
- Use the thrust axis as direction.

How to treat the  $bb\bar{b}\bar{b}$  final state if two *b*-quarks are tagged?

- Count it once.
- Count it twice.

The experimental analysis seems to have used the thrust axis and counted  $bb\bar{b}\bar{b}$  final states with weight two.

Catani ans Seymour have shown, that none of the combinations thrust axis/ quark axis and weight two/ weight one yields an infrared finite observable.

The divergence is proportional to

$$\int_{0}^{1} dz \, P_{q \to qq\bar{q}}(z) \, \ln \frac{Q^2}{m_b^2}$$

To absorb this divergence one can introduce a b-quark fragmentation function. This brings along additional uncertainties related to non-perturbative physics.

### **Questions**

Can the introduction of the fragmentation function and dependence on nonperturbative physics be avoided ?

How to define the forward-backward asymmetry in an infrared-safe way ?

What about a jet axis ?

# Jet algorithms

The most fine-grained look at hadronic events consistent with infrared safety is given by classifying the particles into jets.

Ingredients:

- a resolution variable  $y_{ij}$  where a smaller  $y_{ij}$  means that particles *i* and *j* are "closer";
- a combination procedure which combines two four-momenta into one;
- a cut-off  $y_{min}$  which provides a stopping point for the algorithm.

A typical algorithm:

- for each pair *i*, *j*, calculate  $y_{ij}$
- select pair with smallest  $y_{ij}$ ; if  $y_{ij} < y_{min}$ , combine *i* and *j*
- repeat until the smallest  $y_{ij} > y_{min}$

Example: The Durham or  $k_{\perp}$ -algorithm for partons, whose flavour is not detected. (Dokshitzer, 1991)

Resolution variable:

$$y_{ij}^{DURHAM} = \frac{2(1 - \cos \theta_{ij})}{Q^2} \min(E_i^2, E_j^2)$$

Combination procedure:

$$p^{\mu}_{(ij)} = p^{\mu}_i + p^{\mu}_j.$$

#### Jets with flavour

The Durham algorithm is not infrared-safe for jets with flavour, since at order  $\alpha_s^2$  a soft gluon can split into a soft  $q\bar{q}$  pair.

The Durham measure

$$y_{ij}^{DURHAM} = \frac{2(1 - \cos \theta_{ij})}{Q^2} \min(E_i^2, E_j^2)$$

assumes that parton emission has a soft and a collinear divergence.

However, there is no soft divergence in the  $g \rightarrow q\bar{q}$  splitting.



## The flavour- $k_{\perp}$ algorithm

In order to account for tagged flavours modify the Durham measure

$$y_{ij}^{DURHAM} = \frac{2(1 - \cos \theta_{ij})}{Q^2} \min(E_i^2, E_j^2)$$

towards

$$y_{ij}^{flavour} = \frac{2(1 - \cos \theta_{ij})}{Q^2} \times \begin{cases} \min(E_i^2, E_j^2), & \text{softer of } i, j \text{ is flavourless,} \\ \max(E_i^2, E_j^2), & \text{softer of } i, j \text{ is flavoured.} \end{cases}$$

This yields an infrared-safe definition of jets if flavours are tagged.

Banfi, Salam and Zanderighi, (2006).

#### **Definition of the forward-backward asymmetry**

- Assign flavour number +1 to a *b*-quark and -1 to a  $\overline{b}$ -quark. All other particles have flavour number zero.
- Cluster particles into jets, using the flavour- $k_{\perp}$  algorithm.
- If two particles are combined, the flavour numbers are added.
- Select two jet events, where one jet has flavour number > 0.
- The jet axis of this jet defines the direction relevant to the forward-backward asymmetry.

To compute for this definition the NLO and NNLO corrections, a general purpose program for NNLO corrections to  $e^+e^- \rightarrow 2$  jets is used. S.W., 2006.

The relevant matrix elements are known for a long time.

T. Matsuura and W. L. van Neerven, 1988; T. Matsuura, S. C. van der Marck, and W. L. van Neerven, 1989; G. Kramer and B. Lampe, 1987; R. K. Ellis, D. A. Ross, and A. E. Terrano, 1981; A. Ali *et al.*, 1979;

Difficulty: Cancellation of IR divergences.

Fully differential NLO Monte Carlo programs need a general method to handle the cancelation of infrared divergencies.

- Phase space slicing
  - $e^+e^-$ : W. Giele and N. Glover, (1992)
  - initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)
  - massive partons, fragmentation: S. Keller and E. Laenen, (1999)
- Subtraction method
  - residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)
  - dipole formalism: S. Catani and M. Seymour, (1996)
  - massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)

### The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is rewritten as

$$\sigma^{NLO} = \int_{n+1}^{NLO} d\sigma^{R} + \int_{n}^{NLO} d\sigma^{V}$$
$$= \int_{n+1}^{NLO} (d\sigma^{R} - d\sigma^{A}) + \int_{n}^{NLO} (d\sigma^{V} + \int_{1}^{NLO} d\sigma^{A})$$

The approximation  $d\sigma^A$  has to fulfill the following requirements:

- $d\sigma^A$  must be a proper approximation of  $d\sigma^R$  such as to have the same pointwise singular behaviour in D dimensions as  $d\sigma^R$  itself. Thus,  $d\sigma^A$  acts as a local counterterm for  $d\sigma^R$  and one can safely perform the limit  $\varepsilon \to 0$ .
- Analytic integrability in *D* dimensions over the one-parton subspace leading to soft and collinear divergences.

# The subtraction method at NNLO

#### • Singular behaviour

- Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell, Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower '99
- Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore, Schmidt, Kosower, Uwer, Catani, Grazzini, '99
- Extension of the subtraction method to NNLO Kosower; S.W.; Anastasiou, Melnikov, Petriello; Kilgore; Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;
- Applications:
  - $pp \rightarrow W$ , Anastasiou, Dixon, Melnikov, Petriello '03,
  - $e^+e^- \rightarrow 2$  jets, Anastasiou, Melnikov, Petriello '04,

Contributions at NNLO:

$$d\sigma_{n+2}^{(0)} = \left( \mathcal{A}_{n+2}^{(0)} \,^* \,\mathcal{A}_{n+2}^{(0)} \right) d\phi_{n+2},$$
  

$$d\sigma_{n+1}^{(1)} = \left( \mathcal{A}_{n+1}^{(0)} \,^* \,\mathcal{A}_{n+1}^{(1)} + \mathcal{A}_{n+1}^{(1)} \,^* \,\mathcal{A}_{n+1}^{(0)} \right) d\phi_{n+1},$$
  

$$d\sigma_{n}^{(2)} = \left( \mathcal{A}_{n}^{(0)} \,^* \,\mathcal{A}_{n}^{(2)} + \mathcal{A}_{n}^{(2)} \,^* \,\mathcal{A}_{n}^{(0)} + \mathcal{A}_{n}^{(1)} \,^* \,\mathcal{A}_{n}^{(1)} \right) d\phi_{n},$$

Adding and subtracting:

$$\langle O \rangle_{n}^{NNLO} = \int \left( O_{n+2} \, d \sigma_{n+2}^{(0)} - O_{n+1} \circ d \alpha_{n+1}^{(0,1)} - O_{n} \circ d \alpha_{n}^{(0,2)} \right) + \int \left( O_{n+1} \, d \sigma_{n+1}^{(1)} + O_{n+1} \circ d \alpha_{n+1}^{(0,1)} - O_{n} \circ d \alpha_{n}^{(1,1)} \right) + \int \left( O_{n} \, d \sigma_{n}^{(2)} + O_{n} \circ d \alpha_{n}^{(0,2)} + O_{n} \circ d \alpha_{n}^{(1,1)} \right).$$

The (n+2)-parton contribution:

$$\int \left( \mathcal{O}_{n+2} \, d\mathbf{\sigma}_{n+2}^{(0)} - \mathcal{O}_{n+1} \circ d\mathbf{\alpha}_{n+1}^{(0,1)} - \mathcal{O}_n \circ d\mathbf{\alpha}_n^{(0,2)} \right), \qquad d\mathbf{\alpha}_n^{(0,2)} = d\mathbf{\alpha}_{(0,0)n}^{(0,2)} - d\mathbf{\alpha}_{(0,1)n}^{(0,2)}$$

has to be integrable for all double and single unresolved limits.

The (n+1)-parton contribution:

$$\int \left( O_{n+1} \, d\mathbf{\sigma}_{n+1}^{(1)} + O_{n+1} \circ d\mathbf{\alpha}_{n+1}^{(0,1)} - O_n \circ d\mathbf{\alpha}_n^{(1,1)} \right), \qquad d\mathbf{\alpha}_n^{(1,1)} = d\mathbf{\alpha}_{(1,0)\,n}^{(1,1)} + d\mathbf{\alpha}_{(0,1)\,n}^{(1,1)}$$

has to be integrable over single unresolved limits. In addition, explicit poles in  $\varepsilon$  have to cancel.

NNLO subtraction terms for the (n+2)-parton configuration:

$$d\alpha_{(0,0)}^{(0,2)} = \frac{1}{2} \left\{ \frac{N}{2} C_F \left[ A_4^0(1,2,3,4) + A_4^0(1,3,2,4) \right] - \frac{1}{2N} C_F \left[ A_{4,sc}^0(1,2,3,4) + A_{4,sc}^0(1,3,2,4) \right] \right\} \left| \mathcal{A}_2^{(0)} \right|^2$$

$$d\alpha_{(0,1)}^{(0,2)} = \frac{1}{2} \left\{ \frac{N}{2} \left[ D_3^0(1,2,3) + D_3^0(1,3,2) + D_3^0(4,2,3) + D_3^0(4,3,2) \right] - \frac{1}{2N} \left[ A_3^0(1,2,4) + A_3^0(1,3,4) \right] \right\} C_F A_3^0(1',2',3') \left| \mathcal{A}_2^{(0)} \right|^2.$$

#### **Spin-averaged antenna functions**

Spin-averaged  $qgg\bar{q}$  antenna function obtained from the matrix element  $\gamma^* \rightarrow qgg\bar{q}$ :

$$\mathcal{A}_{4}^{(0)}(q_{1}, g_{2}, g_{3}, \bar{q}_{4}) = eg^{2}\left[\left(T^{2}T^{3}\right)_{14}A_{4}^{(0)}(q_{1}, g_{2}, g_{3}, \bar{q}_{4}) + \left(T^{3}T^{2}\right)_{14}A_{4}^{(0)}(q_{1}, g_{3}, g_{2}, \bar{q}_{4})\right]$$

$$\left| \mathcal{A}_{4}^{(0)} \right|^{2} = e^{2}g^{4} \frac{N(N^{2}-1)}{4} \left( A_{4}^{(0)}(2,3), A_{4}^{(0)}(3,2) \right) \left( \begin{array}{cc} 1 - \frac{1}{N^{2}} & -\frac{1}{N^{2}} \\ -\frac{1}{N^{2}} & 1 - \frac{1}{N^{2}} \end{array} \right) \left( \begin{array}{c} A_{4}^{(0)}(2,3) \\ A_{4}^{(0)}(3,2) \end{array} \right)$$

Leading-colour antenna function:

$$A_4^0(1,2,3,4) = \left| A_4^{(0)}(2,3) \right|^2 / \left| A_2^{(0)} \right|^2$$

Subleading-colour:

$$A_{4,sc}^{0}(1,2,3,4) + A_{4,sc}^{0}(1,3,2,4) = \left| A_{4}^{(0)}(2,3) + A_{4}^{(0)}(3,2) \right|^{2} / \left| A_{2}^{(0)} \right|^{2}$$

# **Example:** Leading colour $qgg\bar{q}$ antenna function

#### $A_4^0(1,2,3,4) =$

| $\frac{1}{1}\left(\frac{48s_{1234}}{48s_{1234}}+\frac{32s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{48s_{1234}}{48s_{1234}}+\frac{12s_{1234}}{48s_{1234}}+\frac{12s_{1234}}{48s_{1234}}+\frac{12s_{1234}}{48s_{1234}}+12s_{$ | $+8s_{23}-48s_{123}+64s_{1234}+-32s_{123}$                                                                     | $s_{1234} + 16s_{123}^2 - 32s_{34}s_{1234} + 16s_{123}^2 - 32s_{34}s_{1234} + 16s_{123}^2 - 32s_{123}^2 - 32s_{12$ | $5s_{34}^2 + 32s_{1234}^2$                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| $4s_{1234} \left( \begin{array}{c} s_{234}^2 \\ s_{23}^2 \end{array} \right) s_{23}^2 \left( \begin{array}{c} s_{123}^2 \\ s_{123}^2 \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>s</i> <sub>12</sub> <i>s</i> <sub>234</sub>                                                                 | <i>s</i> <sub>12</sub> <i>s</i> <sub>23</sub> <i>s</i> <sub>234</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |  |
| $+\frac{-48s_{12}-96s_{23}-48s_{34}-96s_{1234}}{s_{122}s_{224}}-\frac{16}{s_{22}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{5s_{1234}}{4s_{224}} + \frac{-32s_{123}s_{1234} + 16s_{123}^2 - 3}{s_{123}s_{1234} + 16s_{123}^2 - 3}$  | $\frac{2s_{1234}s_{234} + 16s_{234}^2 + 32s_{1234}^2}{2s_{234}s_{234}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+\frac{96}{5122}+\frac{32s_{1234}}{512524}$                              |  |
| $-\frac{16s_{1234}}{s_{12}s_{123}} + \frac{64s_{12}s_{34}s_{1234}}{s_{23}^2s_{123}s_{234}} + \frac{64s_{12}s_{1234}}{64s_{12}s_{1234}} + \frac{64s_{12}s_{1234}}{6s_{12}s_{1234}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{1234}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{1234}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{1234}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{1234}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{12}} + \frac{64s_{12}s_{12}s_{1234}}{6s_{12}s_{12}} + \frac{64s_{12}s_{12}s_{12}}{5s_{12}s_{12}} + \frac{64s_{12}s_{12}s_{$                                                                                                                   | $\frac{-32 s_{12}^2 + 64 s_{34} s_{1234} - 32 s_{34}^2 - 12}{s_{23} s_{123} s_{234}}$                          | $\frac{8s_{1234}^2}{s_{34}s_{234}^2} + \frac{16s_{23}s_{1234}}{s_{34}s_{234}^2} + \frac{48s_{23} - 5}{48s_{23} - 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{48 s_{234} + 64 s_{1234}}{s_{123} s_{34}}$                         |  |
| $+\frac{48s_{12}-48s_{123}+32s_{1234}}{s_{23}s_{234}}+\frac{64s_{34}s_{1234}}{s_{23}s_{234}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $+\frac{64s_{12}s_{1234}}{s_{23}s_{123}^2}-\frac{64s_{34}s_{1234}}{s_{23}^2s_{234}}+\frac{48s_{34}}{48s_{34}}$ | $\frac{-48s_{234}+32s_{1234}}{s_{23}s_{123}}+\frac{32s_{34}^2s_{123}}{s_{23}^2s_{234}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{4}{s_{23}^2 s_{1234}} - \frac{64s_{12}s_{1234}}{s_{23}^2 s_{123}}$ |  |
| $+\frac{32 {s_{12}}^2 {s_{1234}}}{{s_{23}}^2 {s_{123}}^2}+\frac{16 {s_{23}} {s_{1234}}}{{s_{12}} {s_{123}}^2}+\frac{-32 {s_{12}} {s_{1234}}+16 {s_{12}}^2-32 {s_{1234}} {s_{234}}+16 {s_{234}}^2+32 {s_{1234}}^2}{{s_{23}} {s_{123}} {s_{34}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |  |
| $+\frac{-32 s_{23} s_{1234}-16 s_{23}{}^2+48 s_{34} s_{1234}-16 s_{34}{}^2-64 s_{1234}{}^2}{s_{12} s_{123} s_{234}}+\frac{48 s_{12} s_{1234}-16 s_{12}{}^2-32 s_{23} s_{1234}-16 s_{23}{}^2-64 s_{1234}{}^2}{s_{123} s_{34} s_{234}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |  |
| $32 s_{23} s_{1234}^2 + 16 s_{23}^2 s_{1234} + 32 s_{1234}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-32 s_{23} s_{1234} + 16 s_{123} s_{1234} - 32 s_{123}$                                                       | $_{34}^2$ -32 s <sub>23</sub> s <sub>1234</sub> + 16 s <sub>1234</sub> s <sub>234</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-32s_{1234}^2$ 96                                                        |  |
| $+ \frac{s_{12}s_{123}s_{34}s_{234}}{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>S</i> <sub>12</sub> <i>S</i> <sub>34</sub> <i>S</i> <sub>234</sub>                                          | $+$ $s_{12}s_{123}s_{34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $+\frac{1}{s_{234}}$                                                      |  |

#### **Spin correlations**

In the collinear limit spin correlations remain:

$$A_{\mu} \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^2} A_{\nu},$$
 where  $k_{\perp} = (1-z)p_i + zp_j - (1-2z)\frac{y}{1-y}p_k.$ 

Let  $\varphi$  be the azimuthal angle of  $p_i$  around  $p_i + p_j$ . Then

$$A_{\mu} \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^2} A_{\nu} \sim C_0 + C_2 \cos(2\varphi + \alpha).$$

One can perform the average with two points:

$$\varphi, \qquad \varphi + \frac{\pi}{2},$$

while all other coordinates remain fixed.

Dimension of phase space for *n* final state particles: 3n - 4.

Split the phase space into different channels, according to which invariants are the smallest.

For each channel, use a parameterization such that  $\varphi$  is along a coordinate axis:

$$d\phi_{n+1} = d\phi_n \ d\phi_{dipole},$$
  
$$d\phi_{dipole} = \frac{s_{ijk}}{32\pi^3} (1-y) \ dy \ dz \ d\phi.$$

Construct the momenta of the (n+1) event from the ones of the *n* parton event and the values of *y*, *z* and  $\varphi$ .

# Numerical results for the forward-backward asymmetry of *b*-quarks

Perturbative expansion:

$$A_{FB} = A_{FB}^{(0)} \left( 1 + \frac{\alpha_s}{2\pi} B_{FB} + \left(\frac{\alpha_s}{2\pi}\right)^2 C_{FB} \right) + O\left(\alpha_s^3\right),$$

Select two-jet events defined by the flavour- $k_{\perp}$  algorithm and a given  $y_{cut}$ . Leading order result independent of  $y_{cut}$ :

$$A_{FB,b}^{(0)} = 0.11161.$$

QCD corrections:

| <i>Y</i> cut | $B_{FB,b}$         | $C_{FB,b}$      |
|--------------|--------------------|-----------------|
| 0.01         | $-0.070 \pm 0.005$ | $-0.4\pm0.8$    |
| 0.03         | $-0.145 \pm 0.003$ | $-1.7\pm0.5$    |
| 0.1          | $-0.294 \pm 0.002$ | $-4.3 \pm 0.3$  |
| 0.3          | $-0.512 \pm 0.001$ | $-10.2 \pm 0.1$ |
| 0.9          | $-0.565 \pm 0.001$ | $-13.4 \pm 0.1$ |

# Plot



# Numerical results for the forward-backward asymmetry of *c*-quarks

Perturbative expansion:

$$A_{FB} = A_{FB}^{(0)} \left( 1 + \frac{\alpha_s}{2\pi} B_{FB} + \left(\frac{\alpha_s}{2\pi}\right)^2 C_{FB} \right) + O\left(\alpha_s^3\right),$$

Select two-jet events defined by the flavour- $k_{\perp}$  algorithm and a given  $y_{cut}$ . Leading order result independent of  $y_{cut}$ :

$$A_{FB,c}^{(0)} = 0.08003.$$

QCD corrections:

| <i>Y</i> cut | $B_{FB,c}$         | $C_{FB,c}$      |
|--------------|--------------------|-----------------|
| 0.01         | $-0.070 \pm 0.005$ | $-0.5\pm0.7$    |
| 0.03         | $-0.145 \pm 0.003$ | $-2.1 \pm 0.5$  |
| 0.1          | $-0.294 \pm 0.002$ | $-4.8 \pm 0.2$  |
| 0.3          | $-0.513 \pm 0.001$ | $-12.1 \pm 0.2$ |
| 0.9          | $-0.565 \pm 0.001$ | $-15.9 \pm 0.1$ |

# Summary

- The forward-backward asymmetry shows the largest discrepancy in a fit of the Standard Model parameter.
- Experimental analysis based on an infrared-unsafe definition.
- Infrared-safe definition of the forward-backward asymmetry.
- Calculation of the NLO and NNLO QCD corrections.
- The corrections are small, useful observable also for a future linear collider.