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LHC physics

A schematic view of a top-pair event. A tt̄ event from CDF.

Jets: A bunch of particles moving in the same direction



Theoretical understanding

pdf’s hard
scattering

parton
showering

hadronization

Parton distribution functions are extracted from experiments.
Hard scattering calculated in perturbation theory.
Showering and hadronization depends on approximations and/or models.

Infrared-safe observables depend only mildly on showering and hadronization.



Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.

At leading order:
ycut

At next-to-leading order:
ycut ycut

At next-to-next-to-leading
order:

ycut ycut ycut



The master formula for the calculation of observables

〈O〉 =
Z

dx1 f (x1)
Z

dx2 f (x2)
︸ ︷︷ ︸

pdf’s

1
2K(s)
︸ ︷︷ ︸
flux factor

1
(2J1 +1)

1
(2J2 +1)

1
n1n2

︸ ︷︷ ︸
average over initial spins and colours

×∑
n

Z

dφn−2
︸ ︷︷ ︸

integral over phase space

O(p1, ..., pn)
︸ ︷︷ ︸

observable

|An|2
︸︷︷︸
amplitude

Phase-space integration performed numerically by Monte-Carlo methods.

Observable infrared-safe: On+1(p1, ..., pn+1) → On(p′
1, ..., p′

n), (Single unresolved )
On+2(p1, ..., pn+2) → On(p′

1, ..., p′
n). (Double unresolved )

Amplitudes An calculated in perturbation theory.



Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):

|An|2 = A (0)
n

∗
A (0)

n︸ ︷︷ ︸
Born

+
(

A (0)
n

∗
A (1)

n + A (1)
n

∗
A (0)

n

)

︸ ︷︷ ︸
virtual

+
(

A (0)
n

∗
A (2)

n + A (2)
n

∗
A (0)

n + A (1)
n

∗
A (1)

n

)

︸ ︷︷ ︸
two-loop and loop-loop

,

|An+1|2 = A (0)
n+1

∗
A (0)

n+1︸ ︷︷ ︸
real

+
(

A (0)
n+1

∗
A (1)

n+1 + A (1)
n+1

∗
A (0)

n+1

)

︸ ︷︷ ︸
loop+unresolved

,

|An+2|2 = A (0)
n+2

∗
A (0)

n+2︸ ︷︷ ︸
double unresolved

.

A (l)
n : amplitude with n external particles and l loops.



Dependence on renormalisation and factorisation scales

Example: pp → tt̄ + jet.

Leading order is proportional to α3
s !

Tevatron:

LO (CTEQ6L1)
NLO (CTEQ6M)

pT,jet > 20GeV

√
s = 1.96TeV

pp̄ → tt̄+jet+X

µ/mt

σ[pb]

1010.1

6

5

4

3

2

1

0

LHC:

LO (CTEQ6L1)
NLO (CTEQ6M)

pT,jet > 20GeV

√
s = 14TeV

pp → tt̄+jet+X

µ/mt

σ[pb]

1010.1

1500

1000

500

0

S. Dittmaier, P. Uwer and S.W.



Status

Economy: LO matrix elements automatically generated up to 2 → 8
or more.
Efficient integration over phase space
Madgraph/Madevent, Sherpa/Amegic++, Helac/Phegas, Comphep, Grace, Alpgen, ...

Quality segment: NLO calculations for many 2 → 2 and 2 → 3 processes,
but no NLO calculations for 2 → 4 processes!
Electron-positron annihilation:

e+e− → 4 fermions: Denner, Dittmaier, Roth, Wieders

Automatisation in 2 → 2,3: Feynarts/Formcalc/Looptools, Grace, ...

Premium segment: NNLO calculations for a few selected 2 → 1 and 2 → 2
processes (Drell-Yan, W production, Higgs production),
want standard 2 → 2 processes to a few percent accuracy.
Anastasiou, Melnikov, Petriello; Harlander, Kilgore; van Neerven, Ravindran, Smith;



Objectives

• Extract fundamental quantities like αs to high precision
(e+e− → 3 jets at LEP).

• Extract non-perturbative parameters (pdf’s) to high precision
(HERA).

• Predictions for multi-particle final states that occur at high rate and form background
to new physics
(NLO).

• Precise predictions for standard hard pp processes like W , Z, jets, top, Higgs
(NNLO).



The NLO wish-list

The experimenter’s wish list at Les Houches 2005:

process relevant for

1. pp →VV + jet tt̄H, new physics
2. pp → H +2 jets Higgs production by vector boson fusion
3. pp → tt̄bb̄ tt̄H
4. pp → tt̄ +2 jets tt̄H
5. pp →VV bb̄ V BF → H →VV , tt̄H, new physics
6. pp →VV +2 jets V BF → H →VV
7. pp →V +3 jets various new physics signatures
8. pp →VVV SUSY

V ∈ {Z,W,γ}.



Challenges

What are the bottle-necks ?

• Length: Perturbative calculations lead to expressions with a huge number of terms.

• Integrals: At one-loop and beyond, the occuring integrals cannot be simply looked
up in an integral table.

• Divergences: At NLO and beyond, infrared divergences occur in intermediate
stages, if massless particles are involved.



Brute force

Number of Feynman
diagrams contributing to
gg → ng at tree level:

2 4
3 25
4 220
5 2485
6 34300
7 559405
8 10525900

Feynman rules:

= g f abc [(k2− k3)µgνλ +(k3− k1)νgλµ

+(k1− k2)λgµν]

= −ig2 [ f abe f ecd (gµλgνρ−gµρgνλ
)

+ f ace f ebd (gµνgλρ−gµρgλν
)

+ f ade f ecb(gµνgλρ−gµλgνρ
)]

Feynman diagrams are not the method of choice !



Managing lengthy expressions

• Computer algebra

• Quantum number management

– Colour decomposition
– Spinor methods
– Off-shell recurrence relations
– Parke-Taylor formulae

• New developments: Twistor methods

– MHV vertices
– On-shell recursion relations



Computer algebra

Computer-intensive symbolic calculations in particle physics can be characterized by:

• Need for basic operations like addition, multiplication, sorting ...

• Specialized code usually written by the user

• No need for a system which knows “more” than the user!

CAS on the market:

• Commercial: Mathematica, Maple, Reduce, ...

• Non-commercial: FORM , GiNaC, ...
Vermaseren; Bauer, Frink, Kreckel, Vollinga, ...



Colour decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors carrying the
colour structures multiplied by kinematic functions called partial amplitudes.

The partial amplitudes do not contain any colour information and are gauge-invariant.
Each partial amplitude has a fixed cyclic order of the external legs.

Examples: The n-gluon amplitude:

An(1,2, ...,n) = gn−2 ∑
σ∈Sn/Zn

2 Tr(T aσ(1)...T aσ(n))
︸ ︷︷ ︸

Chan Patton factors

An (σ(1), ...,σ(n))
︸ ︷︷ ︸

partial amplitudes

.

P. Cvitanovic, P. G. Lauwers, and P. N. Scharbach,

F. A. Berends and W. Giele,

M. L. Mangano, S. J. Parke, and Z. Xu,

D. Kosower, B.-H. Lee, and V. P. Nair,

Z. Bern and D. A. Kosower.



The spinor helicity method

• Basic objects: Massless two-component Weyl spinors

|p±〉, 〈p±|

• Gluon polarization vectors:

ε+
µ (k,q) =

〈k + |γµ|q+〉√
2〈q−|k+〉

, ε−µ (k,q) =
〈k−|γµ|q−〉√

2〈k + |q−〉

q is an arbitrary light-like reference momentum. Dependency on q drops out in
gauge invariant quantities.

• A clever choice of the reference momentum can reduce significantly the number of
diagrams which need to be calculated.

Berends, Kleiss, De Causmaecker, Gastmans and Wu; Xu, Zhang and Chang;

Kleiss and Stirling; Gunion and Kunszt



Recurrence relations

Off-shell currents provide an efficient way to calculate amplitudes:

...
1n

n+1 is off-shell

=
n−1

∑
j=1

1jj +1n

+
n−2

∑
j=1

n−1

∑
k= j+1

1jj +1kk +1n

Momentum conservation: pn+1 = p1 + p2 + ...+ pn.

On-shell condition for particles 1 to n: p2
j = m2

j .

No Feynman diagrams are calculated in this approach !

F. A. Berends and W. T. Giele,

D. A. Kosower.



The Parke-Taylor formulae

For specific helicity combinations the amplitudes have a remarkably simple analytic
formula or vanish altogether:

Atree
n (g+

1 , ...,g+
n ) = 0,

Atree
n (g+

1 , ...,g−
j , ...,g

+
n ) = 0,

Atree
n (g+

1 , ...,g−
j , ...,g

−
k , ...,g+

n ) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉.

The n-gluon amplitude with n− 2 gluons of positive helicity and 2 gluons of negative
helicity is called a maximal-helicity violating amplitude (MHV amplitude).

F. A. Berends and W. T. Giele,

S. J. Parke and T. R. Taylor.



The CSW construction

Cachazo, Svrček and Witten proposed that the gluonic Born amplitude with an arbitrary
helicity configuration can be calculated from diagrams with scalar propagators and new
vertices, which are MHV-amplitudes continued off-shell.

An(1+, ..., j−, ...,k−, ...,n+) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉.

Off-shell continuation:

p[ = P− P2

2Pq
q.

Propagators are scalars:

−i
P2

Cachazo, Svrček and Witten, JHEP 0409:006, (hep-th/0403047)



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

Six diagrams, each consisting of two MHV-vertices:

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

2−

3−
1−

− +

4+5+6+

2−

3−
1−

− +

4+5+6+

2−

3−
1−

− +

4+5+6+



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

The first diagram yields:

1−

2−
3−

− +

4+ 5+ 6+

=

[

i
√

2
〈12〉4

〈12〉〈2
(
−k[

12

)
〉〈
(
−k[

12

)
1〉

]

i
k2

12

[

i
(√

2
)3 〈3k[

12〉4

〈34〉〈45〉〈56〉〈6k[
12〉〈k[

123〉

]

Similar for the five other diagrams.

Compare this to

- a brute force approach (220 Feynman diagrams)

- colour-ordered amplitudes (36 diagrams)



The BCF recursion relations

R. Britto, F. Cachazo and B. Feng gave a recursion relation for the calculation of the
n-gluon amplitude:

An
(

p1, p2, ..., p−
n−1, p+

n

)
=

n−3

∑
i=1

∑
λ=+,−

Ai+2

(

p̂n, p1, p2, ..., pi,−P̂λ
n,i

)
(

−i
P2

n,i

)

An−i

(

P̂−λ
n,i , pi+1, ..., pn−2, p̂n−1

)

.

No off-shell continuation needed. The amplitudes on the r.h.s. are evaluated with
shifted momenta.

Britto, Cachazo and Feng, Nucl. Phys. B715, (2005), 499, (hep-th/0412308);

Britto, Cachazo, Feng and Witten, Phys. Rev. Lett. 94:181602, (2005), (hep-th/0501052)



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

Only two diagrams contribute:

1−

2− 3−
4+

5+

6+

+ −

2−

3− 4+

5+

6+

1−

+ −

Atree
6 (1−,2−,3−,4+,5+,6+) =

4i
[ 〈6+ |1+2|3+〉3

[61][12]〈34〉〈45〉s126〈2+ |1+6|5+〉+
〈4+ |5+6|1+〉3

[23][34]〈56〉〈61〉s156〈2+ |1+6|5+〉

]



The number of diagrams

Example: Number of diagrams contributing to the colour-ordered six-gluon amplitude
A(1−,2−,3−,4+,5+,6+):

brute force approach: 220

colour-ordered amplitudes: 36

MHV vertices: 6

on-shell recursion: 2



Calculating loop amplitudes

• Automated computation of one-loop amplitudes

– Improvements of the Passarino-Veltman algorithm
– Unitarity method

• Two-loop amplitudes and beyond

– Mellin-Barnes transformation
– Multiple polylogarithms
– Sector decomposition



Automated NLO calculations

Automated NLO calculations for 2 → n (n = 4..6,7) processes relevant for physics at
the LHC and the ILC.

Technical challenges: Automated numerical evaluation of one-loop amplitudes.

A. Ferroglia, M. Passera, G. Passarino, and S. Uccirati,

Z. Nagy and D. E. Soper,

W. Giele, E. W. N. Glover, and G. Zanderighi,

F. del Aguila and R. Pittau,

T. Binoth, G. Heinrich, and N. Kauer,

A. Denner and S. Dittmaier,

A. van Hameren, J. Vollinga and S.W.



Reduction of tensor integrals

The Passarino-Veltman algorithm:

Z dDk
iπD/2

kµkν

(k2−m2
1)((k− p1)2−m2

2)((k− p1− p2)2−m2
3)

= pµ
1pν

1C21 + pµ
2pν

2C22 +(pµ
1pν

2 + pν
1 pµ

2)C23 +gµνC24.

Inverting the linear system of equations introduces Gram determinants:

∆ =

∣
∣
∣
∣

p2
1 p1 · p2

p1 · p2 p2
2

∣
∣
∣
∣
.

Improved algorithms avoid these Gram determinants!
A. Denner and S. Dittmaier,

T. Binoth, G. Heinrich, and N. Kauer.



Reduction of tensor integrals

Loop momentum in the numerator is always contracted into an external structure:

〈a1−|γµ1|b1−〉 ...〈ar −|γµr|br−〉
Z dDk

iπD
2

kµ1...kµr

k2(k− p1)2...(k− p1− ...pn−1)2.

Use spinor methods to decompose kµ into

kµ = c1 lµ
1 + c2 lµ

2 + c3 〈l1−|γµ|l2−〉 + c4 〈l2−|γµ|l1−〉.

F. del Aguila and R. Pittau,

A. van Hameren, J. Vollinga and S.W.



Reduction of scalar integrals

One-loop integrals with more than four propagators can always be reduced to integrals
with maximally four propagators.
Melrose (1965)

Basic idea: In a space of dimension four there can be no more than four linear
independet vectors.

The proof can be extended towards integrals computed within dimensional
regularization.



Reduction of scalar integrals

Reduction of pentagons (W. van Neerven and J. Vermaseren; Z. Bern, L. Dixon, and D. Kosower):

I5 =
5

∑
i=1

biI
(i)
4 + O (ε) .

Reduction of hexagons (T. Binoth, J. P. Guillet, and G. Heinrich):

I6 =
6

∑
i=1

biI
(i)
5 .

Reduction of scalar integrals with more than six propagators (G. Duplancic and B. Nizic):

In =
n

∑
i=1

riI
(i)
n−1.

Here, the decomposition is no longer unique.



Unitarity method

A1−loop =
Z dDk

(2π)D

1
k2

1 + iε
1

k2
2 + iε

Atree
L Atree

R

+ cut free pieces

The cut-construction simplifies the calculation of one-loop amplitudes, as cancellations
occur already inside Atree

L and Atree
R .

Theorem: One-loop amplitudes in massless supersymmetric gauge theories with no
superpotential can be completely constructed from their cuts.
Bern, Dixon, Dunbar and Kosower



Loop amplitudes

Split QCD amplitudes into N = 4 and N = 1 SUSY pieces and a scalar part.

Loop amplitudes have branch cuts:
Get branch cuts from the unitarity method.
Use recursion relations for the rational pieces.

An(0) = C∞ − ∑
poles

res
An(z)

z
−

∞
Z

B0

dz
z

Disc An(z)

Complications: Boundary terms, double poles.
Brandhuber, Spence and Travaglini;

Bern, Dixon, Kosower

C

One-loop corrections A1−loop
n (1−,2−,3+, ...,n+) to adjacent MHV amplitudes have

been calculated.
Forde, Kosower



The one-loop six-gluon amplitude

Analytic computation:
Bedford, Berger, bern Bidder, Bjerrum-Bohr, Brandhuber, Britto, Buchbinder, Cachazo, Dixon, Dunbar, Feng, Forde, Kosower,

Mastrolia, Perkins, Spence, Travaglini, Xiao, Yang, Zhu.

An = A N =4
n −4A N =1

n + A N =0
n

Amplitude N = 4 N = 1 N = 0 (cut) N = 0 (rat)
−−++++ BDDK (94) BDDK (94) BDDK (94) BDK (94)
−+−+++ BDDK (94) BDDK (94) BBST (04) BBDFK (06), XYZ (06)
−++−++ BDDK (94) BDDK (94) BBST (04) BBDFK (06), XYZ (06)
−−−+++ BDDK (94) BDDK (94) BBDI (05), BFM (06) BBDFK (06), XYZ (06)
−−+−++ BDDK (94) BBDP (05), BBCF (05) BFM (06) XYZ (06)
−+−+−+ BDDK (94) BBDP (05), BBCF (05) BFM (06) XYZ (06)

Numerical check:
Ellis, Giele, Zanderighi (2006)



The calculation of two-loop integrals

• Techniques to calculate two-loop integrals

– Mellin-Barnes transformation, Smirnov ’99, Tausk ’99.
– Differential equations, Gehrmann, Remiddi ‘00.
– Nested sums, Moch, Uwer, S.W. ‘01.
– Sector decomposition (numerical), Binoth, Heinrich, ’00.

• Methods to reduce the work-load:

– Integration-by-parts, Chetyrkin, Kataev, Tkachov ‘81.
– Reduction algorithms, Tarasov ‘96, Laporta ’01.
– Cut technique Bern, Dixon, Kosower, ’00



The double-box integral

Two-loop amplitudes for 2 → 2 processes involve the double-box integral:

• First calculated by Smirnov in 1999.

• Calculation based on Mellin-Barnes representation.

• Result expressed in harmonic polylogarithms.



Mellin-Barnes

Mellin-Barnes transformation:

(A1 +A2 + ...+An)
−c =

1
Γ(c)

1

(2πi)n−1

i∞
Z

−i∞

dσ1...

i∞
Z

−i∞

dσn−1

×Γ(−σ1)...Γ(−σn−1)Γ(σ1 + ...+σn−1 + c) Aσ1
1 ...Aσn−1

n−1 A−σ1−...−σn−1−c
n

The contour is such that the poles of Γ(−σ) are to the right and the poles of Γ(σ+ c)
are to the left.

Converts a sum into products and is therefore the “inverse” of Feynman
parametrization.

Smirnov; Tausk; Davydychev; Bierenbaum, S.W.; Czakon; Anastasiou, Daleo; Gluza, Kajda, Riemann;



Multiple polylogarithms

• Definition:

Lim1,...,mk(x1, ...,xk) = ∑
i1>i2>...>ik>0

xi1
1

im1
1

xi2
2

im2
2

...
xik

k

imk
k

.

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

• Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs
(Remiddi and Vermaseren, Gehrmann and Remiddi).

• Have also an integral representation.

• Obey two Hopf algebras (Moch, Uwer, S.W.).

• Can be evaluated numerically for all complex values of the arguments
(Gehrmann and Remiddi, Vollinga and S.W.).



Harmonic sums

• Definition:

Sm1,...,mk(N) =
N

∑
i1≥i2≥...≥ik≥1

1
im1
1

1
im2
2

...
1

imk
k

.

Gonzale-Arroyo, Lopez, Yndurain ’79, Vermaseren ’98, Blümlein, Kurth ’98

• Obey a Hopf algebra Vermaseren ’98, Moch, Uwer, S.W. ’01

• Mellin transforms of harmonic polylogarithms Vermaseren ’98

• Automated manipulations by computer algebra programs summer, nestedsums, xsummer, ...



Sector decomposition

Disentangle overlapping divergences:

1
Z

0

dx1

x1−ε
1

1−x1
Z

0

dx2

x1−ε
2

1
x1 + x2

Decompose into several subsectors:

Sector x1 > x2 : x′2 = x2/x1

Sector x1 < x2 : x′1 = x1/x2

x1

x2

Can be applied to loop integrals and phase space integrals !
Roth, Denner; Binoth, Heinrich;



The calculation of two-loop amplitudes

• Calculation of two-loop amplitudes

– Bhabha, Bern, Dixon, Ghinculov ‘01.
– pp → 2 jets, Anastasiou, Glover, Oleari, Tejeda-Yeomans ’01;

Bern, De Freitas, Dixon, Ghinculov, Wong ’01.
– e+e− → 3 jets, L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi ’02;

S. Moch, P. Uwer and S.W. ’02

– Higgs production, Harlander, Kilgore; Catani, de Florian, Grazzini; Anastasiou, Melnikov;

– Drell-Yan, Anastasiou, Dixon, Melnikov, Petriello; Ravindran, Smith, van Neerven

• Calculation of three-loop splitting functions S. Moch, J. Vermaseren and A. Vogt ’04;



Cancellation of divergences

• Infrared divergences at NLO

– General methods
– Automatisation

• Infrared divergences at NNLO

– Status



Infrared divergences and the Kinoshita-Lee-Nauenberg theorem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.
unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.

• Phase space slicing

– e+e−: W. Giele and N. Glover, (1992)

– initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)

– massive partons, fragmentation: S. Keller and E. Laenen, (1999)

• Subtraction method

– residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)

– dipole formalism: S. Catani and M. Seymour, (1996)

– massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)



The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as

σNLO =
Z

n+1

dσR +
Z

n

dσV

=
Z

n+1

(
dσR−dσA)+

Z

n



dσV +
Z

1

dσA





The approximation dσA has to fulfill the following requirements:

• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour in D dimensions as dσR itself. Thus, dσA acts as a local
counterterm for dσR and one can safely perform the limit ε → 0.

• Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.



The subtraction terms

The approximation term dσA is given as a sum over dipoles:

dσA = ∑
pairs i, j

∑
k 6=i, j

Di j,k.

Each dipole contribution has the following form:

Di j,k = − 1
2pi · p j

A (0) ∗
n

(
p1, ..., p̃(i j), ..., p̃k, ...

)Tk ·Ti j

T2
i j

Vi j,kA (0)
n

(
p1, ..., p̃(i j), ..., p̃k, ...

)
.

• Colour correlations through Tk ·Ti j.

• Spin correlations through Vi j,k.



The physical origin of the correlations

• In the soft limit, amplitudes factorize completely in spin space, but colour
correlations remain.

• In the collinear limit, amplitudes factorize completely in colour space, but spin
correlations remain.

Solution: Use colour decomposition and calculate helicity amplitudes.



Colour structures and cyclic ordering

For Born graphs: cyclic order such that a quark
follows immediately its corresponding antiquark in the
clockwise orientation.
Treat a (q̄,q) pair as a pseudo-leg.
All possible cyclic orderings are obtained by summing
over all permutations of the pseudo-legs and factoring
out the cyclic permutations.

...

...

...

1

2

3

kk +1
k +2

k +3

l

l +1
l +2 l +3

n

Colour cluster: part of an amplitude, which is connected to the rest of the amplitude
only by an U(1) gluon and which does not contain by itself any U(1) gluon.

S.W. ’05



The double line notation

Replace a colour index in the adjoint representation by two indices in the fundamental
representation:

V aEa = =
(√

2T a
i jV

a
)(√

2T b
jiE

b
)

.

Then split a SU(N) gluon into an U(N)-part and an U(1)-part:

U(N) : i
j

l
k = δilδk j,

U(1) : i
j

l
k = − 1

N
δi jδkl.

One can show that the U(1) gluon couples only to quarks.



Colour correlations

Quark-antiquark: ī1

j̄2

i1

j2
= −1

2

(

δī1 j̄2δ j2i1 −
1
N

δī1i1δ j2 j̄2

)

Quark-gluon: ī1

ī2, j̄2

i1

i2, j2

=
1
2
(
δī1i2δī2i1δ j2 j̄2 −δī1 j̄2δ j2i1δī2i2

)

Gluon-gluon:
ī1, j̄1

ī2, j̄2

i1, j1

i2, j2

=
1
2
(
δī1i1δī2i2δ j1 j̄2δ j2 j̄1 −δī1i1δ j2 j̄2δ j1i2δī2 j̄1

−δ j1 j̄1δī2i2δī1 j̄2δ j2i1 +δ j1 j̄1δ j2 j̄2δī1i2δī2i1

)



The subtraction method at NNLO

• Singular behaviour

– Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,

Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower ’99

– Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, ’99

• Extension of the subtraction method to NNLO Kosower; S.W.; Kilgore; Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;

• Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;

• Applications:

– pp →W , Anastasiou, Dixon, Melnikov, Petriello ’03,

– pp → H → γγ, Anastasiou, Dixon, Melnikov, Petriello ’05,

– e+e− → 2 jets, Anastasiou, Melnikov, Petriello ’04, S.W. ’06



Summary

• Length:

– Computer algebra
– Quantum number management: Colour decomposition, spinor methods
– New developments: Twistor methods

• Integrals:

– Automated computation of one-loop amplitudes: Improvements of the Passarino-
Veltman algorithm, unitarity method

– Two-loop amplitudes and beyond: Mellin-Barnes, multiple polylogarithms, sector
decomposition

• Divergences:

– Automated cancellation of infrared divergences at NLO
– R & D at NNLO


