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The strong coupling

The fundamental parameter of QCD:
The strong coupling Q.

Obijectives for LHC:
Extract fundamental quantities like Og to
high precision.

Os can be measured in a variety of
processes:

Deep inelastic scattering, T-decays,
heavy quarkonium, electron-positron
annihilation, hadron collisions, ...
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The strong coupling from electron-positron annihilation

One possibility: Extract ag from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph &
experiment at LEP:




Perturbation theory

Due to the smallness of the coupling constants a and Os, we may compute an
observable at high energies reliable in perturbation theory,
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Feynman diagrams contributing to the leading order:
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Leading order proportional to Og!



Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.

At leading order: Yeut
At next-to-leading order: yi cut Yeut
At next-to-next-to-leading Yeut Yeut Yeut
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The master formula for the calculation of observables
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<O> — /d(pnz O(plaapn) ‘/{Zln‘
K(y, (21+1)(2L+1) Z L he”;y —~
flux factor average over initial spins Integral over phase space

Phase-space integration performed numerically by Monte-Carlo methods.

Observable infrared-safe:  Opi1(P1,---s Pnr1) — On(PY, -, Ph),  (Single unresolved )
Ons2(P1s-++5 Pn2) — On(Py,---, Pr)-  (Double unresolved )

Amplitudes A4, calculated in perturbation theory.



Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):
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Challenges

What are the bottle-necks ?

e Length: Perturbative calculations lead to expressions with a huge number of terms.

e I[ntegrals: At one-loop and beyond, the occuring integrals cannot be simply looked
up in an integral table.

e Divergences: At NLO and beyond, infrared divergences occur in intermediate
stages, if massless particles are involved.

e Numerics: Stable and efficient numerical methods are required for the Monte Carlo
Integration.



Part | : One- and two-loop amplitudes

e One-loop amplitudes
e Two-loop integrals

e Polylogarithms



The amplitudes for e"e~ — 3jets at NNLO

A NNLO calculation of efe~ — 3jets requires the following amplitudes:

e Born amplitudes for e"e~ — 5jets:
F. Berends, W. Giele and H. Kuijf, 1989;
K. Hagiwara and D. Zeppenfeld, 1989.

e One-loop amplitudes for e"e~ — 4 jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;
J. Campbell, N. Glover and D. Miller, 1996.

e Two-loop amplitudes for e"e~ — 3jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;
S. Moch, P. Uwer and S.W., 2002.



Unitarity method

Problem: The one-loop amplitudes for "€~ — 4 partons depend on many kinematical
invariants §j, resulting in lengthy expressions.

The cut-construction simplifies the calculation of one-loop amplitudes, as cancellations
occur already inside A€ and A€,

Bern, Dixon, Dunbar and Kosower, 1994
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The cut technique has recently been refined: Prospects for multi-leg NLO calculation
for the LHC.
Britto, Cachazo, Feng, Bern, Dixon, Kosower, Forde, Berger, Mastrolia, Anastasiou, Kunszt, Ossola, Papadopoulos, Pittau,

Bidder, Bjerrum-Bohr, Dunbar, ...



The calculation of two-loop integrals

Techniques to calculate two-loop integrals

— Mellin-Barnes transformation, smirnov 99, Tausk '99.

— Differential equations, Gehrmann, Remiddi ‘00.

— Nested sums, Moch, Uwer, S.W. ‘01.

— Sector decomposition (numerical), Binoth, Heinrich, '00.

Methods to reduce the work-load:

— Integration-by-parts, chetyrkin, Kataev, Tkachov ‘81.
— Reduction algorithms, Tarasov ‘96, Laporta '01.
— Cut technique Bern, Dixon, Kosower, '00



The double-box integral

Two-loop amplitudes for 2 — 2 processes involve the double-box integral:

e First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.
e Calculation based on Mellin-Barnes representation.

e Result expressed in harmonic polylogarithms.
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Multiple polylogarithms

Definition:
i1 2 %
Li (Xg, .oy Xk) = %
Mmq,...,Mg 1y---9 2K - imlimz...,mk.
i1>i>..>)>0"1 "2 e

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs

(Remiddi and Vermaseren, Gehrmann and Remiddi).
Have also an integral representation.
Obey two Hopf algebras (moch, uwer, s.w.).

Can be evaluated numerically for all complex values of the arguments
(Gehrmann and Remiddi, Vollinga and S.W.).



The integral representation for multiple polylogarithms

Define the functions G by

y €] tk_1

L dty dt, di
G(z,....,Zgy) = /t1—21/t2—22"'/tk—2k'
0 0 0

Scaling relation:

G(z,....,zsy) = G(xa,...,XZ;Xy)
Short hand notation;
Gm,..m(z1,....,zcy) = G(0,...,0,z,...,%_1,0...,0,Z;y)
m—1 m—1

Conversion to the previous noation:
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Shuffle algebra versus guasi-shuffle algebra

Quasi-shuffle algebra from the sum representation:

Shuffle algebra from the integral representation:

G(z;y)G(zy) = G(z,zy) +G(z,21;Y)

to




The calculation of two-loop amplitudes

Calculation of two-loop amplitudes

— Bhabha, Bern, Dixon, Ghinculov ‘01.

- PP— 2 jets, Anastasiou, Glover, Oleari, Tejeda-Yeomans '01;
Bern, De Freitas, Dixon, Ghinculov, Wong '01.

— €@ — 3jets, L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi '02;
S. Moch, P. Uwer and S.W. '02

-_ Higgs production, Harlander, Kilgore; Catani, de Florian, Grazzini; Anastasiou, Melnikov;

-_ DreII-Yan, Anastasiou, Dixon, Melnikov, Petriello; Ravindran, Smith, van Neerven

Calculation of three-loop splitting functions s. Moch, J. Vermaseren and A. Vogt '04;



Part Il : Cancellation of divergences

e Infrared divergences at NLO
e Infrared divergences at NNLO

e Soft gluons



Infrared divergences and the Kinoshita-Lee-Nauenberg the orem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.

unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.

e Phase space slicing

— €€ : W. Giele and N. Glover, (1992)
— Initlal hadrons: w. Giele, N. Glover and D.A. Kosower, (1993)
— massive partons, fragmentation: s. Keller and E. Laenen, (1999)

e Subtraction method

— residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)
— dipole formalism: s. catani and M. Seymour, (1996)
— massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trocsanyi, (2002)



Phase space slicing

Splits the integration of the real emission contribution into a region y > Ymin and a
region Y < Ymin-

The former is free of singularities and the integration can be Veut
performed numerically there.

In the latter the matrix element is approximated and the

Integration over the one-parton phase space is performed
analytically.

Ymin

e Introduces an error of order Ymin.

e The first region gives a contribution of the form

a-lnzymin‘|‘ bINYmin+C

The logarithms Inzymin and Inymin cancel against the contribution from the second
region.

e But: Cancelation happens only numerically!



The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as

o"° = [do"+ [do¥ = [ (do"-do?)+ [ |do'+ [do*
n 1

n+1 n n+1

The approximation do” has to fulfill the following requirements:

e do” must be a proper approximation of do” such as to have the same pointwise
singular behaviour in D dimensions as do" itself.
Thus, do” acts as a local counterterm for doR and one can safely perform the limit

e — 0.

e Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.



An example: e"e- — 2jets at NLO

The matrix element squared for y* — qgq:

S123

S1253 S12

Ms = 8(1-¢) [2 §23—2——2—+

The dipole subtraction terms:

Di2z+ Dsp1 =8(1—¢)

eaaePera-og)
+ lzszs(siﬁ =5 251;2;4 (1—5)%2] }

The antenna subtraction term:

A2z = Dipz+Daos

S123

3

(1-¢)
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Spin and colour correlations

e In the soft limit, amplitudes factorize completely in spin space, but colour
correlations remain.

e In the collinear limit, amplitudes factorize completely in colour space, but spin
correlations remain.
Spin-correlations occur for the splittings g — gg and g — g, but not for g — qg.

If one uses spin-averaged subtraction terms, one has a local counterterm only after
the average over the azimuthal angle.

Alternative: Use combination of subtraction and slicing.



The subtraction method at NNLO

e Singular behaviour

— Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,
Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower '99
— Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, '99

e Extension of the subtraction method to NNLO Kosower; S.W.; Kilgore; Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trocsanyi and Del Duca,;
e Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;

e Applications:

- PP— W, Anastasiou, Dixon, Melnikov, Petriello '03,

— p p — H , Anastasiou, Dixon, Melnikov, Petriello ‘05, Catani, Grazzini ‘08

— €7@ — 2 jets, Anastasiou, Melnikov, Petriello '04, S.W. '06

— e+e‘ — 3 jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07, S.W. '08



Antenna subtraction terms
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The subtraction method at NNLO

5 partons : dO'éO) _ daNO _ ggNNLO 4 (giterated _ qyalmost dGSOft,
4 partons : dO'Ell) + daNLO _ (qloop _ gqiterated _ gy product | yyalmost dGSOft,
3 partons : dO'éZ) + d(XNNLO—|— d(XIOOp—|— daproduct.

daNNLO contains the four-parton antenna functions,

da@™Mostcontains a product of two three-parton antenna functions,

da'teratedis the approximation of daNt©,
da'°°P s the approximation of the one-loop matrix elements,

daPreduct contains a product of two three-parton antenna functions, both with 4 — 3
parton kinematics

das°™is an additional subtraction term due to soft gluons, occuring in processes with
three or more hard partons.



Soft gluons

4 partons: S partons:
| Gluon | soft:

~

21
1 /d ( (1+cj))(1l—cp) ) B . Eikonal factor
— (p|n = J
2n0 2(1— caCj — $pSj COSP) K Eik(K,1,m)

i (1—C20j—|—(cj—02)> k K
1—coCj+|cj — ¢ M |
m
Non-zero for ¢; < Cp !
five-parton contributiomgggg colour factorN?
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The explicit poles in the four- ] standard——
. . 400} : sum -
parton configuration have to s
cancel: dos°tis needed. i
@) % *
The five-parton contribution has 200
to be independent of the slicing 400
parameter: —das°'tis needed. s00l__
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Part Il : Numerical results

e Infrared-safe observables

e Eventshapes and jets

e Results



Infrared-safe observables and event shapes

Observables which do not depend on long-distance behaviour, are called infrared-safe
observables and can reliably be calculated in perturbation theory.

Example: Thrust

> |Bi- Al
T = max-

f IZlf‘il

In particular, it is required that they do not change value, if infinitessimal soft or collinear
particles are added.

At NNLO:

Single unresolved : Ony1(P1, ..., Pns1) —  On(PLs---s Pr),

Double unresolved : Oni2(P1y-ees Pniz) —  On(PLy---s Ph)-



Jet algorithms

Ingredients:

e aresolution variable yi; where a smaller y;; means that particles | and ] are “closer”;

2(1—coshi;)
yi[j)URHAM _ ( o ”)mln(Eiz,Ejz)

e a combination procedure which combines two four-momenta into one;

Pijy = P+

e a cut-off yeut which provides a stopping point for the algorithm.



Results for the three-jet rate in electron-positron annihi lation

Durham three-jet rate
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Results for the thrust distribution

Thrust
0-6 [ [ [ [ [ [ LO [
NLO mesm
05| NNLO  m——
; Aleph data--+-

do
c d(1-T)

1-T

4
0 L | ! ! t b o

0 005 01 015 02 025 03 0.35
1-T

preliminary !



Summary

e €'e — 3jets at NNLO very useful for Og
e Second independent calculation

e Challenging aspects due to three hard coloured particles



