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The strong coupling

The fundamental parameter of QCD:
The strong coupling αs.

Objectives for LHC:
Extract fundamental quantities like αs to
high precision.

αs can be measured in a variety of
processes:
Deep inelastic scattering, τ-decays,
heavy quarkonium, electron-positron
annihilation, hadron collisions, ...

(S. Bethke, ’06.)



The strong coupling from electron-positron annihilation

One possibility: Extract αs from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph
experiment at LEP:



Perturbation theory

Due to the smallness of the coupling constants α and αs, we may compute an
observable at high energies reliable in perturbation theory,
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Feynman diagrams contributing to the leading order:
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Leading order proportional to αs !



Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.

At leading order:
ycut

At next-to-leading order:
ycut ycut

At next-to-next-to-leading
order:

ycut ycut ycut



The master formula for the calculation of observables

〈O〉 =
1

2K(s)
︸ ︷︷ ︸
flux factor

1
(2J1+1)

1
(2J2+1)

︸ ︷︷ ︸
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∑
n

Z

dφn−2
︸ ︷︷ ︸

integral over phase space

O(p1, ..., pn) ∑
helicity

|An|
2

︸︷︷︸
amplitude

Phase-space integration performed numerically by Monte-Carlo methods.

Observable infrared-safe: On+1(p1, ..., pn+1) → On(p′1, ..., p′n), (Single unresolved )
On+2(p1, ..., pn+2) → On(p′1, ..., p′n). (Double unresolved )

Amplitudes An calculated in perturbation theory.



Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):
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A
(l)
n : amplitude with n external particles and l loops.



Challenges

What are the bottle-necks ?

• Length: Perturbative calculations lead to expressions with a huge number of terms.

• Integrals: At one-loop and beyond, the occuring integrals cannot be simply looked
up in an integral table.

• Divergences: At NLO and beyond, infrared divergences occur in intermediate
stages, if massless particles are involved.

• Numerics: Stable and efficient numerical methods are required for the Monte Carlo
integration.



Part I : One- and two-loop amplitudes

• One-loop amplitudes

• Two-loop integrals

• Polylogarithms



The amplitudes for e+e− → 3 jets at NNLO

A NNLO calculation of e+e− → 3 jets requires the following amplitudes:

• Born amplitudes for e+e− → 5 jets:
F. Berends, W. Giele and H. Kuijf, 1989;

K. Hagiwara and D. Zeppenfeld, 1989.

• One-loop amplitudes for e+e− → 4 jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;

J. Campbell, N. Glover and D. Miller, 1996.

• Two-loop amplitudes for e+e− → 3 jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;

S. Moch, P. Uwer and S.W., 2002.



Unitarity method

Problem: The one-loop amplitudes for e+e− → 4 partons depend on many kinematical
invariants si j , resulting in lengthy expressions.

The cut-construction simplifies the calculation of one-loop amplitudes, as cancellations
occur already inside Atree

L and Atree
R .

Bern, Dixon, Dunbar and Kosower, 1994

A1−loop =
Z

dDk
(2π)D

1
k2

1 + iε
1

k2
2 + iε

Atree
L Atree

R

+ cut free pieces

The cut technique has recently been refined: Prospects for multi-leg NLO calculation
for the LHC.
Britto, Cachazo, Feng, Bern, Dixon, Kosower, Forde, Berger, Mastrolia, Anastasiou, Kunszt, Ossola, Papadopoulos, Pittau,

Bidder, Bjerrum-Bohr, Dunbar, ...



The calculation of two-loop integrals

• Techniques to calculate two-loop integrals

– Mellin-Barnes transformation, Smirnov ’99, Tausk ’99.
– Differential equations, Gehrmann, Remiddi ‘00.
– Nested sums, Moch, Uwer, S.W. ‘01.
– Sector decomposition (numerical), Binoth, Heinrich, ’00.

• Methods to reduce the work-load:

– Integration-by-parts, Chetyrkin, Kataev, Tkachov ‘81.
– Reduction algorithms, Tarasov ‘96, Laporta ’01.
– Cut technique Bern, Dixon, Kosower, ’00



The double-box integral

Two-loop amplitudes for 2→ 2 processes involve the double-box integral:

• First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.

• Calculation based on Mellin-Barnes representation.

• Result expressed in harmonic polylogarithms.

Hm1,...,mk(x) = ∑
i1>i2>...>ik>0

xi1

im1
1 im2

2 ...imk
k

, x =
s
t
.



Multiple polylogarithms

• Definition:

Lim1,...,mk(x1, ...,xk) = ∑
i1>i2>...>ik>0

xi1
1

im1
1

xi2
2

im2
2

...
xik

k

imk
k

.

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

• Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs
(Remiddi and Vermaseren, Gehrmann and Remiddi).

• Have also an integral representation.

• Obey two Hopf algebras (Moch, Uwer, S.W.).

• Can be evaluated numerically for all complex values of the arguments
(Gehrmann and Remiddi, Vollinga and S.W.).



The integral representation for multiple polylogarithms

Define the functions G by

G(z1, ...,zk;y) =

y
Z

0

dt1
t1−z1

t1
Z

0

dt2
t2−z2

...

tk−1
Z

0

dtk
tk−zk

.

Scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk;xy)

Short hand notation:

Gm1,...,mk(z1, ...,zk;y) = G(0, ...,0
︸ ︷︷ ︸

m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸
mk−1

,zk;y)

Conversion to the previous noation:
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.



Shuffle algebra versus quasi-shuffle algebra

Quasi-shuffle algebra from the sum representation:

Lim1(x1)Lim2(x2) = Lim1,m2(x1,x2)+Lim2,m1(x2,x1)+Lim1+m2(x1x2).
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Shuffle algebra from the integral representation:

G(z1;y)G(z2;y) = G(z1,z2;y)+G(z2,z1;y)

-

6

t1

t2
=

-

6

t1

t2
+

-

6

t1

t2



The calculation of two-loop amplitudes

• Calculation of two-loop amplitudes

– Bhabha, Bern, Dixon, Ghinculov ‘01.
– pp→ 2 jets, Anastasiou, Glover, Oleari, Tejeda-Yeomans ’01;

Bern, De Freitas, Dixon, Ghinculov, Wong ’01.
– e+e− → 3 jets, L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi ’02;

S. Moch, P. Uwer and S.W. ’02

– Higgs production, Harlander, Kilgore; Catani, de Florian, Grazzini; Anastasiou, Melnikov;

– Drell-Yan, Anastasiou, Dixon, Melnikov, Petriello; Ravindran, Smith, van Neerven

• Calculation of three-loop splitting functions S. Moch, J. Vermaseren and A. Vogt ’04;



Part II : Cancellation of divergences

• Infrared divergences at NLO

• Infrared divergences at NNLO

• Soft gluons



Infrared divergences and the Kinoshita-Lee-Nauenberg the orem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.
unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.

• Phase space slicing

– e+e−: W. Giele and N. Glover, (1992)

– initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)

– massive partons, fragmentation: S. Keller and E. Laenen, (1999)

• Subtraction method

– residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)

– dipole formalism: S. Catani and M. Seymour, (1996)

– massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)



Phase space slicing

Splits the integration of the real emission contribution into a region y > ymin and a
region y < ymin.

The former is free of singularities and the integration can be
performed numerically there.
In the latter the matrix element is approximated and the
integration over the one-parton phase space is performed
analytically.

ymin
ycut

• Introduces an error of order ymin.

• The first region gives a contribution of the form

aln2ymin+blnymin+c

The logarithms ln2ymin and lnymin cancel against the contribution from the second
region.

• But: Cancelation happens only numerically!



The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as

σNLO =
Z

n+1

dσR+
Z

n

dσV =
Z

n+1

(
dσR−dσA

)
+

Z

n



dσV +
Z

1

dσA





The approximation dσA has to fulfill the following requirements:

• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour in D dimensions as dσR itself.
Thus, dσA acts as a local counterterm for dσR and one can safely perform the limit
ε → 0.

• Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.



An example: e+e− → 2 jets at NLO

The matrix element squared for γ∗ → qgq̄:

M3 = 8(1− ε)
[

2
s2

123

s12s23
−2

s123

s12
−2

s123

s23
+(1− ε)

s23

s12
+(1− ε)

s12

s23
−2ε

]

The dipole subtraction terms:

D12,3+D32,1 = 8(1− ε)
{[

2
s2

123

s12(s12+s23)
−2

s123

s12
+(1− ε)

s23

s12

]

+

[

2
s2

123

s23(s12+s23)
−2

s123

s23
+(1− ε)

s12

s23

]}

The antenna subtraction term:

A123 = D12,3+D32,1 s12

s23

smin



Spin and colour correlations

• In the soft limit, amplitudes factorize completely in spin space, but colour
correlations remain.

• In the collinear limit, amplitudes factorize completely in colour space, but spin
correlations remain.

Spin-correlations occur for the splittings g→ gg and g→ qq̄, but not for q→ qg.

If one uses spin-averaged subtraction terms, one has a local counterterm only after
the average over the azimuthal angle.

Alternative: Use combination of subtraction and slicing.



The subtraction method at NNLO

• Singular behaviour

– Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,

Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower ’99

– Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, ’99

• Extension of the subtraction method to NNLO Kosower; S.W.; Kilgore; Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;

• Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;

• Applications:

– pp→W, Anastasiou, Dixon, Melnikov, Petriello ’03,

– pp→ H, Anastasiou, Dixon, Melnikov, Petriello ’05, Catani, Grazzini ’08

– e+e− → 2 jets, Anastasiou, Melnikov, Petriello ’04, S.W. ’06

– e+e− → 3 jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich ’07, S.W. ’08



Antenna subtraction terms

i

j

k

ĩ

k̃

NLO

i

j

k

ĩ

k̃

one-loop unresolved

i
j

k
l

ĩ

l̃

double unresolved

Gehrmann-De Ridder, Gehrmann, Glover, ’05

At NNLO also iterated structures:

i

j

k

l

ĩ
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colour connected
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l
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ĩ

k̃

m̃

almost colour connected



The subtraction method at NNLO

5 partons : dσ(0)
5 −dαNLO−dαNNLO+dαiterated−dαalmost−dαso f t,

4 partons : dσ(1)
4 +dαNLO−dαloop−dαiterated−dαproduct+dαalmost+dαso f t,

3 partons : dσ(2)
3 +dαNNLO+dαloop+dαproduct.

dαNNLO contains the four-parton antenna functions,

dαalmost contains a product of two three-parton antenna functions,

dαiterated is the approximation of dαNLO,

dαloop is the approximation of the one-loop matrix elements,

dαproduct contains a product of two three-parton antenna functions, both with 4 → 3
parton kinematics

dαso f t is an additional subtraction term due to soft gluons, occuring in processes with
three or more hard partons.



Soft gluons

4 partons:

1
2π

2π
Z

0

dφ ln

(
(1+c j)(1−c2)

2(1−c2c j −s2sj cosφ)

)

=

= ln

(
1−c2c j +(c j −c2)

1−c2c j + |c j −c2|

)

.

Non-zero for cj < c2 !

The explicit poles in the four-
parton configuration have to
cancel: dαso f t is needed.

The five-parton contribution has
to be independent of the slicing
parameter: −dαso f t is needed.
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Part III : Numerical results

• Infrared-safe observables

• Eventshapes and jets

• Results



Infrared-safe observables and event shapes

Observables which do not depend on long-distance behaviour, are called infrared-safe
observables and can reliably be calculated in perturbation theory.

Example: Thrust

T = max
n̂

∑
i
|~pi · n̂|

∑
i
|~pi|

In particular, it is required that they do not change value, if infinitessimal soft or collinear
particles are added.

At NNLO:

Single unresolved : On+1(p1, ..., pn+1) → On(p′1, ..., p′n),

Double unresolved : On+2(p1, ..., pn+2) → On(p′1, ..., p′n).



Jet algorithms

Ingredients:

• a resolution variable yi j where a smaller yi j means that particles i and j are “closer”;

yDURHAM
i j =

2(1−cosθi j )

Q2
min(E2

i ,E
2
j )

• a combination procedure which combines two four-momenta into one;

pµ
(i j ) = pµ

i + pµ
j .

• a cut-off ycut which provides a stopping point for the algorithm.



Results for the three-jet rate in electron-positron annihi lation

Aleph data
NNLO
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Durham three-jet rate
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S.W., arXiv:0807.3241



Results for the thrust distribution

Aleph data
NNLO
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LO

Thrust
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preliminary !



Summary

• e+e− → 3 jets at NNLO very useful for αs

• Second independent calculation

• Challenging aspects due to three hard coloured particles


