NNLO corrections to three-jet production in electron-positron annihilation

Stefan Weinzierl

Universität Mainz

Introduction: The strong coupling constant
I.: One- and two-loop amplitudes
II:
Cancellation of divergences
Numerical results

The strong coupling

The fundamental parameter of QCD:
The strong coupling α_{s}.
Objectives for LHC:
Extract fundamental quantities like α_{s} to high precision.
α_{s} can be measured in a variety of processes:
Deep inelastic scattering, τ-decays, heavy quarkonium, electron-positron annihilation, hadron collisions, ...

(S. Bethke, '06.)

The strong coupling from electron-positron annihilation

One possibility: Extract α_{s} from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph experiment at LEP:

Perturbation theory

Due to the smallness of the coupling constants α and α_{s}, we may compute an observable at high energies reliable in perturbation theory,

$$
\langle O\rangle=\frac{\alpha_{s}}{2 \pi}\langle O\rangle_{L O}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\langle O\rangle_{N L O}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3}\langle O\rangle_{N N L O}+\ldots
$$

Feynman diagrams contributing to the leading order:

Leading order proportional to α_{s} !

Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves with the order to which the calculation is done.

At leading order:

At next-to-leading order:

At next-to-next-to-leading order:

The master formula for the calculation of observables

$$
\langle O\rangle=\underbrace{\frac{1}{2 K(s)}}_{\text {fuxx acacor }} \underbrace{\frac{1}{\left(2 J_{1}+1\right)} \frac{1}{\left(2 J_{2}+1\right)}}_{\text {average overi intial spins }} \sum_{n} \underbrace{\int d \phi_{n-2}}_{\text {integra overphases space }} O\left(p_{1}, \ldots, p_{n}\right) \sum_{\text {neilicity }} \underbrace{\left|\mathcal{A}_{n}\right|^{2}}_{\text {amplitude }}
$$

Phase-space integration performed numerically by Monte-Carlo methods.
Observable infrared-safe: $\quad O_{n+1}\left(p_{1}, \ldots, p_{n+1}\right) \rightarrow O_{n}\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right), \quad($ Single unresolved)

$$
O_{n+2}\left(p_{1}, \ldots, p_{n+2}\right) \rightarrow O_{n}\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right) . \quad \text { (Double unresolved) }
$$

Amplitudes \mathcal{A}_{n} calculated in perturbation theory.

Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):

$$
\begin{aligned}
& \left|\mathcal{A}_{n}\right|^{2}=\underbrace{\mathcal{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(0)}}_{\text {Born }}+\underbrace{\left(\mathscr{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(1)}+\mathscr{A}_{n}^{(1)^{*}} \mathscr{A}_{n}^{(0)}\right)}_{\text {virtual }}+\underbrace{\left(\mathscr{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(2)}+\mathscr{A}_{n}^{\left.(2)^{*} \mathscr{A}_{n}^{(0)}+\mathscr{A}_{n}^{(1)^{*}} \mathscr{A}_{n}^{(1)}\right)}\right.}_{\text {two-loop and loop-loop }} \begin{array}{l}
\left|\mathcal{A}_{n+1}\right|^{2}=\underbrace{\mathcal{A}_{n+1}^{(0)}{ }^{*} \mathcal{A}_{n+1}^{(0)}}_{\text {real }}+\underbrace{\left(\mathscr{A}_{n+1}^{\left.(0)^{*} \mathscr{A}_{n+1}^{(1)}+\mathscr{A}_{n+1}^{(1)} \mathscr{A}_{n+1}^{(0)}\right)}\right.}_{\text {loop+unresolved }}, \\
\left|\mathcal{A}_{n+2}\right|^{2}=\underbrace{\mathcal{A}_{n+2}^{(0)}{ }^{*} \mathcal{A}_{n+2}^{(0)}}_{\text {double unresolved }}
\end{array} .
\end{aligned}
$$

$\mathscr{A}_{n}^{(l)}$: amplitude with n external particles and l loops.

Challenges

What are the bottle-necks?

- Length: Perturbative calculations lead to expressions with a huge number of terms.
- Integrals: At one-loop and beyond, the occuring integrals cannot be simply looked up in an integral table.
- Divergences: At NLO and beyond, infrared divergences occur in intermediate stages, if massless particles are involved.
- Numerics: Stable and efficient numerical methods are required for the Monte Carlo integration.

Part I : One- and two-loop amplitudes

- One-loop amplitudes
- Two-loop integrals
- Polylogarithms

The amplitudes for $e^{+} e^{-} \rightarrow 3$ jets at NNLO

A NNLO calculation of $e^{+} e^{-} \rightarrow 3$ jets requires the following amplitudes:

- Born amplitudes for $e^{+} e^{-} \rightarrow 5$ jets:
F. Berends, W. Giele and H. Kuijf, 1989;
K. Hagiwara and D. Zeppenfeld, 1989.
- One-loop amplitudes for $e^{+} e^{-} \rightarrow 4$ jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;
J. Campbell, N. Glover and D. Miller, 1996.
- Two-loop amplitudes for $e^{+} e^{-} \rightarrow 3$ jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;
S. Moch, P. Uwer and S.W., 2002.

Unitarity method

Problem: The one-loop amplitudes for $e^{+} e^{-} \rightarrow 4$ partons depend on many kinematical invariants $s_{i j}$, resulting in lengthy expressions.

The cut-construction simplifies the calculation of one-loop amplitudes, as cancellations occur already inside $A_{L}^{\text {tree }}$ and $A_{R}^{\text {tree }}$.
Bern, Dixon, Dunbar and Kosower, 1994

$$
\begin{aligned}
A^{1-\text { loop }}= & \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k_{1}^{2}+i \varepsilon} \frac{1}{k_{2}^{2}+i \varepsilon} A_{L}^{\text {tree }} A_{R}^{\text {tree }} \\
& + \text { cut free pieces }
\end{aligned}
$$

The cut technique has recently been refined: Prospects for multi-leg NLO calculation for the LHC.

Britto, Cachazo, Feng, Bern, Dixon, Kosower, Forde, Berger, Mastrolia, Anastasiou, Kunszt, Ossola, Papadopoulos, Pittau, Bidder, Bjerrum-Bohr, Dunbar, ...

The calculation of two-loop integrals

- Techniques to calculate two-loop integrals
- Mellin-Barnes transformation, Smirnov'99, Tausk'99.
- Differential equations, Gehrmann, Remiddi ' 00 .
- Nested sums, Moch, Uwer, S.w. '01.
- Sector decomposition (numerical), Binoth, Heinrich, '00.
- Methods to reduce the work-load:
- Integration-by-parts, Chetyrkin, Kataev, Tkachov '81.
- Reduction algorithms, Tarasov '96, Laporta '01.
- Cut technique Bern, Dixon, Kosower, '00

The double-box integral

Two-loop amplitudes for $2 \rightarrow 2$ processes involve the double-box integral:

- First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.
- Calculation based on Mellin-Barnes representation.
- Result expressed in harmonic polylogarithms.

$$
H_{m_{1}, \ldots, m_{k}}(x)=\sum_{i_{1}>i_{2}>\ldots>i_{k}>0} \frac{x_{1}^{i_{1}}}{i_{1}^{m_{1}} i_{2}^{m_{2}} \ldots i_{k}^{m_{k}}}, \quad x=\frac{s}{t} .
$$

Multiple polylogarithms

- Definition:

$$
\mathrm{Li}_{m_{1}, \ldots, m_{k}}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i_{1}>i_{2}>\ldots>i_{k}>0} \frac{x_{1}^{i_{1}}}{i_{1}^{m_{1}}} \frac{x_{2}^{i_{2}}}{i_{2}^{m_{2}}} \cdots \frac{x_{k}^{i_{k}}}{i_{k}^{m_{k}}} .
$$

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

- Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs (Remiddi and Vermaseren, Gehrmann and Remiddi).
- Have also an integral representation.
- Obey two Hopf algebras (Moch, Uwer, S.W.).
- Can be evaluated numerically for all complex values of the arguments (Gehrmann and Remiddi, Vollinga and S.W.).

The integral representation for multiple polylogarithms

Define the functions G by

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)=\int_{0}^{y} \frac{d t_{1}}{t_{1}-z_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-z_{2}} \ldots \int_{0}^{t_{k-1}} \frac{d t_{k}}{t_{k}-z_{k}}
$$

Scaling relation:

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)=G\left(x z_{1}, \ldots, x z_{k} ; x y\right)
$$

Short hand notation:

$$
G_{m_{1}, \ldots, m_{k}}\left(z_{1}, \ldots, z_{k} ; y\right)=G(\underbrace{0, \ldots, 0}_{m_{1}-1}, z_{1}, \ldots, z_{k-1}, \underbrace{0 \ldots, 0}_{m_{k}-1}, z_{k} ; y)
$$

Conversion to the previous noation:

$$
\mathrm{Li}_{m_{1}, \ldots, m_{k}}\left(x_{1}, \ldots, x_{k}\right)=(-1)^{k} G_{m_{1}, \ldots, m_{k}}\left(\frac{1}{x_{1}}, \frac{1}{x_{1} x_{2}}, \ldots, \frac{1}{x_{1} \ldots x_{k}} ; 1\right) .
$$

Shuffle algebra versus quasi-shuffle algebra

Quasi-shuffle algebra from the sum representation:

$$
\operatorname{Li}_{m_{1}}\left(x_{1}\right) \operatorname{Li}_{m_{2}}\left(x_{2}\right)=\operatorname{Li}_{m_{1}, m_{2}}\left(x_{1}, x_{2}\right)+\operatorname{Li}_{m_{2}, m_{1}}\left(x_{2}, x_{1}\right)+\operatorname{Li}_{m_{1}+m_{2}}\left(x_{1} x_{2}\right) .
$$

Shuffle algebra from the integral representation:

$$
G\left(z_{1} ; y\right) G\left(z_{2} ; y\right)=G\left(z_{1}, z_{2} ; y\right)+G\left(z_{2}, z_{1} ; y\right)
$$

The calculation of two-loop amplitudes

- Calculation of two-loop amplitudes
- Bhabha, Bern, Dixon, Ghinculov 01.
- $p p \rightarrow 2$ jets, Anastasiou, Glover, Oleari, Tejeda-Yeomans '01; Bern, De Freitas, Dixon, Ghinculov, Wong '01.
$-e^{+} e^{-} \longrightarrow 3$ jets, L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi '02; S. Moch, P. Uwer and S.W. '02
- Higgs production, Harlander, Kilgore; Catani, de Florian, Grazzini; Anastasiou, Melnikov;
- Drell-Yan, Anastasiou, Dixon, Melnikov, Petriello; Ravindran, Smith, van Neerven
- Calculation of three-loop splitting functions s. Moch, J. Vermaseren and A. Vogt '04;

Part II : Cancellation of divergences

- Infrared divergences at NLO
- Infrared divergences at NNLO
- Soft gluons

Infrared divergences and the Kinoshita-Lee-Nauenberg theorem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.
For each IR divergence there is a corresponding divergence with the opposite sign in the real emission amplitude, when particles becomes soft or collinear (e.g. unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states degenerate according to some resolution criteria, will be finite.

General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the cancelation of infrared divergencies.

- Phase space slicing
$-e^{+} e^{-}$: W. Giele and N. Glover, (1992)
- initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)
- massive partons, fragmentation: s. Keller and E. Laenen, (1999)
- Subtraction method
- residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)
- dipole formalism: s. Catani and M. Seymour, (1996)
- massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)

Phase space slicing

Splits the integration of the real emission contribution into a region $y>y_{\text {min }}$ and a region $y<y_{\text {min }}$.

The former is free of singularities and the integration can be performed numerically there.
In the latter the matrix element is approximated and the integration over the one-parton phase space is performed analytically.

- Introduces an error of order $y_{\text {min }}$.
- The first region gives a contribution of the form

$$
a \ln ^{2} y_{\text {min }}+b \ln y_{\text {min }}+c
$$

The logarithms $\ln ^{2} y_{\min }$ and $\ln y_{\min }$ cancel against the contribution from the second region.

- But: Cancelation happens only numerically!

The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is rewritten as

$$
\sigma^{N L O}=\int_{n+1} d \sigma^{R}+\int_{n} d \sigma^{V}=\int_{n+1}\left(d \sigma^{R}-d \sigma^{A}\right)+\int_{n}\left(d \sigma^{V}+\int_{1} d \sigma^{A}\right)
$$

The approximation $d \sigma^{A}$ has to fulfill the following requirements:

- $d \sigma^{A}$ must be a proper approximation of $d \sigma^{R}$ such as to have the same pointwise singular behaviour in D dimensions as $d \sigma^{R}$ itself.
Thus, $d \sigma^{A}$ acts as a local counterterm for $d \sigma^{R}$ and one can safely perform the limit $\varepsilon \rightarrow 0$.
- Analytic integrability in D dimensions over the one-parton subspace leading to soft and collinear divergences.

An example: $e^{+} e^{-} \rightarrow \mathbf{2}$ jets at NLO

The matrix element squared for $\gamma^{*} \rightarrow q g \bar{q}$:

$$
M_{3}=8(1-\varepsilon)\left[2 \frac{s_{123}^{2}}{s_{12} s_{23}}-2 \frac{s_{123}}{s_{12}}-2 \frac{s_{123}}{s_{23}}+(1-\varepsilon) \frac{s_{23}}{s_{12}}+(1-\varepsilon) \frac{s_{12}}{s_{23}}-2 \varepsilon\right]
$$

The dipole subtraction terms:

$$
\begin{aligned}
& \mathcal{D}_{12,3}+\mathcal{D}_{32,1}=8(1-\varepsilon) \\
& \quad\left\{\left[2 \frac{s_{123}^{2}}{s_{12}\left(s_{12}+s_{23}\right)}-2 \frac{s_{123}}{s_{12}}+(1-\varepsilon) \frac{s_{23}}{s_{12}}\right]\right. \\
& \left.\quad+\left[2 \frac{s_{123}^{2}}{s_{23}\left(s_{12}+s_{23}\right)}-2 \frac{s_{123}}{s_{23}}+(1-\varepsilon) \frac{s_{12}}{s_{23}}\right]\right\}
\end{aligned}
$$

The antenna subtraction term:

$$
\mathcal{A}_{123}=\mathcal{D}_{12,3}+\mathcal{D}_{32,1}
$$

Spin and colour correlations

- In the soft limit, amplitudes factorize completely in spin space, but colour correlations remain.
- In the collinear limit, amplitudes factorize completely in colour space, but spin correlations remain.

Spin-correlations occur for the splittings $g \rightarrow g g$ and $g \rightarrow q \bar{q}$, but not for $q \rightarrow q g$.
If one uses spin-averaged subtraction terms, one has a local counterterm only after the average over the azimuthal angle.

Alternative: Use combination of subtraction and slicing.

The subtraction method at NNLO

- Singular behaviour
- Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell, Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower '99
- Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore, Schmidt, Kosower, Uwer, Catani, Grazzini, '99
- Extension of the subtraction method to NNLO Kosower; s.W.; Kilgore; Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;
- Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;
- Applications:
- $p p \rightarrow W$, Anastasiou, Dixon, Melnikov, Petriello '03,
- $p p \rightarrow H$, Anastasiou, Dixon, Melnikov, Petriello ’05, Catani, Grazzini '08
$-e^{+} e^{-} \longrightarrow 2$ jets, Anastasiou, Melnikov, Petriello '04, S.W. '06
$-e^{+} e^{-} \longrightarrow 3$ jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07, S.W. '08

Antenna subtraction terms

one-loop unresolved double unresolved

Gehrmann-De Ridder, Gehrmann, Glover, '05

At NNLO also iterated structures:

colour connected

almost colour connected

The subtraction method at NNLO

5 partons : $\quad d \sigma_{5}^{(0)}-d \alpha^{N L O}-d \alpha^{N N L O}+d \alpha^{i \text { iterated }}-d \alpha^{\text {almost }}-d \alpha^{\text {soft }}$,
4 partons : $\quad d \sigma_{4}^{(1)}+d \alpha^{N L O}-d \alpha^{\text {loop }}-d \alpha^{\text {iterated }}-d \alpha^{\text {product }}+d \alpha^{\text {almost }}+d \alpha^{\text {soft }}$,
3 partons: $\quad d \sigma_{3}^{(2)}+d \alpha^{N N L O}+d \alpha^{\text {loop }}+d \alpha^{\text {product }}$.
$d \alpha^{N N L O}$ contains the four-parton antenna functions,
$d \alpha^{\text {almost }}$ contains a product of two three-parton antenna functions, $d \alpha^{\text {iterated }}$ is the approximation of $d \alpha^{N L O}$,
$d \alpha^{\text {loop }}$ is the approximation of the one-loop matrix elements,
$d \alpha^{\text {product }}$ contains a product of two three-parton antenna functions, both with $4 \rightarrow 3$ parton kinematics
$d \alpha^{s o f t}$ is an additional subtraction term due to soft gluons, occuring in processes with three or more hard partons.

Soft gluons

4 partons:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \ln \left(\frac{\left(1+c_{j}\right)\left(1-c_{2}\right)}{2\left(1-c_{2} c_{j}-s_{2} s_{j} \cos \phi\right)}\right)= \\
& =\ln \left(\frac{1-c_{2} c_{j}+\left(c_{j}-c_{2}\right)}{1-c_{2} c_{j}+\left|c_{j}-c_{2}\right|}\right)
\end{aligned}
$$

Non-zero for $c_{j}<c_{2}$!
The explicit poles in the fourparton configuration have to cancel: $d \alpha^{\text {soft }}$ is needed.

The five-parton contribution has to be independent of the slicing parameter: $-d \alpha^{\text {soft }}$ is needed.

5 partons:

Part III : Numerical results

- Infrared-safe observables
- Eventshapes and jets
- Results

Infrared-safe observables and event shapes

Observables which do not depend on long-distance behaviour, are called infrared-safe observables and can reliably be calculated in perturbation theory.

Example: Thrust

$$
T=\max _{\hat{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \hat{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

In particular, it is required that they do not change value, if infinitessimal soft or collinear particles are added.

At NNLO:

Single unresolved: $O_{n+1}\left(p_{1}, \ldots, p_{n+1}\right) \rightarrow O_{n}\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$,
Double unresolved: $O_{n+2}\left(p_{1}, \ldots, p_{n+2}\right) \rightarrow O_{n}\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$.

Jet algorithms

Ingredients:

- a resolution variable $y_{i j}$ where a smaller $y_{i j}$ means that particles i and j are "closer";

$$
y_{i j}^{D U R H A M}=\frac{2\left(1-\cos \theta_{i j}\right)}{Q^{2}} \min \left(E_{i}^{2}, E_{j}^{2}\right)
$$

- a combination procedure which combines two four-momenta into one;

$$
p_{(i j)}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}
$$

- a cut-off $y_{\text {cut }}$ which provides a stopping point for the algorithm.

Results for the three-jet rate in electron-positron annihilation

Results for the thrust distribution

preliminary!

Summary

- $e^{+} e^{-} \rightarrow 3$ jets at NNLO very useful for α_{s}
- Second independent calculation
- Challenging aspects due to three hard coloured particles

