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Introduction: QCD amplitudes

• Pure Yang-Mills theory (“gluons only”):

– Self-interactions of massless gauge bosons.

• QCD (“gluons and quarks”):

– Massless gauge bosons plus fermions in the fundamental representation of the

gauge group.

– Flavour is conserved.

– The fermions may be massive.

Consider scattering amplitudes with n external particles (ng gluons, nq quarks, nq anti-

quarks).

n = ng+2nq.

In this talk: No loops, only legs!



Colour decomposition of QCD amplitudes

QCD amplitudes may be decomposed into sums of group-theoretical factors multiplied

by kinematic functions called primitive amplitudes.

Example: The n-gluon tree amplitude:

A
YM
n (1,2, ...,n) = gn−2 ∑

σ∈Sn/Zn

2 Tr(T aσ(1)...T aσ(n))
︸ ︷︷ ︸

colour factors

AYM
n (σ(1), ...,σ(n))
︸ ︷︷ ︸

primitive amplitudes

.

Properties of the primitive amplitudes:

• All group-theoretical factors have been stripped off.

• The primitive amplitudes are gauge-invariant.

• Each primitive amplitude has a fixed cyclic order of the external legs.



Feynman rules

Primitive amplitudes are calculated from cyclic-ordered Feynman rules:

= i [gµ1µ2 (p
µ3

1
− p

µ3

2
)+gµ2µ3 (p

µ1

2
− p

µ1

3
)+gµ3µ1 (p

µ2

3
− p

µ2

1
)] ,

= i [2gµ1µ3gµ2µ4 −gµ1µ2gµ3µ4 −gµ1µ4gµ2µ3] ,

= iγµ, = −iγµ.



Part I

BCJ relations



Pure Yang-Mills theory

How many independent primitive amplitudes are there for the n-gluon tree amplitude?

• There are n! external orderings.

• Cyclic invariance reduce the number to (n−1)!.

• The Kleiss-Kuijf relations reduce the number to (n−2)!.
Kleiss, Kuijf, 1989

• The Bern-Carrasco-Johansson relations reduce the number to (n−3)!.
Bern, Carrasco, Johansson, 2008

Basis of independent amplitudes consists of (n−3)! elements.



Relations among pure gluon amplitudes

• Cyclic invariance:

AYM
n (1,2, ...,n) = AYM

n (2, ...,n,1).

Proof: trivial

• Kleiss-Kuijf relations:

AYM
n (1,~β,2,~α) = (−1)n−2− j ∑

σ∈~α�~βT

AYM
n (1,2,σ1, ...,σn−2).

Reason: anti-symmetry of the vertices

• Fundamental Bern-Carrasco-Johansson relations:

n−1

∑
i=2

(
n

∑
j=i+1

2p2p j

)

AYM
n (1,3, ..., i,2, i+1, ...,n−1,n) = 0.

Reason: Jacobi-like identities for kinematical numerators



Jacobi-like identities for kinematical numerators

Colour-kinematics duality states that gauge theory amplitudes can be brought in a form

A
YM
n = ign−2 ∑

trivalent graphs G

C (G)N (G)

D(G)
, D(G) = ∏

edges e

se,

where the kinematical numerators N(G) satisfy Jacobi-like relations, whenever the

corresponding colour factors C(G) do:

1 2 3

4

+

2 3 1

4

+

3 1 2

4

= 0.

C (G1)+C (G2)+C (G3) = 0 ⇒ N (G1)+N (G2)+N (G3) = 0

Bern, Carrasco, Johansson, 2010



Relations for primitive QCD amplitudes

Consider now primitive tree amplitudes with gluons and quarks. What are the

relations?

• The trivial and obvious relations:

– Cyclic invariance

– Kleiss-Kuijf relations

– No-crossed-fermion-lines relation (new!)

• The non-trivial relations:

– Fundamental BCJ relations for gluons:

n−1

∑
i=2

(
n

∑
j=i+1

2p2p j

)

AQCD
n (1,3, ..., i,2g, i+1, ...,n−1,n) = 0.



Relations for primitive QCD amplitudes

• BCJ relations for primitive QCD tree amplitudes:

– Conjectured by H. Johansson and A. Ochirov, July 2015.

– Proven by L. de la Cruz, A. Kniss and S.W., August 2015.

– Proof based on BCFW recursion.

• Size of basis:

Nbasis =

{
(n−3)!, nq ∈ {0,1},
(n−3)!

2(nq−1)
nq!

, nq ≥ 2.

• Example: 3 quark pairs:

A6(q1,q2,q3, q̄3, q̄2, q̄1), A6(q1,q3, q̄3,q2, q̄2, q̄1), A6(q1,q3,q2, q̄2, q̄3, q̄1), A6(q1,q2, q̄2,q3, q̄3, q̄1).

Compare 6 gluons:

A6(1,2,3,4,5,6), A6(1,3,4,2,5,6), A6(1,4,2,3,5,6), A6(1,4,3,2,5,6), A6(1,3,2,4,5,6), A6(1,2,4,3,5,6).



Part II

CHY representation



The CHY representation of pure Yang-Mills amplitudes

The n-gluon tree amplitude with external ordering w and helicity configuration ε has a

representation in the form of a global residue:

AYM
n (w, p,ε) = i ∑

solutions j

J

(

z( j), p

)

C

(

w,z( j)
)

E

(

z( j), p,ε
)

.

The sum is over the inequivalent solutions z = (z1,z2, ...,zn) of the scattering equations

fi (z, p) =
n

∑
j=1, j 6=i

2pi · p j

zi− z j

.

The function C
(
w,z( j)

)
encodes the information on the external ordering,

the function E
(
z( j), p,ε

)
encodes the information on the external polarisations.

Cachazo, He, Yuan, 2013



The CHY representation of QCD amplitudes

Is there a similar representation for primitive QCD tree amplitudes, which separates

the information on the ordering from the one on the polarisations? Yes!

AQCD
n (w, p,ε) = i ∑

solutions j

J
(

z( j), p
)

Ĉ
(

w,z( j)
)

Ê
(

z( j), p,ε
)

.

• Construction of Ĉ
(
w,z( j)

)
based on amplitude relations.

• Construction of Ê
(
z( j), p,ε

)
based on pseudo-inverse matrices.

• Factorisation not unique.

• Valid for massless and massive quarks.

L. de la Cruz, A. Kniss and S.W., 2015



Part III

KLT relations



Perturbative gravity

Let us consider (small) fluctuations around the flat Minkowski metric

gµν = ηµν+κhµν,

with κ =
√

32πG and consider an effective theory defined by the Einstein-Hilbert

Lagrangian

LEH = − 2

κ2

√−gR.

The field hµν describes a graviton.

The inverse metric gµν and
√−g are infinite series in hµν, therefore

LEH+LGF =
∞

∑
n=2

L
(n),

where L (n) contains exactly n fields hµν.

Thus the Feynman rules will give an infinite tower of vertices.



Amplitudes for bi-adjoint scalars, gluons and gravitons

The n-particle double-ordered scalar amplitude mn with three-valent vertices:

mn (w, w̃, p) = i ∑
solutions j

J
(

z( j), p
)

C
(

w,z( j)
)

C
(

w̃,z( j)
)

The n-gluon primitive amplitude AYM
n :

AYM
n (w, p,ε) = i ∑

solutions j

J
(

z( j), p
)

C
(

w,z( j)
)

E
(

z( j), p,ε
)

The n-graviton amplitude Mn:

Mn (p,ε, ε̃) = i ∑
solutions j

J
(

z( j), p
)

E
(

z( j), p,ε
)

E
(

z( j), p, ε̃
)

Cachazo, He and Yuan, 2013



Graviton amplitudes from gluon amplitudes

• CHY representation:

Mn (p,ε, ε̃) = i ∑
solutions j

J

(

z( j), p

)

E

(

z( j), p,ε
)

E

(

z( j), p, ε̃
)

Cachazo, He and Yuan, 2013

• Colour-kinematics duality:

Mn (p,ε, ε̃) = (−1)n−3
i ∑
trivalent graphs G

N (G)N (G)

D(G)

Bern, Carrasco,Johansson, 2010

• KLT relations:

Mn (p,ε, ε̃) = −i ∑
w,w̃∈B

AYM
n (p,w,ε) Sww̃ AYM

n (p, w̃, ε̃)

Kawai, Lewellen, Tye, 1986



KLT relations

Recall: mn (w, w̃, p) double-ordered scalar amplitude with three-valent vertices:

Define (n−3)!× (n−3)!-dimensional matrix mww̃ by

mww̃ = mn (w, w̃, p) .

Define KLT-matrix as the inverse of the matrix m:

S = m−1

The matrix S enters

Mn (p,ε, ε̃) = −i ∑
w,w̃∈B

AYM
n (p,w,ε) Sww̃ AYM

n (p, w̃, ε̃)

Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove, 2010, Cachazo, He and Yuan, 2013, de la Cruz, Kniss, S.W., 2016



Generalisation

• Let’s try the following:

gluon amplitudes
double copy−−−−−−−−−−−−−−→ graviton amplitudes

extension



y

QCD amplitudes
double copy−−−−−−−−−−−−−−→ ???

• Double copy of QCD amplitudes:

– Generalised KLT relations

– Colour-kinematics duality



Generalised KLT relations

Let us now consider double-ordered amplitudes mflav
n (w, w̃, p) with un-flavoured

massless scalars (as before) and flavoured scalars (massless or massive).

Flavour is conserved. Define Nbasis×Nbasis-dimensional matrix mflav
ww̃ by

mflav
ww̃ = mflav

n (w, w̃, p) .

Define generalised KLT-matrix as the inverse of the matrix mflav:

Sflav =
(
mflav

)−1

and

Mmethod 1

n (p,ε, ε̃) = −i ∑
w,w̃∈B

AQCD
n (p,w,ε) Sflav

ww̃ AQCD
n (p, w̃, ε̃)

de la Cruz, Kniss, S.W., 2016



Colour-kinematics duality for QCD amplitudes

Bring QCD amplitudes into the form

AQCD
n (p,w,ε) = i ∑

G∈T (w)

N (G)

D(G)
, D(G) = ∏

e∈E(G)

(
se−m2

e

)
,

where the kinematical numerators N(G) satisfy Jacobi-like relations, whenever the

corresponding colour factors do.

Then

Mmethod 2

n (p,ε, ε̃) = (−1)n−3
i ∑

G∈U

N (G)N (G)

D(G)
.

Johansson, Ochirov, 2014



Conjecture

• The two methods compute the same quantity:

Mmethod 1

n (p,ε, ε̃) = Mmethod 2

n (p,ε, ε̃) .

• M
method 1/2

n (p,ε, ε̃) has properties of scattering amplitudes:

– Invariant under (generalised) gauge transformations.

– The only poles are single poles in the allowed factorisation channels.

• Evidence: All amplitudes with n ≤ 8.

de la Cruz, Kniss, S.W., 2016



Spin states

Gluons and quarks have both two spin states, which we may label by + and −.

Double copies of gluons and quarks have then four spin states:

++, +−, −+, −− .

Double copy of gluons:

Graviton corresponds to ++ and −−.

The states +− and −+ correspond to a dilaton and an antisymmetric tensor.

Pure graviton amplitudes: No propagation of internal +− or −+ states.

This is no longer true with massive flavours!



Part IV

Speculations



Interpretation

Let’s re-insert the coupling:

Mn (p,ε, ε̃) =
(κ

4

)n−2

Mmethod 1/2

n (p,ε, ε̃) , κ =
√

32πGN.

• Particles interact with gravitational strength.

• Flavoured particles may be massive and non-relativistic.

• All Born scattering amplitudes may be computed.

This defines a model for massive non-relativistic particles interacting only with

gravitational strength.



Comments

• Classical limit of massive amplitudes corresponds to an attractive 1/r-potential.

Effective coupling larger by a factor 2 due to exchange of +− and −+ states.

• Might want to remove dilaton/antisymmetric tensor with the help of ghosts.

Johansson, Ochirov, 2014

• All evindence on dark matter up to now gravitational.

Most experimental searches assume additional weak-scale interactions.

Model has only gravitational interactions.

• Open question: Explanation of the relic abundance.

• Independent of SUSY and strings.



Conclusions

• Basis of independent primitive QCD tree amplitudes: BCJ relations

• Separation helicity information / ordering information: CHY representation

• Double copies of QCD particles: KLT relations

• Double copies of massive fermions: “Dark matter amplitudes”

• ... many open questions ...


