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Quantum field theory

• Quantum field theory is the framework for a wide range of physical phenomena.

• At weak coupling we may use perturbation theory.

• Individual terms in the perturbative expansion organised by Feynman diagrams.

• Beyond leading order we get Feynman integrals.

Restrictions for this talk:

- Feynman integrals in momentum space

- Divergent integrals regulated by dimensional regularisation, for example space-time dimension D =

4−2ε with ε infinitesimal.



Experiments in high-energy physics



Examples of applications of perturbative techniques

• High-energy experiments: Precision physics at the Large Hadron Collider (LHC)

involving the heaviest particles of the Standard Model (top, Higgs, W - and Z-boson)

allows us to probe scales beyond the centre-of-mass energy of 14 TeV.

• Low-energy experiments: The Moller experiment at Jefferson lab or the P2

experiment at MESA/Mainz measure the weak mixing angle at low energies to high

precision and are therefore sensitive to new physics at TeV-scales complementary

to LHC searches.

• Gravitational waves: The inspiral phase of a black-hole merger is described by

perturbation theory in gravity.

• Spectroscopy: Measurements of the Lamb shift can be used to infer the proton

charge radius. The Lamb shift is an effect of quantum electrodynamics.



Examples of Feynman diagrams

Higgs decay: Møller scattering:
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Highlights of perturbative calculations

• Beta-function in QCD to five loops

Herzog, Ruijl, Ueda, Vermaseren, Vogt, 17;

Luthe, Maier, Marquard, Schröder, ’17

• Anomalous magnetic moment of the electron in QED to five loops

Kinoshita et al., ’17

Laporta, ’17 (four loops)

• Higgs boson production through gluon fusion to N3LO QCD

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, ’15 (large mt-limit)



State-of-the-art

Despite these impressive calculations, let’s ask a different question:

To which loop order can we calculate any Feynman integral?

Here the answer is more modest:

• We can calculate any one-loop integral.

• Already at two-loops there are integrals which are currently not known analytically.



Why?

Rough answer: The complexity of a Feynman integral increases not only with the loop

number, but also with the number of kinematic variables.

Detailed answer: We understand very well Feynman integrals related to the moduli

space M0,n.

From two-loop onwards, we encounter more complicated moduli spaces. The next

more complicated moduli space is M1,n.



Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves of genus

g with n marked points.

Recall:

real surface
z1

z2
z3 ⇔

z1

z2

z3

z1

z2
z3 ⇔ z2

z1

z3

complex curve



Part 2

No elliptic curves

(Introduction to Feynman integrals)



Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:

p1

p2 p3

p4

Next external particles with momenta p1, ..., pNext.

Momentum conservation: p1+ ...+ pNext = 0.



Feynman diagrams

We may compute the scattering amplitude within perturbation theory:
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p4
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Feynman integrals

Associate to a Feynman graph G with Next external lines, n internal lines and l loops

the set of Feynman integrals

Iν1ν2...νn =
∫

dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1
(

q2
j −m2

j

)ν j
,

with ν j ∈ Z.



Pinching of propagators

If for some exponent we have ν j = 0, the corresponding propagator is absent and the

topology simplifies:
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Integration by parts

Within dimensional regularisation we have for any loop momentum ki and v ∈
{p1, ..., pNext,k1, ...,kl}

∫
dDk1

(2π)D
...

dDkl

(2π)D

∂

∂k
µ
i

vµ
n

∏
j=1

1
(

q2
j −m2

j

)ν j
= 0.

Working out the derivatives leads to relations among integrals with different sets of

indices (ν1, ...,νn).

This allows us to express most of the integrals in terms of a few master integrals.

Tkachov ’81, Chetyrkin ’81



Laporta’s algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large

linear system of equations.

This system has a block-triangular structure, originating from subtopologies.

Order the integrals by complexity (more propagators ⇒ more difficult)

Solve the system bottom-up, re-using the results for the already solved sectors.

Laporta ’01



Differential equations

Let xk be a kinematic variable. Let Ii ∈ {I1, ..., INmaster} be a master integral. Carrying

out the derivative

∂

∂xk

Ii

under the integral sign and using integration-by-parts identities allows us to express

the derivative as a linear combination of the master integrals.

∂

∂xk

Ii =
Nmaster

∑
j=1

ai jI j

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)



Differential equations

Let us formalise this:

I = (I1, ..., INmaster) , set of master integrals,

x = (x1, ...,xNB
) , set of kinematic variables the master integrals depend on.

We obtain a system of differential equations

dI +AI = 0,

where A(ε,x) is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi.

The matrix-valued one-form A satisfies the integrability condition

dA+A∧A = 0 (flat Gauß-Manin connection).

Computation of Feynman integrals reduced to solving differential equations!



Simple differential equations

The system of differential equations is particular simple, if A is of the form

A = ε
NL

∑
k=1

Ck ωk,

where

- Ck is a Nmaster×Nmaster-matrix, whose entries are (rational or integer) numbers,

- the only dependence on ε is given by the explicit prefactor,

- the differential one-forms ωk have only simple poles.

Henn ’13



Chen’s iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path, write for

the pull-back of ω j to the interval [0,1]

f j (λ)dλ = γ∗ω j.

The iterated integral is defined by (Chen ’77)

Iγ (ω1, ...,ωk;λ) =

λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Computation of Feynman integrals reduced to transforming the system of differential

equations to a simple form!



Multiple polylogarithms

If all ωk’s are of the form

ωk = d ln pk (x) ,

where the pk’s are polynomials in the variables x, then (after factorisation of univariate

polynomials)

f j =
dλ

λ− z j

and all iterated integrals are multiple polylogarithms:

G(z1, ...,zk;λ) =

λ∫

0

dλ1

λ1− z1

λ1∫

0

dλ2

λ2− z2

...

λk−1∫

0

dλk

λk− zk



Example

Let us consider a simple example: One integral I in one variable x with boundary

condition I(0) = 1. Consider the differential equation

(d +A) I = 0, A = −ε d ln(x−1) .

Note that

d ln(x−1) =
dx

x−1

and

I(x) = 1+ εG(1;x)+ ε2G(1,1;x)+ ε3G(1,1,1;x)+ ...



Transformations

• Change the basis of the master integrals

I′ = UI,

where U(ε,x) is a Nmaster×Nmaster-matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

• Perform a coordinate transformation on the base manifold:

x′i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i, j=1

Ai

∂xi

∂x′j
dx′j.



Change of coordinates

A change of variables is already required for the one-loop two-loop

function, where one encounters (x = p2/m2)

dx
√

−x(4− x)
.

Here, a change of variables in the base manifold

x = −(1− x′)2

x′

will rationalise the square root and transform

dx
√

−x(4− x)
=

dx′

x′

p

m

m



Transformations in the case of multiple polylogarithm

• Change the basis of the master integrals

I′ = UI

Systematic algorithms if U is rational in the kinematic variables:

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee ’14; Meyer ’16; Prausa ’17; Gituliar,

Magerya ’17; Lee, Pomeransky ’17;

• Perform a coordinate transformation on the base manifold:

x′i = fi (x)

Algorithms to rationalise square roots:

Becchetti, Bonciani, ’17, Besier, van Straten, S.W., ’18, Besier, Wasser, S.W., ’19.



Part 3

One elliptic curve

(Feynman integrals beyond multiple polylogarithms)



Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!

p2 p2

p2

m2

p2

m2



The Picard-Fuchs operator

Let Ia be one of the master integrals {I1, ..., INmaster}. Choose a path γ : [0,1]→ M and

study the integral Ia as a function of the path parameter λ.

Instead of a system of Nmaster first-order differential equations

(d +A) I = 0,

we may equivalently study a single differential equation of order Nmaster

Nmaster

∑
j=0

p j (λ)
d j

dλ j
Ia = 0.

We may work modulo sub-topologies and ε-corrections:

L =
r

∑
j=0

p j (λ)
d j

dλ j
: L Ia = 0 mod (sub-topologies, ε-corrections)



Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

L =

(

ar(λ)
d

dλ
+br(λ)

)

...

(

a2(λ)
d

dλ
+b2(λ)

)(

a1(λ)
d

dλ
+b1(λ)

)

Iterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

ψ j(λ) = exp



−
λ∫

0

dκ
b j(κ)

a j(κ)



 .

Full solution given by iterated integrals

C1ψ1(λ)+C2ψ1(λ)

λ∫

0

dλ1

ψ2(λ1)

a1(λ1)ψ1(λ1)
+C3ψ1(λ)

λ∫

0

dλ1

ψ2(λ1)

a1(λ1)ψ1(λ1)

λ1∫

0

dλ2

ψ3(λ2)

a2(λ2)ψ2(λ2)
+ ...

Multiple polylogarithms are of this form.



Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

r

∑
j=0

p j(λ)
d j

dλ j

does not factor into linear factors.

The next more complicate case:

The differential operator contains one irreducible second-order differential operator

a j(λ)
d2

dλ2
+b j(λ)

d

dλ
+ c j(λ)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

[

k
(

1− k2
) d2

dk2
+
(

1−3k2
) d

dk
− k

]

f (k) = 0

is irreducible.

The solutions of the differential equation are K(k) and K(
√

1− k2), where K(k) is the

complete elliptic integral of the first kind:

K(k) =

1∫

0

dx
√

(1− x2)(1− k2x2)
.



An example from physics: The two-loop sunrise integral

Sν1ν2ν3
(D,x) =

1

2

3
x =

p2

m2

Picard-Fuchs operator for S111(2,x):

L = x(x−1) (x−9)
d2

dx2
+
(

3x2−20x+9
) d

dx
+(x−3)

(Broadhurst, Fleischer, Tarasov ’93)

Irreducible second-order differential operator.

Picard-Fuchs operator for the periods of a family of elliptic curves.



The elliptic curve

How to get the elliptic curve?

• From the Feynman graph polynomial:

−x1x2x3x+(x1 + x2+ x3)(x1x2+ x2x3 + x3x1) = 0

• From the maximal cut:

v2− (u− x)(u− x+4)
(

u2+2u+1−4x
)

= 0

Baikov ’96; Lee ’10; Kosower, Larsen, ’11; Caron-Huot, Larsen, ’12; Frellesvig, Papadopoulos, ’17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, ’17

The periods ψ1, ψ2 of the elliptic curve are solutions of the homogeneous differential

equation.

Adams, Bogner, S.W., ’13; Primo, Tancredi, ’16



Variables

Recall

x =
p2

m2
.

Set

τ =
ψ2

ψ1

, q = e2iπτ.

Change variable from x to τ (or q) (Bloch, Vanhove, ’13).



Bases of lattices

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as (ψ2,ψ1).
Convention: Normalise (ψ2,ψ1)→ (τ,1) where τ = ψ2/ψ1.

1

τ τ′

Change of basis:

(

ψ′
2

ψ′
1

)

=

(

a b

c d

)(

ψ2

ψ1

)

,

Transformation should be invertible:

(

a b

c d

)

∈ SL(2,Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d



The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or

a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ1/π from the master integrals
in the sunrise sector one obtains an ε-form:

I1 = 4ε2S110 (2−2ε,x) , I2 =−ε2 π

ψ1

S111 (2−2ε,x) , I3 =
1

ε

1

2πi

d

dτ
I2 +

1

24

(

3x2 −10x−9
)ψ2

1

π2
I2.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

A = ε
NL

∑
k=1

Ck ωk,

with ωk = (2π)2−k fk (τ)
dτ
2πi

and fk a modular form.

Adams, S.W., ’17, ’18



Feynman integrals evaluating to iterated integrals of modular

forms

This applies to a wider class of Feynman integrals:

p2 p2

p2

m2

p2

m2



The unequal mass sunrise integral

p

m1

m2

m3

There are 7 master integrals. After a redefinition of the basis of master integrals and a

change of coordiantes from (x,y1,y2) = (p2/m2
3,m

2
1/m2

3,m
2
2/m2

3) to (τ,z1,z2) one finds

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles,

where ωk involves either modular forms or functions appearing in the expansion of the

Kronecker function.

Bogner, Müller-Stach, S.W., ’19



Part 4

Several elliptic curves

(An example from top-pair production)



Kinematics

Iν1ν2ν3ν4ν5ν6ν7

(

D,
s

m2
,

t

m2

)

=
(

m2
)

7

∑
j=1

ν j−D
∫

dDk1

(2π)D

dDk2

(2π)D

7

∏
j=1

1

P
ν j

j

,

p1

p2 p3

p4

1

2

3
4

5

6
7

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2,

s = (p1+ p2)
2, t = (p2+ p3)

2.



Picard-Fuchs operator of elliptic curves

• Sunrise integral: An elliptic curve can be obtained either from

– Feynman graph polynomial

– maximal cut

The periods ψ1, ψ2 are the solutions of the homogeneous differential equations.

Adams, Bogner, S.W., ’13, ’14

• In general: The maximal cuts are solutions of the homogeneous differential

equations.

Primo, Tancredi, ’16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.



Three elliptic curves

E(a) : w2 = (z− t)
(

z− t +4m2
)(

z2+2m2z−4m2t +m4
)

E(b) : w2 = (z− t)
(

z− t +4m2
)

(

z2+2m2z−4m2t +m4− 4m2
(

m2− t
)2

s

)

E(c) : w2 = (z− t)
(

z− t +4m2
)

(

z2+
2m2 (s+4t)

(s−4m2)
z+

sm2
(

m2−4t
)

−4m2t2

s−4m2

)

Adams, Chaubey, S.W., ’18



Simple differential equations beyond multiple polylogarithms

Can the system of differential equations be brought into the form

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles

for Feynman integrals not evaluating to multiple polylogarithms?

Some explicit examples:

Integral ε-form simple poles comments

all multiple polylogarithms yes yes

equal mass sunrise yes yes NB = 1, 1 elliptic curve

unequal mass sunrise yes yes NB = 3, 1 elliptic curve

topbox yes ? NB = 2, 3 elliptic curves



Conclusions

• Feynman integrals important in many areas of physics.

• Feynman integrals evaluating to multiple polylogarithms related to iterated integrals

on M0,n.

• Feynman integrals may involve elliptic sectors from two loops onwards.

• There is a class of Feynman integrals evaluating to iterated integrals on M1,n.

• The planar double box integral relavant to tt̄-production with a closed top loop

depends on two variables and involves several elliptic sub-sectors. More than one

elliptic curve occurs.

• We may expect more results in the near future.



Outlook

Computation of Feynman integrals is trivial, as soon as the system of differential

equations is transformed to

A = ε
NL

∑
k=1

Ck ωk, with ωk only simple poles.

This form can be reached for

- many Feynman integrals evaluating to multiple polylogarithms

- a few non-trivial elliptic examples

Open question: Any Feynman integral can be obtained from a system of differential

equations of this form.

A constructive proof would gives us an algorithm to compute any Feynman integral.



Back-up slides



Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period ω of the function f is a constant such that for all z:

f (z+ω) = f (z)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),

• a simple lattice, Λ = {nω | n ∈ Z},

• a double lattice, Λ = {n1ω1+n2ω2 | n1,n2 ∈ Z}.



Examples of periodic functions

• Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi.

• Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(

1

(z+ω)2
− 1

ω2

)

, Λ = {n1ω1+n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.



Inverse functions

The corresponding inverse functions are in general multivalued functions.

• For the exponential function x = exp(z) the inverse function is the logarithm

z = ln(x) .

• For Weierstrass’s elliptic function x =℘(z) the inverse function is an elliptic integral

z =

∞∫

x

dt
√

4t3−g2t −g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.



Coordinates on the moduli space

In general: dimMg,n = 3g+n−3.

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)

In particular:

dimM1,1 = 1 with coordinate τ, (equal mass sunrise)

dimM1,3 = 3 with coordinates τ,z1,z2, (unequal mass sunrise).



Modular forms

Denote by H the complex upper half plane. A meromorphic function f : H → C is a

modular form of modular weight k for SL2(Z) if

(i) f transforms under Möbius transformations as

f

(

aτ+b

cτ+d

)

= (cτ+d)k · f (τ) for

(

a b

c d

)

∈ SL2(Z)

(ii) f is holomorphic on H,

(iii) f is holomorphic at i∞.



Simple poles at τ = i∞

A modular form fk(τ) is by definition holomorphic at the cusp and has a q-expansion

fk(τ) = a0+a1q+a2q2+ ..., q = exp(2πiτ)

The transformation q = exp(2πiτ) transforms the point τ = i∞ to q = 0 and we have

2πi fk(τ)dτ =
dq

q

(

a0+a1q+a2q2+ ...
)

.

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at q = 0.



The Kronecker function

F (z,α,τ) = πθ′
1 (0,q)

θ1 (π(z+α) ,q)

θ1 (πz,q)θ1 (πα,q)
=

1

α

∞

∑
k=0

g(k) (z,τ)αk, q = eiπτ

Properties of g(k)(z,τ):

- only simple poles as a function of z

- quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ.

- almost modular: Nice modular transformation properties only spoiled by divergent

Eisenstein series E1(z,τ).

Brown, Levin, ’11,

Broedel, Duhr, Dulat, Penante, Tancredi, ’18



Maximal cuts

Maximal cut: For a Feynman integral

Iν1ν2...νn =
(

µ2
)ν−lD/2

∫
dDk1

(2π)D
...

dDkl

(2π)D

n

∏
j=1

1

P
ν j

j

take the n-fold residue at

P1 = ...= Pn = 0

of the integrand and integrate over the remaining (lD−n) variables along a contour C .


