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Quantum field theory

e Quantum field theory is the framework for a wide range of physical phenomena.
e At weak coupling we may use perturbation theory.
e Individual terms in the perturbative expansion organised by Feynman diagrams.

e Beyond leading order we get Feynman integrals.

Restrictions for this talk:

- Feynman integrals in momentum space

- Divergent integrals regulated by dimensional regularisation, for example space-time dimension D =
4 — 2¢ with € infinitesimal.



Experiments in high-energy physics
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Examples of applications of perturbative techniques

High-energy experiments: Precision physics at the Large Hadron Collider (LHC)
involving the heaviest particles of the Standard Model (top, Higgs, W- and Z-boson)
allows us to probe scales beyond the centre-of-mass energy of 14 TeV.

Low-energy experiments: The Moller experiment at Jefferson lab or the P2
experiment at MESA/Mainz measure the weak mixing angle at low energies to high
precision and are therefore sensitive to new physics at TeV-scales complementary
to LHC searches.

Gravitational waves: The inspiral phase of a black-hole merger is described by
perturbation theory in gravity.

Spectroscopy: Measurements of the Lamb shift can be used to infer the proton
charge radius. The Lamb shift is an effect of quantum electrodynamics.



Examples of Feynman diagrams

Higgs decay: Mgaller scattering:

Black holes: Lamb shift;

Ho R



Highlights of perturbative calculations

e Beta-function in QCD to five loops
Herzog, Ruijl, Ueda, Vermaseren, Vogt, 17;

Luthe, Maier, Marquard, Schroder, ’17

e Anomalous magnetic moment of the electron in QED to five loops
Kinoshita et al., ’17

Laporta, 17 (four loops)

e Higgs boson production through gluon fusion to N°LO QCD

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, '15 (large m;-limit)



State-of-the-art

Despite these impressive calculations, let’s ask a different question:

To which loop order can we calculate any Feynman integral?

Here the answer is more modest:

e We can calculate any one-loop integral.

e Already at two-loops there are integrals which are currently not known analytically.



Why?

Rough answer: The complexity of a Feynman integral increases not only with the loop
number, but also with the number of kinematic variables.

Detailed answer: We understand very well Feynman integrals related to the moduli
space My .

From two-loop onwards, we encounter more complicated moduli spaces. The next
more complicated moduli space is M ,,.



Moduli spaces

M, . Space of isomorphism classes of smooth (complex, algebraic) curves of genus
g with n marked points.

<1
real surface <~ 22 complex curve
<3
<1
= 22
<3

Recall:
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No elliptic curves

(Introduction to Feynman integrals)



Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:

P2 P3

P1 D4

Next external particles with momenta py, ..., pn...-

Momentum conservation: p; +... + pn.. = 0.



Feynman diagrams

We may compute the scattering amplitude within perturbation theory:
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Feynman integrals

Associate to a Feynman graph G with N, external lines, n internal lines and [ loops
the set of Feynman integrals

d’k;  dPk; & 1
IV1V2...Vn — /

(2m)”  (2m)” it (qF —m3)

with Vi c 7.



Pinching of propagators

If for some exponent we have v; = 0, the corresponding propagator is absent and the
topology simplifies:




Integration by parts

Within dimensional regularisation we have for any loop momentum k; and v &€
{pla"'vaextakla'“vkl}

. “11 - = 0

/del del 0 ; 1 1
(em)” " (2m)” Ok i (gh—m3)Y

Working out the derivatives leads to relations among integrals with different sets of
indices (Vi,...,Vy)-

This allows us to express most of the integrals in terms of a few master integrals.

Tkachov ’81, Chetyrkin '81



Laporta’s algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large
linear system of equations.

This system has a block-triangular structure, originating from subtopologies.
Order the integrals by complexity (more propagators = more difficult)

Solve the system bottom-up, re-using the results for the already solved sectors.

Laporta '01



Differential equations

Let x; be a kinematic variable. Let I; € {I,...,In_,....} be a master integral. Carrying
out the derivative

9,
axk l

under the integral sign and using integration-by-parts identities allows us to express
the derivative as a linear combination of the master integrals.

a Nmaster
a—li = Z Clijlj
Xk =1

(Kotikov ’90, Remiddi '97, Gehrmann and Remiddi '99)



Differential equations

Let us formalise this:

[=(I,...,Iy_....) set of master integrals,

x=(X1,..,XNz) 5 set of kinematic variables the master integrals depend on.

We obtain a system of differential equations

dI+AI = O,

where A(€g,x) is a matrix-valued one-form
Np
A = ) Adx;.
i=1

The matrix-valued one-form A satisfies the integrability condition

dA+ANA = 0 (flat GauB-Manin connection).

Computation of Feynman integrals reduced to solving differential equations!



Simple differential equations

The system of differential equations is particular simple, if A is of the form

NL
A = ¢ :2:: (ﬁc(ﬂk,
k=1

where

- Cr 1S @ Npaster X Nmaster-matrix, whose entries are (rational or integer) numbers,
- the only dependence on € is given by the explicit prefactor,

- the differential one-forms ®; have only simple poles.

Henn ’13



Chen’s iterated integrals

For w, ..., o differential 1-forms on a manifold M and y: [0,1] — M a path, write for
the pull-back of ®; to the interval [0, 1]

The iterated integral is defined by (Chen'77)

Me—1

A A
Iy ((Dl, cees ook;k) = /d?\,lfl (7\,1) /d?\,zfz (7\2) / dxkfk (}Lk) .
0 0 0

Computation of Feynman integrals reduced to transforming the system of differential
equations to a simple form!



Multiple polylogarithms

If all ®;’s are of the form
W, = dlnpk(x),

where the p;’s are polynomials in the variables x, then (after factorisation of univariate
polynomials)

and all iterated integrals are multiple polylogarithms:

A M1
d\ d\> dhx

7\,1—210 M—2 ) M — 2k

G(Zl, ...,Zk;x) =

0



Example

Let us consider a simple example: One integral I in one variable x with boundary
condition 7(0) = 1. Consider the differential equation

(d+A) =0, A= —edn(x—1).

Note that

din(x—1) =

and

I(x) = 1+eG(1;x)+€°G(1,1;x)+eG(1,1,1;x) +...



Transformations

e Change the basis of the master integrals
I = Ul
where U(€,x) is @ Npaster X Nmaster-matrix. The new connection matrix is

A = vAU '+UdU .

e Perform a coordinate transformation on the base manifold:

xXi = fi(x), 1 <i<Ng.

l
The connection transforms as

N
— ZBA,-dx,- =2 Z A % dx’

i,j=1

j-



Change of coordinates

A change of variables is already required for the one-loop two-loop
function, where one encounters (x = p*/m?)

dx
Vx4 —x)
Here, a change of variables in the base manifold L
2O
N2
X — _M m

x/

will rationalise the square root and transform




Transformations in the case of multiple polylogarithm

e Change the basis of the master integrals
I' = Ul

Systematic algorithms if U is rational in the kinematic variables:

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee '14; Meyer ’16; Prausa ’17; Gituliar,

Magerya ’17; Lee, Pomeransky ’17;

e Perform a coordinate transformation on the base manifold:

Algorithms to rationalise square roots:

Becchetti, Bonciani, ’17, Besier, van Straten, S.W., 18, Besier, Wasser, S.W., '19.



Part 3

One elliptic curve

(Feynman integrals beyond multiple polylogarithms)



Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!




The Picard-Fuchs operator

Let /, be one of the master integrals {/,...,Iy,_,....}- Choose a path y: [0, 1] — M and
study the integral I, as a function of the path parameter A.

Instead of a system of N,,.«te; first-order differential equations
(d+A)I = 0,

we may equivalently study a single differential equation of order Ny aster

N, master

Z pi(A d?x,f = 0.

We may work modulo sub-topologies and g-corrections:

r d]
L = ij (k)m : LI, = 0 mod (sub-topologies, e-corrections)



Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

L = ( .(\) dd“b(x)) ( »(A) ddx—kbz(k)) <a1(x)%+b1(x)>

lterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

A
Vi(A) = exp (/dK Zjég) .

Full solution given by iterated integrals

M
C1\|11 (7\,) —|—C2\|11 /d?\,l }\l\:z)(w z}\‘ )—|—C3\|11 /d}hl WZ /d?\,z W3 —|—

Multiple polylogarithms are of this form.



Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

r

pr dw

does not factor into linear factors.

The next more complicate case:
The differential operator contains one irreducible second-order differential operator

‘@ (x)%w (x)%wj(x)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

is irreducible.

The solutions of the differential equation are K (k) and K(v/1 —k?), where K (k) is the
complete elliptic integral of the first kind:

I
/\/ 1—x2 1 —k2x2)
0



An example from physics: The two-loop sunrise integral

p2
SV1V2V3 (DJX) — X = %

Picard-Fuchs operator for S;11(2,x):
L (x—1)( 9)dz+(32 20 +9)d+( 3)
= x—1)(x—9)— x=—20x — 4+ (x—
* dx? dx
(Broadhurst, Fleischer, Tarasov '93)

Irreducible second-order differential operator.

Picard-Fuchs operator for the periods of a family of elliptic curves.



The elliptic curve

How to get the elliptic curve?

e From the Feynman graph polynomial:

—X1X0X3X + (x1 +x2 +x3) (X102 +xX0x3 +x3x1) = 0

e From the maximal cut:

V- (u—x)(u—x+4) (B +2u+1-4x) = 0

Baikov '96; Lee '10; Kosower, Larsen, '11; Caron-Huot, Larsen, '12; Frellesvig, Papadopoulos, '17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, '17

The periods vy, Wy, of the elliptic curve are solutions of the homogeneous differential
equation.
Adams, Bogner, S.W., ’13; Primo, Tancredi, 16



Variables

Recall
= 7
m2
Set
T = E, q =
V1

Change variable from x to T (0or g) (Bloch, Vanhove, '13).



Bases of lattices

The periods y; and y, generate a lattice. Any other basis as good as (Y, ).
Convention: Normalise (W, 1) — (t,1) where T =y, /.

/
Change of basis: W,z (< ? V2 ,
V c d V1
Transformation should be invertible: ( CCZ 2 > e SL (2
+b
In terms of T and T’ T =



The e-form of the differential equation for the sunrise

It is not possible to obtain an e-form by a rational/algebraic change of variables and/or
a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression y /7 from the master integrals
in the sunrise sector one obtains an e-form:

T 11 d 1 2
I = 4€2S,10(2 —2¢ L= -8 (2—2¢ Lh=-——— L+ —(3x>—10x—9) “Lp,.
1 110 ( ,x), b v, 11 ( ,X), I3 € i de 2+24( X X >Tl:2 2

If in addition one makes a (non-algebraic) change of variables from x to T, one obtains

NL
A = ¢ ZCk(x)k,
k=1

with @ = (21)** fi (T) £ and f; a modular form.

Adams, S.W.,’17,’18



Feynman integrals evaluating to iterated integrals of modular
forms

This applies to a wider class of Feynman integrals:




The unequal mass sunrise integral

p

There are 7 master integrals. After a redefinition of the basis of master integrals and a
change of coordiantes from (x,y1,y,) = (p*/m3,m3 /m3,m3/m3) to (,z1,22) one finds

N
A = &) Gy, with @, only simple poles,
k=1

where ®; involves either modular forms or functions appearing in the expansion of the
Kronecker function.

Bogner, Muller-Stach, S.W., 19



Part 4

Several elliptic curves

(An example from top-pair production)



Kinematics

7
s 1 ) E vj—D de1 de2 1
s (0 ) = 0P [ S
J=17

P2 . P3
2 5
1 4 7
3 1.6
P11’ P4
2 2 2 2 2
pi=p;=0, p3 = py=m’,



Picard-Fuchs operator of elliptic curves

e Sunrise integral: An elliptic curve can be obtained either from

— Feynman graph polynomial
— maximal cut

The periods yy, Y, are the solutions of the homogeneous differential equations.

Adams, Bogner, S.\W.,,’13,’14

e In general: The maximal cuts are solutions of the homogeneous differential
equations.

Primo, Tancredi, '16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.



Three elliptic curves

S
gl\.)
||

z—1) (z—t+4m®) (2" +2m’*z — 4m°t + m")

am? (m? —1)°
E® W (Z—t)(z—t—|—4m2) <Z2+2m2z—4m2t+m4— e (m )>

N L
2m? (s+4t)  sm* (m* —4r) —4mt>
(s —4m?) er >

.

EY o wr=(z—1) (z—t+4m?) | 2
w (Z )(Z + m) T s — 4m?

Adams, Chaubey, S.W., '18



Simple differential equations beyond multiple polylogarithms

Can the system of differential equations be brought into the form

Np
A = ¢ ZCk(Dk,

k=1

with @, only simple poles

for Feynman integrals not evaluating to multiple polylogarithms?

Some explicit examples:

Integral e-form simple poles | comments

all multiple polylogarithms | yes yes

equal mass sunrise yes yes Ng =1, 1 elliptic curve
unequal mass sunrise yes yes Ng =3, 1 elliptic curve
topbox yes ? Ng =2, 3 elliptic curves



Conclusions

Feynman integrals important in many areas of physics.

Feynman integrals evaluating to multiple polylogarithms related to iterated integrals

on My .

Feynman integrals may involve elliptic sectors from two loops onwards.

There is a class of Feynman integrals evaluating to iterated integrals on 2 ,,.

The planar double box integral relavant to t#z-production with a closed top loop
depends on two variables and involves several elliptic sub-sectors. More than one

elliptic curve occurs.

We may expect more results in the near future.



Outlook

Computation of Feynman integrals is ftrivial, as soon as the system of differential
equations is transformed to

Np
A = &) Gy, with @y only simple poles.
k=1

This form can be reached for
- many Feynman integrals evaluating to multiple polylogarithms
- a few non-trivial elliptic examples

Open question: Any Feynman integral can be obtained from a system of differential
equations of this form.

A constructive proof would gives us an algorithm to compute any Feynman integral.



Back-up slides



Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period o of the function f is a constant such that for all z:

flz+o) = f(2)
The set of all periods of f forms a lattice, which is either
e frivial (i.e. the lattice consists of @ = 0 only),
e asimple lattice, A = {nw | n € Z},

e a double lattice, A = {n10)1 + 1o, | ni,ny € Z}



Examples of periodic functions

e Singly periodic function: Exponential function
exp (z) -
exp(z) is periodic with peridod @ = 2.

e Doubly periodic function: Weierstrass’s g-function

1 1 1
SO(Z):—‘F Z < — > , A:{n1m1+n2(x)2|n1,n2€Z},
2> oenfor \ (Z+ 0) o

Im(@,/0;) # 0.

#(z) is periodic with periods ®; and ®,.



Inverse functions

The corresponding inverse functions are in general multivalued functions.
e For the exponential function x = exp(z) the inverse function is the logarithm

z = In(x).

e For Weierstrass’s elliptic function x = §(z) the inverse function is an elliptic integral

1

’ dt 1
< = / , g2 = 60 Z —, 83— 140 Z —.
’ VAP — gt — g3 wenio) @ wenoy ©°




Coordinates on the moduli space

In general: dim M, , =3g+n—3.

Genus 0:  dimM,, =n—3.
Sphere has a unique shape
Use Mobius transformationto fix z,.»=1, z,_.1=9o, z,=0
Coordinates are (z1,...,2, 3)

Genus 1:  dimM, , =n.
One coordinate describes the shape of the torus
Use translation to fix z, =0
Coordinates are (T,z1,...,2,_1)

In particular:

dimM; ; =1 with coordinate T, (equal mass sunrise)
dimM; 3 =3 with coordinates t,z;,z;, (unequal mass sunrise).



Modular forms

Denote by H the complex upper half plane. A meromorphic function f: H — C is a
modular form of modular weight & for SL,(Z) if

(i) f transforms under Mobius transformations as

((52) - rar s (1) e

(i) f is holomorphic on H,

(iii) f is holomorphic at ico.



Simple poles at T = i

A modular form f;(7) is by definition holomorphic at the cusp and has a g-expansion
fil(®) = ao+aig+arg +..., g = exp(2mit)

The transformation ¢ = exp(2mit) transforms the point T = ieo to ¢ = 0 and we have
: B dq 2
2nifi(t)dt = " (ao+a1q+a2q +)

Thus a modular form non-vanishing at the cusp T = icc has a simple pole at g = 0.



The Kronecker function

e1 (TC(Z—|-OC) 7Q)
0, (nz,q) 01 (naL, q

ITT

1 (o 0]
F(z,a,1) = m8,(0,q) ;= ) Ve, g=e
k=0

Properties of g (z,7):
- only simple poles as a function of z
- quasi-periodic as a function of z: Periodic by 1, quasi-periodic by T.

- almost modular: Nice modular transformation properties only spoiled by divergent
Eisenstein series E;(z,7).

Brown, Levin, '11,

Broedel, Duhr, Dulat, Penante, Tancredi, '18



Maximal cuts

Maximal cut: For a Feynman integral

(‘uz)\/lD/Z/ del del A |

(m)P " 2n)” AP

IV1V2...Vn

take the n-fold residue at

of the integrand and integrate over the remaining (/D — n) variables along a contour C.



