Feynman integrals associated to elliptic curves

Stefan Weinzierl
Institut für Physik, Universität Mainz

Part 1: Introduction

Part 2: No elliptic curves
Part 3: One elliptic curve
Part 4: Several elliptic curves

Quantum field theory

- Quantum field theory is the framework for a wide range of physical phenomena.
- At weak coupling we may use perturbation theory.
- Individual terms in the perturbative expansion organised by Feynman diagrams.
- Beyond leading order we get Feynman integrals.

Restrictions for this talk:

- Feynman integrals in momentum space
- Divergent integrals regulated by dimensional regularisation, for example space-time dimension $D=$ $4-2 \varepsilon$ with ε infinitesimal.

Experiments in high-energy physics

Examples of applications of perturbative techniques

- High-energy experiments: Precision physics at the Large Hadron Collider (LHC) involving the heaviest particles of the Standard Model (top, Higgs, W - and Z-boson) allows us to probe scales beyond the centre-of-mass energy of 14 TeV .
- Low-energy experiments: The Moller experiment at Jefferson lab or the P2 experiment at MESA/Mainz measure the weak mixing angle at low energies to high precision and are therefore sensitive to new physics at TeV-scales complementary to LHC searches.
- Gravitational waves: The inspiral phase of a black-hole merger is described by perturbation theory in gravity.
- Spectroscopy: Measurements of the Lamb shift can be used to infer the proton charge radius. The Lamb shift is an effect of quantum electrodynamics.

Examples of Feynman diagrams

Higgs decay:

Black holes:

Møller scattering:

Lamb shift:

Highlights of perturbative calculations

- Beta-function in QCD to five loops

Herzog, Ruijl, Ueda, Vermaseren, Vogt, 17;
Luthe, Maier, Marquard, Schröder, '17

- Anomalous magnetic moment of the electron in QED to five loops Kinoshita et al., '17

Laporta, '17 (four loops)

- Higgs boson production through gluon fusion to $\mathrm{N}^{3} \mathrm{LO}$ QCD Anastasiou, Duhr, Dulat, Herzog, Mistlberger, '15 (large m_{t}-limit)

State-of-the-art

Despite these impressive calculations, let's ask a different question:
To which loop order can we calculate any Feynman integral?

Here the answer is more modest:

- We can calculate any one-loop integral.
- Already at two-loops there are integrals which are currently not known analytically.

Why?

Rough answer: The complexity of a Feynman integral increases not only with the loop number, but also with the number of kinematic variables.

Detailed answer: We understand very well Feynman integrals related to the moduli space $\mathfrak{M}_{0, n}$.
From two-loop onwards, we encounter more complicated moduli spaces. The next more complicated moduli space is $\mathcal{M}_{1, n}$.

Moduli spaces

$\mathcal{M}_{g, n}$: Space of isomorphism classes of smooth (complex, algebraic) curves of genus g with n marked points.

Recall:

Part 2

No elliptic curves

(Introduction to Feynman integrals)

Scattering amplitudes

For a theoretical description we need to know the scattering amplitude:

$N_{\text {ext }}$ external particles with momenta $p_{1}, \ldots, p_{N_{\text {ext }}}$.
Momentum conservation: $p_{1}+\ldots+p_{N_{\text {ext }}}=0$.

Feynman diagrams

We may compute the scattering amplitude within perturbation theory:

Feynman integrals

Associate to a Feynman graph G with $N_{\text {ext }}$ external lines, n internal lines and l loops the set of Feynman integrals

$$
I_{v_{1} v_{2} \ldots v_{n}}=\int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \ldots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \prod_{j=1}^{n} \frac{1}{\left(q_{j}^{2}-m_{j}^{2}\right)^{v_{j}}},
$$

with $\mathrm{v}_{j} \in \mathbb{Z}$.

Pinching of propagators

If for some exponent we have $\mathrm{v}_{j}=0$, the corresponding propagator is absent and the topology simplifies:

Integration by parts

Within dimensional regularisation we have for any loop momentum k_{i} and $v \in$ $\left\{p_{1}, \ldots, p_{N_{\text {ext }}}, k_{1}, \ldots, k_{l}\right\}$

$$
\int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \ldots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \frac{\partial}{\partial k_{i}^{\mu}} v^{\mu} \prod_{j=1}^{n} \frac{1}{\left(q_{j}^{2}-m_{j}^{2}\right)^{v_{j}}}=0
$$

Working out the derivatives leads to relations among integrals with different sets of indices $\left(v_{1}, \ldots, v_{n}\right)$.

This allows us to express most of the integrals in terms of a few master integrals.

Laporta's algorithm

Expressing all integrals in terms of the master integrals requires to solve a rather large linear system of equations.

This system has a block-triangular structure, originating from subtopologies.
Order the integrals by complexity (more propagators \Rightarrow more difficult)
Solve the system bottom-up, re-using the results for the already solved sectors.

Differential equations

Let x_{k} be a kinematic variable. Let $I_{i} \in\left\{I_{1}, \ldots, I_{N_{\text {master }}}\right\}$ be a master integral. Carrying out the derivative

$$
\frac{\partial}{\partial x_{k}} I_{i}
$$

under the integral sign and using integration-by-parts identities allows us to express the derivative as a linear combination of the master integrals.

$$
\frac{\partial}{\partial x_{k}} I_{i}=\sum_{j=1}^{N_{\mathrm{master}}} a_{i j} I_{j}
$$

(Kotikov '90, Remiddi '97, Gehrmann and Remiddi '99)

Differential equations

Let us formalise this:

$$
\begin{array}{ll}
I=\left(I_{1}, \ldots, I_{N_{\text {master }}}\right), & \text { set of master integrals, } \\
x=\left(x_{1}, \ldots, x_{N_{B}}\right), & \text { set of kinematic variables the master integrals depend on. }
\end{array}
$$

We obtain a system of differential equations

$$
d I+A I=0
$$

where $A(\varepsilon, x)$ is a matrix-valued one-form

$$
A=\sum_{i=1}^{N_{B}} A_{i} d x_{i}
$$

The matrix-valued one-form A satisfies the integrability condition

$$
d A+A \wedge A=0 \quad \text { (flat Gauß-Manin connection). }
$$

Computation of Feynman integrals reduced to solving differential equations!

Simple differential equations

The system of differential equations is particular simple, if A is of the form

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}
$$

where

- C_{k} is a $N_{\text {master }} \times N_{\text {master-matrix, }}$ whose entries are (rational or integer) numbers,
- the only dependence on ε is given by the explicit prefactor,
- the differential one-forms ω_{k} have only simple poles.

Chen's iterated integrals

For $\omega_{1}, \ldots, \omega_{k}$ differential 1-forms on a manifold M and $\gamma:[0,1] \rightarrow M$ a path, write for the pull-back of ω_{j} to the interval $[0,1]$

$$
f_{j}(\lambda) d \lambda=\gamma^{*} \omega_{j} .
$$

The iterated integral is defined by (Chen '77)

$$
I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k-1}} d \lambda_{k} f_{k}\left(\lambda_{k}\right) .
$$

Computation of Feynman integrals reduced to transforming the system of differential equations to a simple form!

Multiple polylogarithms

If all ω_{k} 's are of the form

$$
\omega_{k}=d \ln p_{k}(x)
$$

where the p_{k} 's are polynomials in the variables x, then (after factorisation of univariate polynomials)

$$
f_{j}=\frac{d \lambda}{\lambda-z_{j}}
$$

and all iterated integrals are multiple polylogarithms:

$$
G\left(z_{1}, \ldots, z_{k} ; \lambda\right)=\int_{0}^{\lambda} \frac{d \lambda_{1}}{\lambda_{1}-z_{1}} \int_{0}^{\lambda_{1}} \frac{d \lambda_{2}}{\lambda_{2}-z_{2}} \ldots \int_{0}^{\lambda_{k-1}} \frac{d \lambda_{k}}{\lambda_{k}-z_{k}}
$$

Example

Let us consider a simple example: One integral I in one variable x with boundary condition $I(0)=1$. Consider the differential equation

$$
(d+A) I=0, \quad A=-\varepsilon d \ln (x-1) .
$$

Note that

$$
d \ln (x-1)=\frac{d x}{x-1}
$$

and

$$
I(x)=1+\varepsilon G(1 ; x)+\varepsilon^{2} G(1,1 ; x)+\varepsilon^{3} G(1,1,1 ; x)+\ldots
$$

Transformations

- Change the basis of the master integrals

$$
I^{\prime}=U I
$$

where $U(\varepsilon, x)$ is a $N_{\text {master }} \times N_{\text {master }}$-matrix. The new connection matrix is

$$
A^{\prime}=U A U^{-1}+U d U^{-1}
$$

- Perform a coordinate transformation on the base manifold:

$$
x_{i}^{\prime}=f_{i}(x), \quad 1 \leq i \leq N_{B} .
$$

The connection transforms as

$$
A=\sum_{i=1}^{N_{B}} A_{i} d x_{i} \quad \Rightarrow \quad A^{\prime}=\sum_{i, j=1}^{N_{B}} A_{i} \frac{\partial x_{i}}{\partial x_{j}^{\prime}} d x_{j}^{\prime} .
$$

Change of coordinates

A change of variables is already required for the one-loop two-loop function, where one encounters $\left(x=p^{2} / m^{2}\right)$

$$
\frac{d x}{\sqrt{-x(4-x)}} .
$$

Here, a change of variables in the base manifold

$$
x=-\frac{\left(1-x^{\prime}\right)^{2}}{x^{\prime}}
$$

will rationalise the square root and transform

$$
\frac{d x}{\sqrt{-x(4-x)}}=\frac{d x^{\prime}}{x^{\prime}}
$$

Transformations in the case of multiple polylogarithm

- Change the basis of the master integrals

$$
I^{\prime}=U I
$$

Systematic algorithms if U is rational in the kinematic variables:
Henn '13; Gehrmann, von Manteuffel, Tancredi, Weihs '14; Argeri et al. '14; Lee '14; Meyer '16; Prausa '17; Gituliar, Magerya '17; Lee, Pomeransky '17;

- Perform a coordinate transformation on the base manifold:

$$
x_{i}^{\prime}=f_{i}(x)
$$

Algorithms to rationalise square roots:
Becchetti, Bonciani, '17, Besier, van Straten, S.W., '18, Besier, Wasser, S.W., '19.

Part 3

One elliptic curve

(Feynman integrals beyond multiple polylogarithms)

Single-scale Feynman integrals beyond multiple polylogarithms

Not all Feynman integrals are expressible in terms of multiple polylogarithms!

The Picard-Fuchs operator

Let I_{a} be one of the master integrals $\left\{I_{1}, \ldots, I_{N_{\text {master }}}\right\}$. Choose a path $\gamma:[0,1] \rightarrow M$ and study the integral I_{a} as a function of the path parameter λ.

Instead of a system of $N_{\text {master }}$ first-order differential equations

$$
(d+A) I=0
$$

we may equivalently study a single differential equation of order $N_{\text {master }}$

$$
\sum_{j=0}^{N_{\text {master }}} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}} I_{a}=0 .
$$

We may work modulo sub-topologies and ε-corrections:

$$
L=\sum_{j=0}^{r} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}}: \quad L I_{a}=0 \quad \bmod \text { (sub-topologies, } \varepsilon \text {-corrections) }
$$

Factorisation of the Picard-Fuchs operator

Suppose the differential operator factorises into linear factors:

$$
L=\left(a_{r}(\lambda) \frac{d}{d \lambda}+b_{r}(\lambda)\right) \ldots\left(a_{2}(\lambda) \frac{d}{d \lambda}+b_{2}(\lambda)\right)\left(a_{1}(\lambda) \frac{d}{d \lambda}+b_{1}(\lambda)\right)
$$

Iterated first-order differential equation.
Denote homogeneous solution of the j-th factor by

$$
\Psi_{j}(\lambda)=\exp \left(-\int_{0}^{\lambda} d \kappa \frac{b_{j}(\kappa)}{a_{j}(\kappa)}\right) .
$$

Full solution given by iterated integrals
$C_{1} \psi_{1}(\lambda)+C_{2} \psi_{1}(\lambda) \int_{0}^{\lambda} d \lambda_{1} \frac{\psi_{2}\left(\lambda_{1}\right)}{a_{1}\left(\lambda_{1}\right) \psi_{1}\left(\lambda_{1}\right)}+C_{3} \psi_{1}(\lambda) \int_{0}^{\lambda} d \lambda_{1} \frac{\psi_{2}\left(\lambda_{1}\right)}{a_{1}\left(\lambda_{1}\right) \psi_{1}\left(\lambda_{1}\right)} \int_{0}^{\lambda_{1}} d \lambda_{2} \frac{\psi_{3}\left(\lambda_{2}\right)}{a_{2}\left(\lambda_{2}\right) \psi_{2}\left(\lambda_{2}\right)}+\ldots$
Multiple polylogarithms are of this form.

Picard-Fuchs operator: Beyond linear factors

Suppose the differential operator

$$
\sum_{j=0}^{r} p_{j}(\lambda) \frac{d^{j}}{d \lambda^{j}}
$$

does not factor into linear factors.
The next more complicate case:
The differential operator contains one irreducible second-order differential operator

$$
a_{j}(\lambda) \frac{d^{2}}{d \lambda^{2}}+b_{j}(\lambda) \frac{d}{d \lambda}+c_{j}(\lambda)
$$

An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

$$
\left[k\left(1-k^{2}\right) \frac{d^{2}}{d k^{2}}+\left(1-3 k^{2}\right) \frac{d}{d k}-k\right] f(k)=0
$$

is irreducible.
The solutions of the differential equation are $K(k)$ and $K\left(\sqrt{1-k^{2}}\right)$, where $K(k)$ is the complete elliptic integral of the first kind:

$$
K(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

An example from physics: The two-loop sunrise integral

$$
S_{v_{1} v_{2} v_{3}}(D, x)=-\frac{1}{2}+\quad x=\frac{p^{2}}{m^{2}}
$$

Picard-Fuchs operator for $S_{111}(2, x)$:

$$
L=x(x-1)(x-9) \frac{d^{2}}{d x^{2}}+\left(3 x^{2}-20 x+9\right) \frac{d}{d x}+(x-3)
$$

(Broadhurst, Fleischer, Tarasov '93)
Irreducible second-order differential operator.
Picard-Fuchs operator for the periods of a family of elliptic curves.

The elliptic curve

How to get the elliptic curve?

- From the Feynman graph polynomial:

$$
-x_{1} x_{2} x_{3} x+\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)=0
$$

- From the maximal cut:

$$
v^{2}-(u-x)(u-x+4)\left(u^{2}+2 u+1-4 x\right)=0
$$

Baikov '96; Lee '10; Kosower, Larsen, '11; Caron-Huot, Larsen, '12; Frellesvig, Papadopoulos, '17; Bosma, Sogaard, Zhang, '17; Harley, Moriello, Schabinger, '17

The periods ψ_{1}, ψ_{2} of the elliptic curve are solutions of the homogeneous differential equation.
Adams, Bogner, S.W., '13; Primo, Tancredi, '16

Variables

Recall

$$
x=\frac{p^{2}}{m^{2}}
$$

Set

$$
\tau=\frac{\psi_{2}}{\psi_{1}}, \quad q=e^{2 i \pi \tau}
$$

Change variable from x to τ (or q) (Bloch, Vanhove, '13).

Bases of lattices

The periods ψ_{1} and ψ_{2} generate a lattice. Any other basis as good as $\left(\psi_{2}, \psi_{1}\right)$. Convention: Normalise $\left(\psi_{2}, \psi_{1}\right) \rightarrow(\tau, 1)$ where $\tau=\psi_{2} / \psi_{1}$.

Change of basis: $\quad\binom{\psi_{2}^{\prime}}{\psi_{1}^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\psi_{2}}{\psi_{1}}$,
Transformation should be invertible: $\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$,

$$
\text { In terms of } \tau \text { and } \tau^{\prime}: \quad \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

The ε-form of the differential equation for the sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or a rational/algebraic transformation of the basis of master integrals.

However by factoring off the (non-algebraic) expression ψ_{1} / π from the master integrals in the sunrise sector one obtains an ε-form:
$I_{1}=4 \varepsilon^{2} S_{110}(2-2 \varepsilon, x), \quad I_{2}=-\varepsilon^{2} \frac{\pi}{\psi_{1}} S_{111}(2-2 \varepsilon, x), \quad I_{3}=\frac{1}{\varepsilon} \frac{1}{2 \pi i} \frac{d}{d \tau} I_{2}+\frac{1}{24}\left(3 x^{2}-10 x-9\right) \frac{\psi_{1}^{2}}{\pi^{2}} I_{2}$.

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}
$$

with $\omega_{k}=(2 \pi)^{2-k} f_{k}(\tau) \frac{d \tau}{2 \pi i}$ and f_{k} a modular form.
Adams, S.W., '17, '18

Feynman integrals evaluating to iterated integrals of modular forms

This applies to a wider class of Feynman integrals:

The unequal mass sunrise integral

There are 7 master integrals. After a redefinition of the basis of master integrals and a change of coordiantes from $\left(x, y_{1}, y_{2}\right)=\left(p^{2} / m_{3}^{2}, m_{1}^{2} / m_{3}^{2}, m_{2}^{2} / m_{3}^{2}\right)$ to $\left(\tau, z_{1}, z_{2}\right)$ one finds

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}, \quad \text { with } \omega_{k} \text { only simple poles, }
$$

where ω_{k} involves either modular forms or functions appearing in the expansion of the Kronecker function.

Part 4

Several elliptic curves

(An example from top-pair production)

Kinematics

$$
I_{v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}}\left(D, \frac{s}{m^{2}}, \frac{t}{m^{2}}\right)=\left(m^{2}\right)^{\sum_{j=1}^{7} v_{j}-D} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \frac{d^{D} k_{2}}{(2 \pi)^{D}} \prod_{j=1}^{7} \frac{1}{P_{j}^{v_{j}}},
$$

$$
\begin{array}{cl}
p_{1}^{2}=p_{2}^{2}=0, & p_{3}^{2}=p_{4}^{2}=m^{2} \\
s=\left(p_{1}+p_{2}\right)^{2}, & t=\left(p_{2}+p_{3}\right)^{2}
\end{array}
$$

Picard-Fuchs operator of elliptic curves

- Sunrise integral: An elliptic curve can be obtained either from
- Feynman graph polynomial
- maximal cut

The periods ψ_{1}, ψ_{2} are the solutions of the homogeneous differential equations.

Adams, Bogner, S.W., '13, '14

- In general: The maximal cuts are solutions of the homogeneous differential equations.

Primo, Tancredi, '16

Search for Feynman integrals, whose maximal cuts are periods of an elliptic curve.

Three elliptic curves

$$
\begin{aligned}
& E^{(a)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+2 m^{2} z-4 m^{2} t+m^{4}\right) \\
& E^{(b)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+2 m^{2} z-4 m^{2} t+m^{4}-\frac{4 m^{2}\left(m^{2}-t\right)^{2}}{s}\right) \\
& E^{(c)}: w^{2}=(z-t)\left(z-t+4 m^{2}\right)\left(z^{2}+\frac{2 m^{2}(s+4 t)}{\left(s-4 m^{2}\right)} z+\frac{s m^{2}\left(m^{2}-4 t\right)-4 m^{2} t^{2}}{s-4 m^{2}}\right)
\end{aligned}
$$

Simple differential equations beyond multiple polylogarithms

Can the system of differential equations be brought into the form

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}, \quad \text { with } \omega_{k} \text { only simple poles }
$$

for Feynman integrals not evaluating to multiple polylogarithms?
Some explicit examples:

Integral	ε-form	simple poles	comments
all multiple polylogarithms	yes	yes	
equal mass sunrise	yes	yes	$N_{B}=1, \quad 1$ elliptic curve
unequal mass sunrise	yes	yes	$N_{B}=3, \quad 1$ elliptic curve
topbox	yes	$?$	$N_{B}=2, \quad 3$ elliptic curves

Conclusions

- Feynman integrals important in many areas of physics.
- Feynman integrals evaluating to multiple polylogarithms related to iterated integrals on $\mathcal{M}_{0, n}$.
- Feynman integrals may involve elliptic sectors from two loops onwards.
- There is a class of Feynman integrals evaluating to iterated integrals on $\mathcal{M}_{1, n}$.
- The planar double box integral relavant to $t \bar{t}$-production with a closed top loop depends on two variables and involves several elliptic sub-sectors. More than one elliptic curve occurs.
- We may expect more results in the near future.

Outlook

Computation of Feynman integrals is trivial, as soon as the system of differential equations is transformed to

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}, \quad \text { with } \omega_{k} \text { only simple poles. }
$$

This form can be reached for

- many Feynman integrals evaluating to multiple polylogarithms
- a few non-trivial elliptic examples

Open question: Any Feynman integral can be obtained from a system of differential equations of this form.

A constructive proof would gives us an algorithm to compute any Feynman integral.

Back-up slides

Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.
A period ω of the function f is a constant such that for all z :

$$
f(z+\omega)=f(z)
$$

The set of all periods of f forms a lattice, which is either

- trivial (i.e. the lattice consists of $\omega=0$ only),
- a simple lattice, $\Lambda=\{n \omega \mid n \in \mathbb{Z}\}$,
- a double lattice, $\Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$.

Examples of periodic functions

- Singly periodic function: Exponential function

$$
\exp (z)
$$

$\exp (z)$ is periodic with peridod $\omega=2 \pi i$.

- Doubly periodic function: Weierstrass's \wp-function

$$
\begin{array}{ll}
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right), & \Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}, \\
& \operatorname{Im}\left(\omega_{2} / \omega_{1}\right) \neq 0 .
\end{array}
$$

$\wp(z)$ is periodic with periods ω_{1} and ω_{2}.

Inverse functions

The corresponding inverse functions are in general multivalued functions.

- For the $\operatorname{exponential}$ function $x=\exp (z)$ the inverse function is the logarithm

$$
z=\ln (x)
$$

- For Weierstrass's elliptic function $x=\wp(z)$ the inverse function is an elliptic integral

$$
z=\int_{x}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}, \quad g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}, \quad g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Coordinates on the moduli space

In general: $\quad \operatorname{dim} \mathcal{M}_{g, n}=3 g+n-3$.
Genus 0: $\quad \operatorname{dim} \mathscr{M}_{0, n}=n-3$. Sphere has a unique shape Use Möbius transformation to fix $z_{n-2}=1, \quad z_{n-1}=\infty, \quad z_{n}=0$ Coordinates are $\left(z_{1}, \ldots, z_{n-3}\right)$

Genus 1: $\quad \operatorname{dim} \mathcal{M}_{1, n}=n$.
One coordinate describes the shape of the torus
Use translation to fix $z_{n}=0$
Coordinates are $\left(\tau, z_{1}, \ldots, z_{n-1}\right)$
In particular:

$\operatorname{dim} \mathcal{M}_{1,1}=1$	with coordinate τ,	(equal mass sunrise)
$\operatorname{dim} \mathcal{M}_{1,3}=3$	with coordinates τ, z_{1}, z_{2},	(unequal mass sunrise).

Modular forms

Denote by \mathbb{H} the complex upper half plane. A meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular form of modular weight k for $\mathrm{SL}_{2}(\mathbb{Z})$ if
(i) f transforms under Möbius transformations as

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \cdot f(\tau) \quad \text { for }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

(ii) f is holomorphic on \mathbb{H},
(iii) f is holomorphic at $i \infty$.

Simple poles at $\tau=i \infty$

A modular form $f_{k}(\tau)$ is by definition holomorphic at the cusp and has a q-expansion

$$
f_{k}(\tau)=a_{0}+a_{1} q+a_{2} q^{2}+\ldots, \quad q=\exp (2 \pi i \tau)
$$

The transformation $q=\exp (2 \pi i \tau)$ transforms the point $\tau=i \infty$ to $q=0$ and we have

$$
2 \pi i f_{k}(\tau) d \tau=\frac{d q}{q}\left(a_{0}+a_{1} q+a_{2} q^{2}+\ldots\right)
$$

Thus a modular form non-vanishing at the cusp $\tau=i \infty$ has a simple pole at $q=0$.

The Kronecker function

$$
F(z, \alpha, \tau)=\pi \theta_{1}^{\prime}(0, q) \frac{\theta_{1}(\pi(z+\alpha), q)}{\theta_{1}(\pi z, q) \theta_{1}(\pi \alpha, q)}=\frac{1}{\alpha} \sum_{k=0}^{\infty} g^{(k)}(z, \tau) \alpha^{k}, \quad q=e^{i \pi \tau}
$$

Properties of $g^{(k)}(z, \tau)$:

- only simple poles as a function of z
- quasi-periodic as a function of z : Periodic by 1 , quasi-periodic by τ.
- almost modular: Nice modular transformation properties only spoiled by divergent Eisenstein series $E_{1}(z, \tau)$.

Maximal cuts

Maximal cut: For a Feynman integral

$$
I_{v_{1} v_{2} \ldots v_{n}}=\left(\mu^{2}\right)^{v-l D / 2} \int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \cdots \frac{d^{D} k_{l}}{(2 \pi)^{D}} \prod_{j=1}^{n} \frac{1}{P_{j}^{v_{j}}}
$$

take the n-fold residue at

$$
P_{1}=\ldots=P_{n}=0
$$

of the integrand and integrate over the remaining $(l D-n)$ variables along a contour \mathcal{C}.

