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Jet physics

A schematic view of electron-positron annihilation.

A four-jet event from the Aleph experiment at LEP:

Jets: A bunch of particles moving in the same
direction



Jet physics at the LHC

- Jet production: pp → jets

- Heavy flavour: pp → tt̄ + jets
pp → tt̄ +W/Z/H + jets

- Single boson: pp →W/Z/γ+ jets

- Diboson: pp →VV + jets

Number of Feynman
diagrams contributing to
gg → ng at tree level:

2 4
3 25
4 220
5 2485
6 34300
7 559405
8 10525900

Feynman diagrams are not the method of choice !



Part I : Techniques for many external legs

• Colour decomposition

• Spinor methods

• Supersymmetric relations

• Recurrence relations

• Parke-Taylor formulae

• Unitarity method



Colour decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors carrying the
colour structures multiplied by kinematic functions called partial amplitudes.

The partial amplitudes do not contain any colour information and are gauge-invariant.
Each partial amplitude has a fixed cyclic order of the external legs.

Examples: The n-gluon amplitude:

An(1,2, ...,n) = gn−2 ∑
σ∈Sn/Zn

2 Tr(T aσ(1)...T aσ(n))
︸ ︷︷ ︸

Chan Patton factors

An (σ(1), ...,σ(n))
︸ ︷︷ ︸

partial amplitudes

.

P. Cvitanovic, P. G. Lauwers, and P. N. Scharbach,

F. A. Berends and W. Giele,

M. L. Mangano, S. J. Parke, and Z. Xu,

D. Kosower, B.-H. Lee, and V. P. Nair,

Z. Bern and D. A. Kosower.



The spinor helicity method

• Basic objects: Massless two-component Weyl spinors

|p±〉, 〈p±|

• Gluon polarization vectors:

ε+
µ (k,q) =

〈k + |γµ|q+〉√
2〈q−|k+〉

, ε−µ (k,q) =
〈k−|γµ|q−〉√

2〈k + |q−〉

q is an arbitrary null reference momentum. Dependency on q drops out in gauge
invariant quantities.

• A clever choice of the reference momentum can reduce significantly the number of
diagrams which need to be calculated.

Berends, Kleiss, De Causmaecker, Gastmans and Wu; Xu, Zhang and Chang;

Kleiss and Stirling; Gunion and Kunszt



Bra-ket notation versus dotted-undotted indices

Two different notations for the same thing:

|p+〉 = pB 〈p+ | = pȦ

|p−〉 = pḂ 〈p−| = pA



Supersymmetric relations

In an unbroken supersymmetric theory, the supercharge annihilates the vacuum.

〈0 |[Q,Φ1Φ2...Φn]|0〉 = 0

The supercharge transforms bosons into fermions and vice versa. It relates therefore
amplitudes with a pair of fermions to the pure gluon amplitude:

Atree
n (q+

1 ,g+
2 , ...,g−

j , ...,g
+
n−1, q̄

−
n ) =

〈p1−|p j+〉
〈p j −|pn+〉 Atree

n (g+
1 ,g+

2 , ...,g−
j , ...,g

+
n−1,g

−
n ).

After the colour structure has been stripped off, nothing distinguishes a massless quark
from a gluino.

S. J. Parke and T. R. Taylor,

M. T. Grisaru and H. N. Pendleton.



Recurrence relations

Off-shell currents provide an efficient way to calculate amplitudes:

...
1n

off-shell

=
n−1

∑
j=1

1jj +1n

+
n−2

∑
j=1

n−1

∑
k= j+1

1jj +1kk +1n

No Feynman diagrams are calculated in this approach !

F. A. Berends and W. T. Giele,

D. A. Kosower.



The Parke-Taylor formulae

For specific helicity combinations the amplitudes have a remarkably simple analytic
formula or vanish altogether:

Atree
n (g+

1 , ...,g+
n ) = 0,

Atree
n (g+

1 , ...,g−
j , ...,g

+
n ) = 0,

Atree
n (g+

1 , ...,g−
j , ...,g

−
k , ...,g+

n ) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉.

The n-gluon amplitude with n− 2 gluons of positive helicity and 2 gluons of negative
helicity is called a maximal-helicity violating amplitude (MHV amplitude).

F. A. Berends and W. T. Giele,

S. J. Parke and T. R. Taylor.



Unitarity method

A1−loop =
Z dDk

(2π)D

1
k2

1 + iε
1

k2
2 + iε

Atree
L Atree

R

+ cut free pieces

The cut-construction simplifies the calculation of one-loop amplitudes, as cancellations
occur already inside Atree

L and Atree
R .

Theorem: One-loop amplitudes in massless supersymmetric gauge theories with no
superpotential can be completely constructed from their cuts.
Bern, Dixon, Dunbar and Kosower



Part II : Twistors, MHV vertices and recurrence relations

• Twistor space

• MHV vertices

• BCF recursion relations

• Scalar diagrammatic rules



Twistor space

Each null-vector has a bispinor representation:

pµ → pApḂ

Spinors only determined modulo the scaling

pA → λpA, pḂ → 1
λ

pḂ.

Twistor space: Transform pḂ, but not pA:

pȦ → i
∂

∂qȦ
,

−i
∂

∂pȦ
→ qȦ.



Twistor space continued

In signature + + −−, this transformation can be implemented as a Fourier
transformation:

A
(

qȦ
)

=
Z d2p

(2π)2 exp
(

iqȦpȦ

)

A(pȦ) .

In twistor space, the scaling relation reads

(pA,qḂ) → (λpA,λqḂ) .

Therefore twistor space is a three-dimensional projective space.



Algebraic curves

Examples of algebraic varieties: The cone is defined by

{
(x1,x2,x3) ;x2

1 + x2
2− x2

3 = 0
}

.

A conic section is given by

{
(x1,x2,x3) ;x2

1 + x2
2− x2

3 = 0,ax1 +bx2 + cx3 = 0
}

.



Witten’s conjecture

Witten conjectured that the n-gluon amplitude with l-loops is non-zero only if all points
lie in twistor space on an algebraic curve of degree d. The degree d of this curve is
given by the number of negative helicity gluons plus the number of loops minus one.

E. Witten, Commun. Math. Phys. 252, (2004), 189, (hep-th/0312171)



The CSW construction

Cachazo, Svrček and Witten proposed that the gluonic Born amplitude with an arbitrary
helicity configuration can be calculated from diagrams with scalar propagators and new
vertices, which are MHV-amplitudes continued off-shell.

An(1+, ..., j−, ...,k−, ...,n+) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉.

Off-shell continuation:

P = p[ +
P2

2Pq
q.

Propagators are scalars:

−i
P2

Cachazo, Svrček and Witten, JHEP 0409:006, (hep-th/0403047)



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

The first non-trivial example: The six-gluon amplitude with 3 positive helicity gluons
and 3 negative helicity gluons.

One starts with stripped diagrams:

1−

2−3− − + 3−

1−2− − + 2−

3−1− − +

The second diagram will be dressed with all positive helicty gluons inserted between
leg 3 and leg 1.

Therefore one MHV vertex with two negative helicity gluons and zero positive helicity
gluons remains.

Therefore this diagram does not give a contribution.



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

Inserting the gluons with positive helicity:

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

2−

3−
1−

− +

4+5+6+

2−

3−
1−

− +

4+5+6+

2−

3−
1−

− +

4+5+6+



Example: Six-gluon amplitude A(1−,2−,3−,4+,5+,6+)

The first diagram yields:

1−

2−
3−

− +

4+ 5+ 6+

=

[

i
√

2
〈12〉4

〈12〉〈2
(
−k[

12

)
〉〈
(
−k[

12

)
1〉

]

i
k2

12

[

i
(√

2
)3 〈3k[

12〉4

〈34〉〈45〉〈56〉〈6k[
12〉〈k[

123〉

]

Similar for the five other diagrams.

Compare this to

- a brute force approach (220 Feynman diagrams)

- colour-ordered amplitudes (36 diagrams)



The BCF recursion relations

Britto, Cachazo and Feng gave a recursion relation for the calculation of the n-gluon
amplitude:

An
(

p1, p2, ..., p−
n−1, p+

n

)
=

n−3

∑
i=1

∑
λ=+,−

Ai+2

(

p̂n, p1, p2, ..., pi,−P̂λ
n,i

)
(

i
P2

n,i

)

An−i

(

P̂−λ
n,i , pi+1, ..., pn−2, p̂n−1

)

.

No off-shell continuation needed. The amplitudes on the r.h.s. are evaluated with
shifted momenta.

Britto, Cachazo and Feng, Nucl. Phys. B715, (2005), 499, (hep-th/0412308)



A proof of the BCF recursion relations

Consider the amplitude

A(z) = A(p1, ..., pk(z), ..., pn−1, pn(z))

with shifted momenta

pk,AḂ(z) = pk,A
(

pk,Ḃ − zpn,Ḃ
)
,

pn,AḂ(z) = (pn,A + zpk,A) pn,Ḃ.

• A(z) is a rational function of z.

• A(z) has only simple poles as a function of z.



A proof of the BCF recursion relations

• If A(z) vanishes at inifinty, it can be written as

A(z) = ∑
i, j

ci j

z− zi j

• The residues ci j are related to the factorization on particle poles:

A(z) = ∑
i, j

∑
λ

Aλ
L(zi j)A−λ

R (zi j)

Pi j(z)

• The physical amplitude is obtained by setting z = 0 in the denominator. Therefore

A = ∑
i, j

∑
λ

Aλ
L(zi j)A−λ

R (zi j)

Pi j

Britto, Cachazo, Feng and Witten, Phys. Rev. Lett. 94:181602, (2005), (hep-th/0501052),

Draggiotis, Kleiss, Lazopoulos and Papadopoulos, hep-ph/0511288



Axial gauge

Polarisation sum, continued off-shell:

∑
λ=+/−

ελ
µ(k

[,q)ε−λ
ν (k[,q) = −gµν +2

k[
µqν +qµk[

ν

2kq
.

The gluon propagator in the axial gauge is given by

i
k2dµν =

i
k2

(

−gµν +2
kµqν +qµkν

2kq

)

=
i

k2

(
ε+

µ ε−ν + ε−µ ε+
ν + ε0

µε0
ν
)
,

where we introduced an unphysical polarisation

ε0
µ(k,q) = 2

√
k2

2kq
qµ.

Ch. Schwinn and S.W., JHEP 0505:006, (hep-th/0503015)



Modified vertices

The only non-zero contribution containing ε0 is obtained from a contraction of a single
ε0 into a three-gluon vertex.

In this case the other two helicities are necessarily ε+ and ε−.

The additional polarisation ε0 can be absorbed into a redefinition of the four-gluon
vertex.

1

23

4

=

1

23

4

+

1

23

4
0 0

+

1

23

4

0

0



Scalar diagrammatic rules

Extension to massive and massless quarks: Born amplitudes in QCD can be computed
from scalar propagators and a set of three- and four-valent vertices. Only vertices of
degree zero and one occur.

Propagators:

i
p2−m2

Vertices:

1−

2−3+

= i
√

2
〈12〉4

〈12〉〈23〉〈31〉,
1+

2−
3+ = i

√
2
[13]2

[12]
.



Part III : Applications

• Analytical structure of non-MHV amplitudes

• Numerical methods

• Loop amplitudes

• Massive quarks



Analytical structure of non-MHV amplitudes

Degree of an amplitude: number of negative helicity partons minus one.

• On-shell amplitudes of degree zero vanish.

• For amplitudes of degree one: Parke-Taylor formula

• Complexity of the final result increases with the degree: An amplitude of degree two
is build from two degree one pieces, etc.

Atree
6 (1+,2+,3+,4−,5−,6−) =

4i
[ 〈6−|1+2|3−〉3

〈61〉〈12〉[34][45]s126〈2−|1+6|5−〉+
〈4−|5+6|1−〉3

〈23〉〈34〉[56][61]s156〈2−|1+6|5−〉

]



Numerical methods

Compare algorithms based on different methods for the numerical computation of the
Born gluon amplitude:

n 4 5 6 7 8 9 10 11 12
Berends-Giele 0.00011 0.00043 0.0015 0.005 0.016 0.047 0.13 0.37 1
Scalar 0.00014 0.00083 0.0033 0.011 0.033 0.097 0.26 0.7 1.8
MHV 0.00001 0.00053 0.0056 0.073 0.62 3.67 29 217 —
BCF 0.00002 0.00007 0.0004 0.003 0.017 0.083 0.47 2.5 14.5

CPU time in seconds for the computation of the n gluon amplitude on a standard PC
(Pentium IV with 2 GHz), summed over all helicities.

All methods give identical results within an accuracy of 10−12.

M. Dinsdale, M. Ternick and S.W., in preparation



Loop amplitudes

Split QCD amplitudes into N = 4 and N = 1 SUSY pieces and a scalar part.

Loop amplitudes have branch cuts:
Get branch cuts from the unitarity method.
Use recursion relations for the rational pieces.

An(0) = C∞ − ∑
poles

res
An(z)

z
−

∞
Z

B0

dz
z

Disc An(z)

Complications: Boundary terms, double poles.
Brandhuber, Spence and Travaglini;

Bern, Dixon, Kosower

C

One-loop corrections A1−loop
n (1−,2−,3+, ...,n+) to adjacent MHV amplitudes have

been calculated.
Forde, Kosower



Massive scalars and massive quarks

All-multiplicity Born amplitudes with massive scalars:

An(φ̄+
1 ,g+

2 , ...,g+
n−1,φ

−
n ), An(φ̄+

1 ,g+
2 , ...,g−

n−1,φ
−
n ).

(D. Forde and D.A. Kosower, hep-th/0507292)

Simple relation between amplitudes with massive scalars and massive quarks (top-
quarks), based on supersymmetry:

An(Q̄+
1 ,g+

2 , ...,g+
n−1,Q

−
n ) =

〈nq〉
〈1q〉An(φ̄+

1 ,g+
2 , ...,g+

n−1,φ
−
n ),

(Ch. Schwinn and S.W., hep-th/0602012)



Summary

• Standard techniques: Colour decomposition, spinor methods, supersymmetric
relations, recurrence relations and the unitarity method

• New developments: Twistor space, MHV vertices, BCF recursion relations and
scalar diagrammatic rules

• Applications: analytical, numerical, application to loop amplitudes and to top quark
amplitudes


