Trading a Calabi-Yau three-fold for a curve of genus two

Stefan Weinzierl

work in progress

in collaboration with Hans Jockers, Sören Kotlewski, Pyry Kuusela, Andrew J. McLeod, Sebastian Pögel, Maik Sarve, Xing Wang

February 29, 2024

Motivation

- Physics profits from a fruitful interplay with geometry.
- This also applies to perturbative quantum field theory.
- Feynman integrals related to geometric objects: Spheres, elliptic curves, curves of higher genus, Calabi-Yaus, ...
- We want to learn and understand as much as possible.

Content

- In this talk we will study the simplest Feynman integral related to a Calabi-Yau threefold: The equal-mass four-loop banana integral.
- It is known that the maximal cut of the equal-mass four-loop banana integral is a period of a Calabi-Yau three-fold.
- This talk:
 - The maximal cut is also the period of a genus-two curve.
 - This curve can be constructed explicitly.
 - The curve varies holomorphically with $z = m^2/p^2$.

More precisely:

- On the Calabi-Yau side:
 - The Calabi-Yau threefold has $h^{2,1} = 1$, hence dim $H^3(Y) = 4$.
 - We may integrate the holomorphic (3,0)-form Ω against four independent cycles. This yields four integral periods.
 - These four integral periods are annihilated by a Picard-Fuchs operator $L^{(0)}$ of degree four.
- On the side of the genus two curve:
 - We construct a holomorphic one-form as a linear combination

$$\omega = c_0 \omega_0 + c_1 \omega_1.$$

- We may integrate the holomorphic (1,0)-form ω against four cycles (two a-cycles and two b-cycles).
- We show that the periods so obtained are again annihilated by the same Picard-Fuchs operator $L^{(0)}$.

Notation

Capital letters on the Calabi-Yau manifold Y:

 Ω : Holomorphic (3,0)-form

 A_0, A_1, B^0, B^1 : Symplectic basis of $H_3(Y, \mathbb{Z})$

 $\Pi_{A_0}, \Pi_{A_1}, \Pi_{B^0}, \Pi_{B^1}$: Periods of Ω

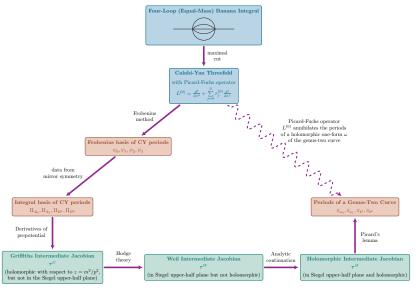
Lower-case letters on the genus-two curve C:

 ω : Holomorphic (1,0)-form

 a_0, a_1, b^0, b^1 : Symplectic basis of $H_1(C, \mathbb{Z})$

 $\pi_{a_0}, \pi_{a_1}, \pi_{b^0}, \pi_{b^1}$: Periods of ω

Outline

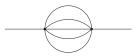


Section 1

Physics

The equal-mass four-loop banana integtral

The object of interest: The family of the equal-mass four-loop banana integrals:



These integrals depend on one kinematic variable

$$z = \frac{m^2}{p^2}.$$

There are 1+4=5 master integrals, a possible basis is given by

Bönisch, Duhr, Fischbach, Forum, Görges, Klemm, Kreimer, Nega, Pögel, Safari, Tancredi, von Hippel, Wagner, Wang, S.W., '19 - '23

The ε-factorised form

 There is a basis J, which puts the differential equation for this family into an E-factorised form

$$\frac{d}{dz}J = \varepsilon A(z)J.$$

Pögel, Wang, S.W. '22

- In order to construct this basis one important ingredient is to study the maximal cut of I₁₁₁₁₁ in two space-time dimensions.
- The maximal cut of I_{11111} satisfies a fourth-order differential equation.

The Picard-Fuchs operator

• The Picard-Fuchs operator:

$$L^{(0)} = \frac{d^4}{dz^4} + \left[\frac{2}{z} - 2\frac{1}{(1-z)} - 2\frac{9}{(1-9z)} - 2\frac{25}{(1-25z)}\right] \frac{d^3}{dz^3}$$

$$+ \frac{1 - 98z + 1839z^2 - 3150z^3}{z^2(1-z)(1-9z)(1-25z)} \frac{d^2}{dz^2} - \frac{(1+15z - 60z^2)(1-15z)}{z^3(1-z)(1-9z)(1-25z)} \frac{d}{dz}$$

$$+ \frac{1 - 5z}{z^4(1-z)(1-9z)(1-25z)}.$$

We are interested in the differential equation

$$\textit{L}^{(0)}\psi \ = \ 0$$

and the interpretation of the solutions as periods of geometric objects.

• $L^{(0)}$ is related to operator 34 in the list of Almkvist, van Enckevort, van Straten and Zudilin (and hence a Calabi-Yau operator).

The Frobenius solution

The point z=0 is a **point of maximal unipotent monodromy**. From the method of Frobenius it follows that we may write the 4 independent solutions as

$$\begin{array}{rcl} \psi_0 & = & \displaystyle \sum_{n=0}^{\infty} a_{0,n} z^{n+1}, \\ \psi_1 & = & \displaystyle \frac{1}{(2\pi i)} \sum_{n=0}^{\infty} \left[a_{1,n} + a_{0,n} \ln z \right] z^{n+1}, \\ \psi_2 & = & \displaystyle \frac{1}{(2\pi i)^2} \sum_{n=0}^{\infty} \left[a_{2,n} + a_{1,n} \ln z + \frac{1}{2} a_{0,n} \ln^2 z \right] z^{n+1}, \\ \psi_3 & = & \displaystyle \frac{1}{(2\pi i)^3} \sum_{n=0}^{\infty} \left[a_{3,n} + a_{2,n} \ln z + \frac{1}{2} a_{1,n} \ln^2 z + \frac{1}{6} a_{0,n} \ln^3 z \right] z^{n+1}. \end{array}$$

Section 2

The Calabi-Yau story

The Calabi-Yau threefold

• Vanishing of the second graph polynomial $\mathcal F$ in \mathbb{CP}^4 :

$$Y^{\text{sing}} = \left\{ \left[a_1 : a_2 : a_3 : a_4 : a_5 \right] \in \mathbb{CP}^4 \mid \mathcal{F}(a) = 0 \right\}.$$

This defines a singular Calabi-Yau threefold.

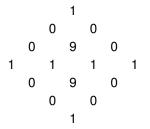
 Hulek-Verrill variety: There is a smooth projective Calabi-Yau threefold Y, birational to Y^{sing}, defined as the toric compactification of the locus

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = z \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_5} \right) + \frac{1}{a_6} = 0$$

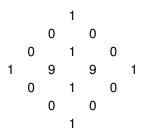
on
$$\mathbb{T}^5=\mathbb{CP}^5\backslash\,\{a_1\cdot a_2\cdot a_3\cdot a_4\cdot a_5\cdot a_6=0\}.$$

Hulek, Verrill, '05

The Hodge diamonds



Calabi-Yau manifold Y



Mirror manifold Ymirror

Data from the Frobenius solutions

The mirror map:

$$au = rac{\psi_1}{\psi_0}, \qquad q = e^{2\pi i au}.$$

Candelas, De La Ossa, Green, Parkes '91

 The differential operator L⁽⁰⁾ is a Calabi-Yau operator and has one non-trivial Y-invariant:

$$Y_2 = \frac{d^2}{d\tau^2} \frac{\psi_2}{\psi_0}.$$

We may write Y_2 in the form

$$Y_2 = \frac{1}{24} \left(q \frac{d}{dq} \right)^3 \left[4 \ln^3 q + \sum_{k=1}^{\infty} n_k \operatorname{Li}_3(q^k) \right].$$

The n_k are integer numbers.

M. Bogner '13, D. van Straten '17

The special local normal form

• The differential operator $L^{(0)}$ can be written in the q-coordinate as

$$L^{(0)} = \beta \left(q \frac{d}{dq} \right)^2 \frac{1}{Y_2} \left(q \frac{d}{dq} \right)^2 \frac{1}{\psi_0}$$

where β is a function of q.

The operator

$$N(L^{(0)}) = \left(q\frac{d}{dq}\right)^2 \frac{1}{Y_2} \left(q\frac{d}{dq}\right)^2$$

is called the special local normal form of the operator $L^{(0)}$.

M. Bogner, '13

Topological data from the mirror manifold

Triple intersection number κ on Y^{mirror} :

$$\kappa \ = \ \int\limits_{\gamma^{mirror}} \omega^{K\ddot{a}hler} \wedge \omega^{K\ddot{a}hler} \wedge \omega^{K\ddot{a}hler} = \ 24.$$

Integrated second Chern class of Y^{mirror}:

$$C_2 = \int_{Y^{\text{mirror}}} c_2 \wedge \omega^{\text{K\"{a}hler}} = 24.$$

Euler characteristic χ of Y^{mirror} :

$$\chi = \sum_{p,q} (-1)^{p+q} h^{p,q} \left(Y^{\text{mirror}} \right) = -16.$$

Candelas, de la Ossa, Kuusela, McGovern, '21

Integral periods

With κ , C_2 and χ at hand, we get the **integral periods** from the Frobenius solutions:

$$\begin{pmatrix} \Pi_{A_0} \\ \Pi_{A_1} \\ \Pi_{B^1} \\ \Pi_{B^0} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{C_2}{24} & 0 & -\kappa & 0 \\ \frac{\chi \zeta_3}{(2\pi i)^3} & \frac{C_2}{24} & 0 & \kappa \end{pmatrix} \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Normalised integral periods:

$$\hat{\Pi}_{J} \ = \ \frac{\Pi_{J}}{\Pi_{A_{0}}}, \quad \ J \in \{A_{0}, A_{1}, B^{1}, B^{0}\}.$$

Special Kähler geometry

There is a prepotential $F(\tau)$ and a projective version $F^{\text{proj}}(X^0, X^1)$

$$F(\tau) = F^{\text{proj}}(1,\tau), \qquad F^{\text{proj}}(X^0,X^1) = (X^0)^2 F\left(\frac{X^1}{X^0}\right)$$

such that

$$\hat{\Pi}_{B^i} = \frac{\partial \mathcal{F}^{\text{proj}}}{\partial X^i} \bigg|_{(X^0, X^1) = (1, \tau)}.$$

The prepotential works out to

$$F = -4\tau^3 + \tau - 8\frac{\zeta_3}{(2\pi i)^3} - \frac{1}{(2\pi i)^3} \sum_{k=1}^{\infty} n_k \operatorname{Li}_3(q^k).$$

Section 3

Intermediate Jacobians

Intermediate Jacobians

 We will now be considering intermediate Jacobians of (complex) dimension 2 for the Calabi-Yau threefold Y. They are all given by

$$J_2 = \mathbb{C}^2 / (\mathbb{Z}^2 + \tau \mathbb{Z}^2),$$

where $\boldsymbol{\tau}$ is a symmetric 2 × 2-matrix (which should not be confused with τ).

- The Jacobian variety of a curve of genus 2 is of a similar form. In this case $\tau \in \mathbb{H}^2$ (Siegel upper half-plane).
- We will interpret one particular intermediate Jacobian as the Jacobian variety of curve of genus 2.

Griffiths' intermediate Jacobian

First try: **Griffiths' intermediate Jacobian**, can be obtained from the prepotential:

$$J_2^G = \mathbb{C}^2 / (\mathbb{Z}^2 + \boldsymbol{\tau}^G \mathbb{Z}^2),$$

where

$$\boldsymbol{\tau}^{G} = \left(\begin{array}{cc} \tau_{00}^{G} & \tau_{01}^{G} \\ \tau_{01}^{G} & \tau_{11}^{G} \end{array} \right), \qquad \tau_{ij}^{G} = \left. \frac{\partial^{2} F^{\text{proj}}}{\partial X^{i} \partial X^{j}} \right|_{\left(X^{0}, X^{1}\right) = (1, \tau)}.$$

But: $\text{Im}(\tau^G)$ not positive definite, hence $\tau^G \notin \mathbb{H}^2$, cannot be interpreted as the Jacobian variety of a genus 2 curve.

Complex structures on $H^3(X,\mathbb{R})$

- Alternativ definition of Griffiths' intermediate Jacobian: Start from the cohomology group $H^3(X,\mathbb{R})$ with real coefficients, put a complex structure on it and mod out $H^3(X,\mathbb{Z})$.
- There are two possibilities in defining a complex structure on $H^3(X,\mathbb{R})$. One possibility gives us Griffiths intermediate Jacobian defined before, the other possibility gives Weil's intermediate Jacobian.

	$H^{(3,0)}$	$H^{(2,1)}$	$H^{(1,2)}$	$H^{(0,3)}$
Eigenvalue CG	+ <i>i</i>	+i	- <i>i</i>	-i
Eigenvalue <i>C</i> ^W	_ <i>i</i>	+i	-i	+i

Weil's intermediate Jacobian

Weil's intermediate Jacobian is given by

$$\label{eq:J2W} \textit{J}_2^W \ = \ \mathbb{C}^2/\left(\mathbb{Z}^2 + \pmb{\tau}^W\mathbb{Z}^2\right),$$

where

$$\boldsymbol{\tau}^W = \left(\begin{array}{cc} \tau^W_{00} & \tau^W_{01} \\ \tau^W_{01} & \tau^W_{11} \end{array} \right), \qquad \tau^W_{ij} = -\overline{F_{ij}} - 2i \left. \frac{I_{ik} X^k I_{jl} X^l}{X^m I_{mn} X^n} \right|_{(X^0, X^1) = (1, \tau)}$$

and

$$F_{ij} = \left. \frac{\partial^2 F^{\mathrm{proj}}}{\partial X^i \partial X^j} \right|_{(X^0, X^1) = (1, \tau)}, \qquad I_{ij} = \mathrm{Im} \; F_{ij}.$$

Weil's intermediate Jacobian

- We now have $\mathbf{\tau}^W \in \mathbb{H}^2$, hence we may interpret J_2^W as the Jacobian variety of a genus 2 curve.
- But J_2^W varies non-holomorphically with z.
- However, non-holomorphic terms drop out in

$$\psi_0 \left(\begin{array}{ccc} 1 & \tau \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & \tau_{00}^W & \tau_{01}^W \\ 0 & 1 & \tau_{01}^W & \tau_{11}^W \end{array} \right) = \left(\begin{array}{ccc} \Pi_{A_0} & \Pi_{A_1} & -\Pi_{B^0} & -\Pi_{B^1} \end{array} \right).$$

Observation

Let us now restrict to $z \in]0, z_{\text{max}}[$.

Restricted to this line segment we have

$$\begin{split} \tau_{00}^W &= -\frac{\left(F - \tau \partial_\tau F\right) \left(2F - 2\tau \partial_\tau F + \tau^2 \partial_\tau^2 F\right)}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}, \\ \tau_{01}^W &= -\frac{F \partial_\tau F - \tau \left(\partial_\tau F\right)^2 + \tau F \partial_\tau^2 F}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}, \\ \tau_{11}^W &= \frac{\left(F - \tau \partial_\tau F\right) \partial_\tau^2 F}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}. \end{split}$$

The holomorphic Jacobian

Let us now consider a complex neighbourhood of the line segment $]0,z_{\max}[$. In this neighbourhood we define

$$J_2^H = \mathbb{C}^2 / (\mathbb{Z}^2 + \boldsymbol{\tau}^H \mathbb{Z}^2)$$

through

$$\tau_{00}^H = -\frac{(F - \tau \partial_\tau F)\left(2F - 2\tau \partial_\tau F + \tau^2 \partial_\tau^2 F\right)}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}, \quad \tau_{01}^H = -\frac{F \partial_\tau F - \tau \left(\partial_\tau F\right)^2 + \tau F \partial_\tau^2 F}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}, \quad \tau_{11}^H = \frac{(F - \tau \partial_\tau F)\partial_\tau^2 F}{F - \tau \partial_\tau F + \tau^2 \partial_\tau^2 F}$$

Properties:

- J₂^H varies holomorphically with z.
- $\mathbf{\tau}^H \in \mathbb{H}^2$.
- One linear combination is annihilated by the Picard-Fuchs operator:

$$\psi_0 \left(\begin{array}{cccc} 1 & \tau \end{array} \right) \left(\begin{array}{cccc} 1 & 0 & \tau_{00}^H & \tau_{01}^H \\ 0 & 1 & \tau_{01}^H & \tau_{11}^H \end{array} \right) = \left(\begin{array}{cccc} \Pi_{A_0} & \Pi_{A_1} & -\Pi_{B^0} & -\Pi_{B^1} \end{array} \right).$$

Section 4

The genus two curve

Construction of the curve: Outline

- We now construct a genus two curve from its Jacobian variety.
- We take the Jacobian variety to be defined by

$$\tau = \tau^H$$

- The construction of the genus two curve from its Jacobian variety can be done with the help of a lemma from Picard.
- This lemma uses theta functions.

Theta functions

For $\mathbf{\tau} \in \mathbb{H}^g$ and $z \in \mathbb{C}^g$ the theta function is defined by

$$\vartheta(z, \mathbf{\tau}) = \sum_{n \in \mathbb{Z}^g} e^{i\pi(n^T \mathbf{\tau} n + 2n^T z)}$$

Theta functions with characteristic are defined for $a, b \in \mathbb{Q}^g$ by

$$\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (z, \mathbf{\tau}) = \sum_{n \in \mathbb{Z}^g} e^{i\pi \left((n+a)^T \mathbf{\tau} (n+a) + 2(n+a)^T (z+b) \right)}.$$

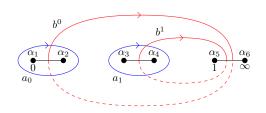
- Of particular importance is the case, where $a, b \in (\mathbb{Z}/2)^g$.
- In this case 4a^T · b is an integer, and the characteristic is called even (respectively odd) if this integer is even (respectively odd).

Theta constants

- Let us now specialise to g = 2.
- In this case we have 10 even characteristics and 6 odd characteristics.
- Short-hand notation:

$$\begin{split} \theta_1 &= \vartheta \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] (0, \pmb{\tau}) \,, & \theta_2 &= \vartheta \left[\begin{array}{cc} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{array} \right] (0, \pmb{\tau}) \,, \\ \theta_3 &= \vartheta \left[\begin{array}{cc} 0 & 0 \\ \frac{1}{2} & 0 \end{array} \right] (0, \pmb{\tau}) \,, & \theta_4 &= \vartheta \left[\begin{array}{cc} 0 & 0 \\ 0 & \frac{1}{2} \end{array} \right] (0, \pmb{\tau}) \,, \\ \theta_5 &= \vartheta \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & 0 \end{array} \right] (0, \pmb{\tau}) \,, & \theta_6 &= \vartheta \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right] (0, \pmb{\tau}) \,, \\ \theta_7 &= \vartheta \left[\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right] (0, \pmb{\tau}) \,, & \theta_8 &= \vartheta \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{array} \right] (0, \pmb{\tau}) \,. \\ \theta_9 &= \vartheta \left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{array} \right] (0, \pmb{\tau}) \,. & \theta_{10} &= \vartheta \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right] (0, \pmb{\tau}) \,. \end{split}$$

The curve of genus two



Rosenhain form of a genus two curve:

$$C : v^2 = P_5(u), P_5(u) = u(u-\alpha_2)(u-\alpha_3)(u-\alpha_4)(u-1)$$

Given $\pmb{\tau}\in\mathbb{H}_2$ the branch points $\alpha_2,\alpha_3,\alpha_4$ are given by a lemma from Picard in terms of theta constants

$$\alpha_2 = \frac{\theta_5^2 \theta_6^2}{\theta_1^2 \theta_4^2}, \qquad \qquad \alpha_3 = \frac{\theta_6^2 \theta_7^2}{\theta_4^2 \theta_8^2}, \qquad \qquad \alpha_4 = \frac{\theta_5^2 \theta_7^2}{\theta_1^2 \theta_8^2}.$$

The one-form ω

On a genus two curve we have two holomorphic one-forms

$$\omega_0 \,=\, \frac{du}{\sqrt{P_5(u)}}, \qquad \omega_1 \,=\, \frac{udu}{\sqrt{P_5(u)}}.$$

Consider

$$\omega = c_0 \omega_0 + c_1 \omega_1$$

with

$$c_0 = \ \frac{\theta_2\theta_3\theta_5\theta_6\theta_7\theta_9\theta_{10}}{2\theta_1^2\theta_4^2\theta_8^2} \ \frac{\psi_0\partial_1\theta_{11} - \psi_1\partial_0\theta_{11}}{\partial_0\theta_{16}\partial_1\theta_{11} - \partial_0\theta_{11}\partial_1\theta_{16}} \,, \qquad c_1 = \ \frac{\theta_2\theta_3\theta_9\theta_{10}}{2\theta_1\theta_4\theta_8} \ \frac{\psi_0\partial_1\theta_{16} - \psi_1\partial_0\theta_{16}}{\partial_0\theta_{16}\partial_1\theta_{11} - \partial_0\theta_{11}\partial_1\theta_{16}} \,.$$

and the odd theta constants

$$\partial_i\theta_{11} = \left.\frac{\partial}{\partial z_i}\vartheta\left[\begin{array}{cc}0 & \frac{1}{2}\\0 & \frac{1}{2}\end{array}\right](z,\pmb{\tau})\right|_{z=0}, \qquad \left.\partial_i\theta_{16} = \left.\frac{\partial}{\partial z_i}\vartheta\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\\0 & \frac{1}{2}\end{array}\right](z,\pmb{\tau})\right|_{z=0}.$$

The periods of ω are annihilated by the Picard-Fuchs operator $L^{(0)}$.

Section 5

Wrap-up

Calculational steps

- From the differential equation get the Frobenius solution.
- From the Frobenius solution get τ and the prepotential F.
- From τ and F get $\mathbf{\tau}^H \in \mathbb{H}^2$.
- From $\mathbf{\tau}^H$ get the branchpoints α_2 , α_3 , α_4 .

$$C : v^2 = u(u-\alpha_2)(u-\alpha_3)(u-\alpha_4)(u-1),$$

Hierarchy of small parameters

For small z we have approximately

$$e^{i\pi\tau_{00}}\approx \exp\left(\frac{\ln^3z}{2\pi^2}\right), \qquad e^{i\pi\tau_{11}}\approx z^6, \qquad \frac{i}{2}\left(1+e^{i\pi\tau_{01}}\right)\approx -\frac{9\zeta_3}{4\pi\ln z}.$$

All three expressions on the right-hand sides go to zero as $z \to 0$, albeit at different rates.

Z	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10 ⁻²
$e^{\frac{\ln^3 z}{2\pi^2}}$	$7.4 \cdot 10^{-93}$	9.6·10 ⁻⁵⁹	$2.7 \cdot 10^{-34}$	6.5 · 10 ⁻¹⁸	5.6 · 10 ⁻⁸	7 · 10 ⁻³
z^6	10 ⁻⁴²	10^{-36}	10^{-30}	10^{-24}	10^{-18}	10^{-12}
$-\frac{9\zeta_3}{4\pi \ln z}$	0.053	0.062	0.075	0.093	0.12	0.19

For sufficient small values of z we have the hierarchy

$$e^{\frac{ln^3z}{2\pi^2}} \ll \, z^6 \, \ll \, -\frac{9\zeta_3}{4\pi \ln z}.$$

Conclusions

- Maximal cut of the equal-mass four-loop banana integral:
 - period of a Calabi-Yau threefold
 - period of a curve of genus two.
- There is a linear combination of holomorphic one-forms, whose periods are annihilated by the Picard-Fuchs operator.
- The curve varies holomorphically.
- Jacobian varieties are useful.
- Outlook: Extensions to odd-dimensional Calabi-Yau manifolds.