Fast Evolution of Parton Distributions
special_functions.h
Go to the documentation of this file.
1 
8 /*
9  * Copyright (C) 2002 Stefan Weinzierl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24  */
25 
26 #ifndef __PDF_SPECIAL_FUNCTIONS_H__
27 #define __PDF_SPECIAL_FUNCTIONS_H__
28 
29 #include "complex_d.h"
30 
31 namespace pdf {
32 
33  complex_d cot(const complex_d & xx);
34  complex_d LogSin(const complex_d & xx);
35  complex_d Gamma(const complex_d & xx);
36  complex_d LogGamma(const complex_d & xx);
37  complex_d Beta(const complex_d & x, const complex_d & y);
38  double cot(double xx);
39  double LogSin(double xx);
40  double Gamma(double xx);
41  double LogGamma(double xx);
42  double Beta(double x, double y);
43 
44  complex_d IncompleteGamma(const complex_d & a, double x);
45  complex_d HyperGeometric(const complex_d & a, const complex_d & b, const complex_d & c, const complex_d & z);
46 
47  complex_d Psi(const complex_d & z);
48  complex_d Psi1(const complex_d & z);
49  complex_d Psi2(const complex_d & z);
50  complex_d Psi3(const complex_d & z);
51  double Psi(double z);
52  double Psi1(double z);
53  double Psi2(double z);
54  double Psi3(double z);
55 
56  complex_d S1(const complex_d & z);
57  complex_d S2(const complex_d & z);
58  complex_d S3(const complex_d & z);
59  complex_d Stilde(const complex_d & z, int eta);
60  complex_d Sprim1(const complex_d & z, int eta);
61  complex_d Sprim2(const complex_d & z, int eta);
62  complex_d Sprim3(const complex_d & z, int eta);
63 
64  complex_d M1_helper(const complex_d & z);
65  complex_d M2_helper(const complex_d & z);
66 
67 } // namespace pdf
68 
69 #endif // ndef __PDF_SPECIAL_FUNCTIONS_H__
70 
71 
72 
complex_d S1(const complex_d &z)
Definition: special_functions.cc:459
complex_d IncompleteGamma(const complex_d &a, double x)
Definition: special_functions.cc:165
complex_d Gamma(const complex_d &xx)
Definition: special_functions.cc:98
complex_d M2_helper(const complex_d &z)
Definition: special_functions.cc:627
complex_d cot(const complex_d &xx)
Definition: special_functions.cc:42
complex_d Beta(const complex_d &x, const complex_d &y)
Definition: special_functions.cc:229
complex_d Psi2(const complex_d &z)
Definition: special_functions.cc:319
complex_d S2(const complex_d &z)
Definition: special_functions.cc:473
complex_d M1_helper(const complex_d &z)
Definition: special_functions.cc:602
std::complex< double > complex_d
complex numbers with double precision
Definition: complex_d.h:34
complex_d S3(const complex_d &z)
Definition: special_functions.cc:487
complex_d Psi(const complex_d &z)
Definition: special_functions.cc:271
complex_d Sprim2(const complex_d &z, int eta)
Definition: special_functions.cc:560
complex_d LogGamma(const complex_d &xx)
Definition: special_functions.cc:132
complex_d Sprim1(const complex_d &z, int eta)
Definition: special_functions.cc:545
Definition: anomalous.cc:33
complex_d LogSin(const complex_d &xx)
Definition: special_functions.cc:64
complex_d HyperGeometric(const complex_d &a, const complex_d &b, const complex_d &c, const complex_d &z)
Definition: special_functions.cc:246
complex_d Stilde(const complex_d &z, int eta)
Definition: special_functions.cc:501
complex_d Psi1(const complex_d &z)
Definition: special_functions.cc:295
complex_d Sprim3(const complex_d &z, int eta)
Definition: special_functions.cc:575
complex_d Psi3(const complex_d &z)
Definition: special_functions.cc:343