|
Nestedsums library
|
#include <transc_fct_B.h>
Public Member Functions | |
| transcendental_fct_type_B (const GiNaC::ex &xx1, const GiNaC::ex &xx2, const GiNaC::ex &ii_num, const GiNaC::ex &ii_denom, const GiNaC::ex &jj_num, const GiNaC::ex &jj_denom, const GiNaC::ex &iijj_num, const GiNaC::ex &iijj_denom, const GiNaC::ex &pp_num, const GiNaC::ex &pp_denom) | |
| transcendental_fct_type_B (const GiNaC::ex &xx1, const GiNaC::ex &xx2, const GiNaC::ex &ii_num, const GiNaC::ex &ii_denom, const GiNaC::ex &jj_num, const GiNaC::ex &jj_denom, const GiNaC::ex &iijj_num, const GiNaC::ex &iijj_denom, const GiNaC::ex &pp_num, const GiNaC::ex &pp_denom, const GiNaC::ex &eps, int o, int f) | |
| void | archive (GiNaC::archive_node &node) const override |
| void | read_archive (const GiNaC::archive_node &node, GiNaC::lst &sym_lst) override |
| unsigned | return_type (void) const override |
| void | print (const GiNaC::print_context &c, unsigned level=0) const override |
| unsigned | precedence (void) const override |
| GiNaC::ex | eval () const override |
| GiNaC::ex | subs (const GiNaC::exmap &m, unsigned options=0) const override |
| GiNaC::ex | set_expansion (const GiNaC::ex &eps, int o) const |
| GiNaC::ex | shift_plus_one (void) const |
Protected Member Functions | |
| GiNaC::ex | eval_ncmul (const GiNaC::exvector &v) const override |
| GiNaC::ex | derivative (const GiNaC::symbol &s) const override |
| unsigned | calchash (void) const override |
The class transcendental_fct_type_B provides an interface to the class transcendental_sum_type_B. The definition is
![\[
\frac{\Gamma(d_1) ... \Gamma(d_n)}{\Gamma(d_1') ... \Gamma(d_{n'}')}
\sum\limits_{i=0}^\infty \sum\limits_{j=0}^\infty
\frac{\Gamma(i+a_1) ... \Gamma(i+a_k)}{\Gamma(i+a_1') ... \Gamma(i+a_{k-1}')}
\frac{\Gamma(j+b_1) ... \Gamma(j+b_l)}{\Gamma(j+b_1') ... \Gamma(j+b_{l-1}')}
\frac{\Gamma(i+j+c_1) ... \Gamma(i+j+c_m)}{\Gamma(i+j+c_1') ... \Gamma(i+j+c_{m}')}
\frac{x_1^i}{i!} \frac{x_2^j}{j!}
\]](form_201.png)
|
override |
Evaluation: If flag_expand_status is set, the object is expanded in 
The result is converted to a standard form, using convert_Zsums_to_standard_form.
|
overrideprotected |
No automatic simplifications
| ex set_expansion | ( | const GiNaC::ex & | eps, |
| int | o ) const |
Sets the flag flag_expand_status to expand_status::expansion_required. The object is then automatically expanded up to the specified order.
| ex shift_plus_one | ( | void | ) | const |
Casts a sum of the form
![\[
\frac{\Gamma(d_1) ... \Gamma(d_n)}{\Gamma(d_1') ... \Gamma(d_{n'}')}
\sum\limits_{i=1}^\infty \sum\limits_{j=1}^\infty
\frac{\Gamma(i+a_1) ... \Gamma(i+a_k)}{\Gamma(i+a_1') ... \Gamma(i+a_{k-1}')}
\frac{\Gamma(j+b_1) ... \Gamma(j+b_l)}{\Gamma(j+b_1') ... \Gamma(j+b_{l-1}')}
\frac{\Gamma(i+j+c_1) ... \Gamma(i+j+c_m)}{\Gamma(i+j+c_1') ... \Gamma(i+j+c_{m}')}
\frac{x_1^i}{i!} \frac{x_2^j}{j!}
\]](form_198.png)
into the form of transcendental_fct_type_B by making the change of variables
![\[
i' = i-1
\]](form_199.png)
![\[
j' = j-1
\]](form_200.png)